File: CUDASymmetricMemory-inl.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (451 lines) | stat: -rw-r--r-- 14,481 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#pragma once

#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900) && CUDART_VERSION >= 12010
#define NVCC_SUPPORTS_MULTICAST 1
#endif

#include <ATen/ATen.h>
#if !defined(USE_ROCM)
#include <cuda_bf16.h>
#endif
namespace c10d::symmetric_memory {

template <typename T>
__inline__ size_t get_alignment(T ptr_or_size) {
  auto val = reinterpret_cast<uintptr_t>(ptr_or_size);
  if (val % 16 == 0) {
    return 16;
  } else if (val % 8 == 0) {
    return 8;
  } else if (val % 4 == 0) {
    return 4;
  } else if (val % 2 == 0) {
    return 2;
  } else {
    return 1;
  }
}

template <>
__inline__ size_t get_alignment<size_t>(size_t size) {
  return get_alignment(reinterpret_cast<void*>(size));
}

template <bool Value, class... Args>
inline constexpr bool dependent_bool_value = Value;

template <class... Args>
inline constexpr bool dependent_false = dependent_bool_value<false, Args...>;

template <auto... Args>
inline constexpr bool dependent_false_nt =
    dependent_bool_value<false, decltype(Args)...>;

enum class MemOpSem {
  Relaxed,
  Acquire,
  Release,
  AcqRel,
};

#define CAS_ASM(addr, compare, val, old_val, sem)                 \
  asm volatile("atom.global" sem ".sys.cas.b32 %0, [%1], %2, %3;" \
               : "=r"(old_val)                                    \
               : "l"(addr), "r"(compare), "r"(val)                \
               : "memory");

template <MemOpSem Sem>
__device__ __forceinline__ uint32_t
cas(uint32_t* addr, uint32_t compare, uint32_t val) {
#if defined(USE_ROCM) || (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800))
  CUDA_KERNEL_ASSERT(false);
  return 0;
#else
  uint32_t old_val;
  if constexpr (Sem == MemOpSem::Relaxed) {
    CAS_ASM(addr, compare, val, old_val, ".relaxed");
  } else if constexpr (Sem == MemOpSem::Acquire) {
    CAS_ASM(addr, compare, val, old_val, ".acquire");
  } else if constexpr (Sem == MemOpSem::Release) {
    CAS_ASM(addr, compare, val, old_val, ".release");
  } else {
    static_assert(dependent_false_nt<Sem>);
  }
  return old_val;
#endif
}

__device__ __forceinline__ void trap() {
#if defined(USE_ROCM)
  assert(0);
#else
  __trap();
#endif
}

__device__ __forceinline__ size_t global_timer_ns() {
#if defined(USE_ROCM)
  CUDA_KERNEL_ASSERT(false);
  return 0;
#else
  size_t val;
  asm volatile("mov.u64 %0, %globaltimer;" : "=l"(val) : : "memory");
  return val;
#endif
}

constexpr size_t ns_per_ms = 1e6;

template <MemOpSem Sem>
__device__ __forceinline__ bool try_put_signal(
    uint32_t* addr,
    size_t timeout_ms) {
  size_t deadline = global_timer_ns() + timeout_ms * ns_per_ms;
  while (cas<Sem>(addr, 0, 1) != 0) {
    if (timeout_ms != 0 && global_timer_ns() > deadline) {
      return false;
    }
  }
  return true;
}

template <MemOpSem Sem>
__device__ __forceinline__ bool try_wait_signal(
    uint32_t* addr,
    size_t timeout_ms) {
  size_t deadline = global_timer_ns() + timeout_ms * ns_per_ms;
  while (cas<Sem>(addr, 1, 0) != 1) {
    if (timeout_ms != 0 && global_timer_ns() > deadline) {
      return false;
    }
  }
  return true;
}

template <MemOpSem Sem>
__device__ __forceinline__ void put_signal(uint32_t* addr) {
  while (cas<Sem>(addr, 0, 1) != 0)
    ;
}

template <MemOpSem Sem>
__device__ __forceinline__ void wait_signal(uint32_t* addr) {
  while (cas<Sem>(addr, 1, 0) != 1)
    ;
}

