File: propagate_gradients_req.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (94 lines) | stat: -rw-r--r-- 2,937 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#include <torch/csrc/distributed/autograd/rpc_messages/propagate_gradients_req.h>
#include <torch/csrc/distributed/rpc/rpc_agent.h>
#include <torch/csrc/jit/serialization/pickle.h>

#include <c10/util/irange.h>

namespace torch::distributed::autograd {

using rpc::Message;
using rpc::MessageType;
using torch::autograd::Variable;

PropagateGradientsReq::PropagateGradientsReq(
    const AutogradMetadata& autogradMetadata,
    std::vector<Variable> grads,
    bool retainGraph)
    : autogradMetadata_(autogradMetadata),
      grads_(std::move(grads)),
      retainGraph_(retainGraph) {}

c10::intrusive_ptr<Message> PropagateGradientsReq::toMessageImpl() && {
  std::vector<at::IValue> ivalues;
  // Add all the grad tensors.
  ivalues.reserve(grads_.size() + 3);
  for (const auto& grad : grads_) {
    ivalues.emplace_back(grad);
  }

  // Now add autograd metadata.
  ivalues.emplace_back(autogradMetadata_.autogradContextId);
  ivalues.emplace_back(autogradMetadata_.autogradMessageId);

  // Add retain graph.
  ivalues.emplace_back(retainGraph_);

  // Now pickle using JIT pickler.
  std::vector<torch::Tensor> tensorTable;
  std::vector<char> payload =
      jit::pickle(c10::ivalue::Tuple::create(std::move(ivalues)), &tensorTable);

  return c10::make_intrusive<Message>(
      std::move(payload),
      std::move(tensorTable),
      MessageType::BACKWARD_AUTOGRAD_REQ);
}

std::unique_ptr<PropagateGradientsReq> PropagateGradientsReq::fromMessage(
    const Message& message) {
  // Unpickle the message and retrieve tupleElements.
  auto payload = static_cast<const char*>(message.payload().data());
  auto payload_size = message.payload().size();
  IValue tuple = jit::unpickle(
      payload,
      payload_size,
      *rpc::RpcAgent::getCurrentRpcAgent()->getTypeResolver(),
      message.tensors());
  const auto& tupleElements = tuple.toTupleRef().elements();

  // Build PropagateGradientsReq.
  TORCH_INTERNAL_ASSERT(tupleElements.size() >= 3);

  // Retrieve retainGraph.
  bool retainGraph = tupleElements.back().toBool();

  // Build AutogradMetadata.
  int64_t autogradMessageId = tupleElements[tupleElements.size() - 2].toInt();
  int64_t autogradContextId = tupleElements[tupleElements.size() - 3].toInt();

  AutogradMetadata autogradMetadata(autogradContextId, autogradMessageId);

  // Retrieve the gradient tensors.
  std::vector<Variable> grads(tupleElements.size() - 3);
  for (const auto i : c10::irange(tupleElements.size() - 3)) {
    grads[i] = tupleElements[i].toTensor();
  }

  return std::make_unique<PropagateGradientsReq>(
      autogradMetadata, grads, retainGraph);
}

const AutogradMetadata& PropagateGradientsReq::getAutogradMetadata() {
  return autogradMetadata_;
}

const std::vector<torch::autograd::Variable>& PropagateGradientsReq::
    getGrads() {
  return grads_;
}

bool PropagateGradientsReq::retainGraph() {
  return retainGraph_;
}

} // namespace torch::distributed::autograd