File: NCCLUtils.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (284 lines) | stat: -rw-r--r-- 9,728 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>

#include <c10/util/env.h>

#ifdef USE_C10D_NCCL
#include <mutex>
#include <vector>

namespace c10d {

ncclComm_t NCCLComm::getNcclComm() {
  LockType lock(mutex_);
  if (aborted_) {
    auto commFailureMsg = commFailureReason_ != std::nullopt
        ? c10::str(" Original reason for failure was: ", *commFailureReason_)
        : "";
    TORCH_CHECK_WITH(
        DistBackendError,
        false,
        c10::str(
            "NCCL communicator was aborted on rank ",
            rank_,
            ". ",
            commFailureMsg));
  }
  // In non-blocking mode, ensure comm is ready.
  if (nonBlocking_) {
    // Wait with long interval if communicator is being initialized.
    bool longInterval = !initialized_;
    waitReady(longInterval);
    // ncclComm_ should be initialized by now
  }
  if (!initialized_) {
    // TODO: see if we can consolidate other `initialized_` flipping here.
    // Maintaining it elsewhere is some work.
    initialized_ = true;
    LOG(INFO) << "Rank " << rank_ << ": NCCL communicator " << repr()
              << " is initialized.";
  }
  return ncclComm_;
}

// Wait for the communicator to be ready. This is a blocking function.
// Arguments:
//   longInterval: if true, wait with sleep of an interval; otherwise, wait
//   with `sched_yield` which is faster (but acquires CPU more frequently).
void NCCLComm::waitReady(bool longInterval) {
  LockType lock(mutex_);
  if (aborted_)
    return;
  // If timeout is reached, throw an exception.
  if (longInterval) {
    C10D_NCCL_CHECK_TIMEOUT_SLEEP(ncclInProgress, ncclComm_, std::nullopt);
  } else {
    C10D_NCCL_CHECK_TIMEOUT(ncclInProgress, ncclComm_, std::nullopt);
  }
}

// TODO: why do we have `!defined(FBCODE_CAFFE2)` here?
#if defined(NCCL_HAS_COMM_SPLIT) && !defined(FBCODE_CAFFE2)
// last argument to split() API is not used to support
// multiple implementations
std::shared_ptr<NCCLComm> NCCLComm::split(
    NCCLComm* source,
    int color_id,
    int rank,
    ncclConfig_t& config,
    std::vector<uint64_t>& ranks_ull) {
  TORCH_CHECK(
      color_id >= NCCL_SPLIT_NOCOLOR,
      "Color must be a non-negative value or NCCL_SPLIT_NOCOLOR (-1)"
      ", but got ",
      color_id);
  LOG(INFO) << "Rank " << source->rank_ << ": split from parent comm "
            << source->repr() << " with color_id " << color_id << " and rank "
            << rank;
  at::cuda::OptionalCUDAGuard gpuGuard(source->deviceIndex_);
  auto comm = std::make_shared<NCCLComm>();
  // This call will block until the source communicator is initialized
  auto sourceComm = source->getNcclComm();
#ifndef NCCL_HAS_COMM_NONBLOCKING
  C10D_NCCL_CHECK(
      ncclCommSplit(sourceComm, color_id, rank, &(comm->ncclComm_), &config),
      std::nullopt);
#else
  // After calling ncclCommSplit in non-blocking mode, we should wait for the
  // source communicator to be out of ncclInProgress state.
  // Reason 1:
  //   it's unsafe to call new operations on the parent comm while it's in
  //   ncclInProgress state.
  // Reason 2:
  //   as of NCCL 2.23, the ptr value of child comm will not be filled until the
  //   state of parent comm is ncclSuccess. This may change in the future. See:
  //   https://github.com/NVIDIA/nccl/issues/1472
  C10D_NCCL_CHECK_TIMEOUT_SLEEP(
      ncclCommSplit(sourceComm, color_id, rank, &(comm->ncclComm_), &config),
      sourceComm, // wait on parent comm
      std::nullopt);
  if (color_id >= 0) {
    // Waiting for parent comm above still does not seem to guarantee the child
    // comm ptr is valid. Therefore we add a manual wait here for safety.
    // TODO: remove this wait after NCCL fix the semantics.
    auto startTime = std::chrono::steady_clock::now();
    auto timeout = nccl_nonblocking_timeout();
    while (!comm->ncclComm_) {
      C10D_CHECK_TIMEOUT(startTime, timeout);
      C10D_SCHED_SLEEP();
    }
  }
  // comm->ncclComm_ should have valid ptr by now, but not necessarily
  // initialized. Rely on getNcclComm() to wait for its initialization.
#endif
  ++source->ncclCommSplitCounter_;
  comm->rank_ = rank;
  // Child comm should be on the same device as parent comm
  comm->deviceIndex_ = source->deviceIndex_;
  comm->nonBlocking_ = config.blocking == 0;
  LOG(INFO) << "Rank " << source->rank_ << ": created child comm "
            << comm->repr() << " with color_id " << color_id;
  return comm;
}
#endif

void NCCLComm::finalize() {
  LockType lock(mutex_);
  if (aborted_) {
    LOG(INFO) << "Rank " << rank_
              << ": NCCL communicator already Invalidated. Skip finalize.";
    return;
  }
  at::cuda::OptionalCUDAGuard gpuGuard(deviceIndex_);
  auto comm = getNcclComm();
  C10D_NCCL_CHECK_NONBLOCKING(ncclCommFinalize(comm), std::nullopt);
}