// Synchronizes blocks with matching blockIdx across participating devices.
// Note: sync_remote_block itself is not a system level barrier/fence. It is a
// building block for expressing different synchronization patterns.
//
// Pattern 0: Ensures that all writes to symm_mem buffers from previous
// kernels across all devices are visible to the current kernel:
//
//   sync_remote_blocks<MemOpSem::Relaxed>(...);
//   __syncthreads();
//
// Pattern 1: Ensures that all writes to symm_mem buffers from the current
// block are visible to all remote blocks with matching blockIdx:
//
//   __syncthreads();
//   sync_remote_blocks<MemOpSem::AcqRel>(...);
//   __syncthreads();
//
// Pattern 2: Ensures that symm_mem buffers read by the current kernel are safe
// for writing by subsequent kernels across all devices.
//
//   __syncthreads();
//   sync_remote_blocks<MemOpSem::Relaxed>(...);
template <MemOpSem Sem>
__device__ __forceinline__ void sync_remote_blocks(
    uint32_t** signal_pads,
    size_t rank,
    size_t world_size);

template <>
__device__ __forceinline__ void sync_remote_blocks<MemOpSem::Relaxed>(
    uint32_t** signal_pads,
    size_t rank,
    size_t world_size) {
  if (threadIdx.x < world_size) {
    auto target_rank = threadIdx.x;
    put_signal<MemOpSem::Relaxed>(
        signal_pads[target_rank] + blockIdx.x * world_size + rank);
    wait_signal<MemOpSem::Relaxed>(
        signal_pads[rank] + blockIdx.x * world_size + target_rank);
  }
}

template <>
__device__ __forceinline__ void sync_remote_blocks<MemOpSem::AcqRel>(
    uint32_t** signal_pads,
    size_t rank,
    size_t world_size) {
  if (threadIdx.x < world_size) {
    auto target_rank = threadIdx.x;
    put_signal<MemOpSem::Release>(
        signal_pads[target_rank] + blockIdx.x * world_size + rank);
    wait_signal<MemOpSem::Acquire>(
        signal_pads[rank] + blockIdx.x * world_size + target_rank);
  }
}

template <int Size>
union Vec;

template <>
union Vec<4> {
  uint16_t u16[2];
  uint32_t u32, as_scalar;
  float f32;
};

template <>
union Vec<8> {
  uint16_t u16[4];
  uint32_t u32[2];
  uint64_t u64, as_scalar;
  float f32[2];
};

template <>
union alignas(16) Vec<16> {
  uint16_t u16[8];
  uint32_t u32[4];
  uint64_t u64[2];
  uint4 u128, as_scalar;
  float f32[4];
};

template <typename T>
struct MultimemLdReduce {
  template <int Alignment>
  __device__ __inline__ Vec<Alignment> operator()(T* mc_ptr) {
    static_assert(dependent_false<T>);
  }
};

template <int Alignment, typename T>
__device__ __inline__ Vec<Alignment> multimem_ld_reduce_add(T* mc_ptr) {
  MultimemLdReduce<T> functor;
  return functor.template operator()<Alignment>(mc_ptr);
}

#if defined(USE_ROCM) || !defined(NVCC_SUPPORTS_MULTICAST)
#define SPECIALIZE_MULTIMEM_LD_REDUCE_VEC_32(type, asm_type, acc_prec) \
  template <>                                                          \
  struct MultimemLdReduce<type> {                                      \
    template <int Alignment>                                           \
    __device__ __inline__ Vec<Alignment> operator()(type* mc_ptr) {    \
      CUDA_KERNEL_ASSERT(false);                                       \
    }                                                                  \
  };
#else
#define SPECIALIZE_MULTIMEM_LD_REDUCE_VEC_32(type, asm_type, acc_prec)    \
  template <>                                                             \
  struct MultimemLdReduce<type> {                                         \
    template <int Alignment>                                              \
    __device__ __inline__ Vec<Alignment> operator()(type* mc_ptr) {       \
      Vec<Alignment> vec;                                                 \
      if constexpr (Alignment == 16) {                                    \
        asm("multimem.ld_reduce.relaxed.sys.global.add" acc_prec          \
            ".v4" asm_type " {%0,%1,%2,%3}, [%4];"                        \
            : "=r"(vec.u32[0]),                                           \
              "=r"(vec.u32[1]),                                           \
              "=r"(vec.u32[2]),                                           \
              "=r"(vec.u32[3])                                            \
            : "l"(mc_ptr)                                                 \
            : "memory");                                                  \
      } else if constexpr (Alignment == 8) {                              \
        asm("multimem.ld_reduce.relaxed.sys.global.add" acc_prec          \
            ".v2" asm_type " {%0,%1}, [%2];"                              \
            : "=r"(vec.u32[0]), "=r"(vec.u32[1])                          \
            : "l"(mc_ptr)                                                 \
            : "memory");                                                  \
      } else if constexpr (Alignment == 4) {                              \
        asm("multimem.ld_reduce.relaxed.sys.global.add" acc_prec asm_type \
            " %0, [%1];"                                                  \
            : "=r"(vec.u32)                                               \
            : "l"(mc_ptr)                                                 \
            : "memory");                                                  \
      }                                                                   \
      return vec;                                                         \
    }                                                                     \
  };
#endif

