File: MemPool.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (29 lines) | stat: -rw-r--r-- 1,193 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <torch/csrc/python_headers.h>

#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/utils/device_lazy_init.h>
#include <torch/csrc/utils/pybind.h>

#include <c10/cuda/CUDACachingAllocator.h>

template <typename T>
using shared_ptr_class_ = py::class_<T, std::shared_ptr<T>>;

void THCPMemPool_init(PyObject* module) {
  auto torch_C_m = py::handle(module).cast<py::module>();
  shared_ptr_class_<::c10::cuda::MemPool>(torch_C_m, "_MemPool")
      .def(
          py::init([](c10::cuda::CUDACachingAllocator::CUDAAllocator* allocator,
                      bool is_user_created) {
            torch::utils::device_lazy_init(at::kCUDA);
            return std::make_shared<::c10::cuda::MemPool>(
                allocator, is_user_created);
          }))
      .def_property_readonly("id", &::c10::cuda::MemPool::id)
      .def_property_readonly("allocator", &::c10::cuda::MemPool::allocator)
      .def("use_count", &::c10::cuda::MemPool::use_count);
  shared_ptr_class_<::c10::cuda::MemPoolContext>(torch_C_m, "_MemPoolContext")
      .def(py::init<c10::cuda::MemPool*>())
      .def_static(
          "active_pool", &::c10::cuda::MemPoolContext::getActiveMemPool);
}