void NCCLComm::destroy() {
  LockType lock(mutex_);
  if (aborted_) {
    LOG(INFO) << "Rank " << rank_
              << ": NCCL communicator already Invalidated. Skip destroy.";
    return;
  }
  at::cuda::OptionalCUDAGuard gpuGuard(deviceIndex_);
  auto comm = getNcclComm();
  C10D_NCCL_CHECK(ncclCommDestroy(comm), std::nullopt);
  // Poison future getNcclComm
  aborted_ = true;
}

std::string getNcclVersion() {
  static c10::once_flag ncclGetVersionFlag;
  static std::string versionString;

  c10::call_once(ncclGetVersionFlag, []() {
    int version = 0;
    ncclResult_t status = ncclGetVersion(&version);
    // can't compute the version if call did not return successfully or version
    // code < 100 (corresponding to 0.1.0)
    if (status != ncclSuccess || version < 100) {
      versionString = "Unknown NCCL version";
    } else {
      // NCCL changed version coding starting 2.9
      const int majorBase = version < 2900 ? 1000 : 10000;
      const int minorBase = 100;
      auto ncclMajor = version / majorBase;
      auto ncclMinor = (version % majorBase) / minorBase;
      auto ncclPatch =
          version % (ncclMajor * majorBase + ncclMinor * minorBase);
      versionString = std::to_string(ncclMajor) + "." +
          std::to_string(ncclMinor) + "." + std::to_string(ncclPatch);
#ifdef NCCL_SUFFIX
      const auto ncclSuffix = std::string(NCCL_SUFFIX);
      if (!ncclSuffix.empty()) {
        versionString += "." + ncclSuffix;
      }
#endif
    }
  });

  return versionString;
}

#ifdef USE_C10D_NCCL
size_t hashTensors(const std::vector<at::Tensor>& tensors) {
  size_t hash = 0;
  for (auto& tensor : tensors) {
    if (tensor.numel() > 0 && tensor.storage()) {
      size_t data_size = tensor.storage().nbytes();
      if (data_size > 0 && tensor.storage().data_ptr()) {
        auto src = static_cast<const char*>(tensor.storage().data_ptr().get());
        std::vector<char> dst(data_size);
        // This is needed so that we trigger a device synchronization so we can
        // get the collective finished if launched on GPU and hash its output.
        cudaMemcpy(dst.data(), src, data_size, cudaMemcpyDeviceToHost);
        for (size_t i = 0; i < data_size; ++i) {
          // Update the hash for each byte in the tensor
          hash = c10::hash_combine(hash, c10::get_hash(dst[i], data_size));
        }
      }
    }
  }
  return hash;
}
#endif

// Default value: 30 minutes
int nccl_nonblocking_timeout() {
  static int timeout = -2; // -2 means not initialized
  if (timeout == -2) {
    const auto val = c10::utils::get_env("TORCH_NCCL_NONBLOCKING_TIMEOUT");
    if (val.has_value() && !val.value().empty()) {
      timeout = stoi(val.value());
    } else {
      // Default value consistent with kBackendDefaultTimeout
      timeout = 30 * 60;
    }
  }
  return timeout;
}

std::string ncclGetErrorWithVersion(ncclResult_t error) {
  return std::string(ncclGetErrorString(error)) + ", NCCL version " +
      getNcclVersion();
}

// Provides additional detail into NCCL error codes based on when these are
// thrown in the NCCL codebase.
std::string getNcclErrorDetailStr(
    ncclResult_t error,
    std::optional<std::string> processGroupFailureReason /* = std::nullopt */
) {
  // Prioritize failure reason provided by PG NCCL first, as it can abort
  // communicators when it encounters collective timeouts, etc.
  if (processGroupFailureReason != std::nullopt) {
    return *processGroupFailureReason;
  }
  std::string interpret;
  std::string err;
#ifdef ENABLE_NCCL_GET_LAST_ERROR
  auto ret = ncclGetLastError(nullptr);
  if (ret) {
    err = "\nLast error:\n" + std::string(ret);
  } else {
    err = "\nLast error: Unknown NCCL Error\n";
  }
#endif
  switch (error) {
    case ncclUnhandledCudaError:
      interpret = "ncclUnhandledCudaError: Call to CUDA function failed.";
      break;
    case ncclSystemError:
      interpret =
          "ncclSystemError: System call (e.g. socket, malloc) or external library call failed or device error. ";
#ifndef NCCL_REMOTE_ERROR
      // Before ncclRemoteError was created, unexpected remote disconnect was
      // categorized as ncclSystemError
      interpret += "It can be also caused by unexpected exit of a remote peer.";
#endif
      break;
    case ncclInternalError:
      interpret = "ncclInternalError: Internal check failed.";
      break;
    case ncclInvalidArgument:
      interpret = "ncclInvalidArgument: Invalid value for an argument.";
      break;
    case ncclInvalidUsage:
      interpret =
          "ncclInvalidUsage: This usually reflects invalid usage of NCCL library.";
      break;
#ifdef NCCL_REMOTE_ERROR
    case ncclRemoteError:
      interpret =
          "ncclRemoteError: A call failed possibly due to a network error or a remote process exiting prematurely.";
      break;
#endif
    default:
      interpret = "Unknown NCCL error!";
  }
  return interpret + err;
}

} // namespace c10d

#endif // USE_C10D_NCCL