SPECIALIZE_MULTIMEM_LD_REDUCE_VEC_32(at::BFloat16, ".bf16x2", ".acc::f32");
SPECIALIZE_MULTIMEM_LD_REDUCE_VEC_32(float, ".f32", "");

template <int Alignment, typename T>
__device__ __inline__ void multimem_st(T* mc_ptr, Vec<Alignment>& vec) {
#if defined(USE_ROCM) || !defined(NVCC_SUPPORTS_MULTICAST)
  CUDA_KERNEL_ASSERT(false);
#else
  if constexpr (Alignment == 16) {
    asm("multimem.st.relaxed.sys.global.v4.f32 [%0], {%1,%2,%3,%4};"
        :
        : "l"(mc_ptr),
          "r"(vec.u32[0]),
          "r"(vec.u32[1]),
          "r"(vec.u32[2]),
          "r"(vec.u32[3])
        : "memory");
  } else if constexpr (Alignment == 8) {
    asm("multimem.st.relaxed.sys.global.v2.f32 [%0], {%1,%2};"
        :
        : "l"(mc_ptr), "r"(vec.u32[0]), "r"(vec.u32[1])
        : "memory");
  } else if constexpr (Alignment == 4) {
    asm("multimem.st.relaxed.sys.global.f32 [%0], %1;"
        :
        : "l"(mc_ptr), "r"(vec.u32)
        : "memory");
  } else {
    static_assert(dependent_false<T>);
  }
#endif
}

template <int Alignment, typename T>
__device__ __inline__ Vec<Alignment> ld_vec(const T* addr) {
#if defined(USE_ROCM) || (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800))
  CUDA_KERNEL_ASSERT(false);
#else
  Vec<Alignment> vec;
  if constexpr (Alignment == 16) {
    asm("ld.global.v4.u32 {%0,%1,%2,%3}, [%4];"
        : "=r"(vec.u32[0]), "=r"(vec.u32[1]), "=r"(vec.u32[2]), "=r"(vec.u32[3])
        : "l"(addr)
        : "memory");
  } else if constexpr (Alignment == 8) {
    asm("ld.global.v2.u32 {%0,%1}, [%2];"
        : "=r"(vec.u32[0]), "=r"(vec.u32[1])
        : "l"(addr)
        : "memory");
  } else if constexpr (Alignment == 4) {
    asm("ld.global.u32 %0, [%1];" : "=r"(vec.u32) : "l"(addr) : "memory");
  } else {
    static_assert(dependent_false<T>);
  }
  return vec;
#endif
}

template <int Alignment, typename T>
__device__ __inline__ void st_vec(T* addr, const Vec<Alignment>& vec) {
#if defined(USE_ROCM) || !defined(NVCC_SUPPORTS_MULTICAST)
  CUDA_KERNEL_ASSERT(false);
#else
  if constexpr (Alignment == 16) {
    asm("st.global.v4.u32 [%0], {%1,%2,%3,%4};"
        :
        : "l"(addr),
          "r"(vec.u32[0]),
          "r"(vec.u32[1]),
          "r"(vec.u32[2]),
          "r"(vec.u32[3])
        : "memory");
  } else if constexpr (Alignment == 8) {
    asm("st.global.v2.u32 [%0], {%1,%2};"
        :
        : "l"(addr), "r"(vec.u32[0]), "r"(vec.u32[1])
        : "memory");
  } else if constexpr (Alignment == 4) {
    asm("st.global.u32 [%0], %1;" : : "l"(addr), "r"(vec.u32) : "memory");
  } else {
    static_assert(dependent_false<T>);
  }
#endif
}

#if defined(USE_ROCM)
using __nv_bfloat162 = uint32_t;
#endif

template <typename T>
__device__ __inline__ T add_bf16x2(T a, T b) {
  static_assert(sizeof(T) == 4);
#if defined(USE_ROCM) || (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800))
  CUDA_KERNEL_ASSERT(false);
  return T{};
#else
  auto res = __hadd2(
      *reinterpret_cast<__nv_bfloat162*>(&a),
      *reinterpret_cast<__nv_bfloat162*>(&b));
  return *reinterpret_cast<T*>(&res);
#endif
}

template <int Alignment, typename T>
__device__ __inline__ Vec<Alignment> add_vec(
    const Vec<Alignment>& a,
    const Vec<Alignment>& b) {
  Vec<Alignment> c{};
  if constexpr (std::is_same_v<T, float>) {
    if constexpr (Alignment == 16) {
      c.f32[0] = a.f32[0] + b.f32[0];
      c.f32[1] = a.f32[1] + b.f32[1];
      c.f32[2] = a.f32[2] + b.f32[2];
      c.f32[3] = a.f32[3] + b.f32[3];
    } else if constexpr (Alignment == 8) {
      c.f32[0] = a.f32[0] + b.f32[0];
      c.f32[1] = a.f32[1] + b.f32[1];
    } else if constexpr (Alignment == 4) {
      c.f32 = a.f32 + b.f32;
    } else {
      static_assert(dependent_false<T>);
    }
  } else if constexpr (std::is_same_v<T, at::BFloat16>) {
    if constexpr (Alignment == 16) {
      c.u32[0] = add_bf16x2(a.u32[0], b.u32[0]);
      c.u32[1] = add_bf16x2(a.u32[1], b.u32[1]);
      c.u32[2] = add_bf16x2(a.u32[2], b.u32[2]);
      c.u32[3] = add_bf16x2(a.u32[3], b.u32[3]);
    } else if constexpr (Alignment == 8) {
      c.u32[0] = add_bf16x2(a.u32[0], b.u32[0]);
      c.u32[1] = add_bf16x2(a.u32[1], b.u32[1]);
    } else if constexpr (Alignment == 4) {
      c.u32 = add_bf16x2(a.u32, b.u32);
    } else {
      static_assert(dependent_false<T>);
    }
  } else {
    static_assert(dependent_false<T>);
  }
  return c;
}

// With world_size specialization: perform balanced load from all peers before
// performing reduction.
template <typename T, int alignment, int k_world_size>
__device__ inline std::enable_if_t<(k_world_size > 0), Vec<alignment>>
load_and_reduce(T** ptrs, size_t rank, size_t world_size, size_t offset) {
  Vec<alignment> vecs[k_world_size];
#pragma unroll k_world_size
  for (size_t step = 0; step < k_world_size; ++step) {
    size_t remote_rank = (rank + step) % k_world_size;
    vecs[remote_rank] = ld_vec<alignment>(ptrs[remote_rank] + offset);
  }
  auto acc = vecs[0];
#pragma unroll k_world_size - 1
  for (size_t r = 1; r < world_size; ++r) {
    acc = add_vec<alignment, T>(acc, vecs[r]);
  }
  return acc;
}

// Without world_size specialization: perform ordered (unbalanced) load and
// accumulate on each load.
template <typename T, int alignment, int k_world_size>
__device__ inline std::enable_if_t<(k_world_size <= 0), Vec<alignment>>
load_and_reduce(T** ptrs, size_t rank, size_t world_size, size_t offset) {
  Vec<alignment> acc{};
  for (size_t step = 0; step < world_size; ++step) {
    auto vec = ld_vec<alignment>(ptrs[step] + offset);
    acc = add_vec<alignment, T>(acc, vec);
  }
  return acc;
}

} // namespace c10d::symmetric_memory