1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
#include <ATen/core/dispatch/Dispatcher.h>
#include <c10/util/intrusive_ptr.h>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/Types.hpp>
#include <torch/library.h>
namespace c10d {
namespace {
TORCH_LIBRARY(c10d, m) {
// The following ProcessGroup, Work, and ReduceOp definitions are more like
// declarations. They don't expose the details of the two classes into
// TorchScript.
m.class_<ProcessGroup>("ProcessGroup").def(torch::init<int64_t, int64_t>());
m.class_<Work>("Work")
.def(torch::init<>())
.def("wait", [](const c10::intrusive_ptr<Work>& self) { self->wait(); });
m.class_<ReduceOp>("ReduceOp").def(torch::init<>());
m.def(
"broadcast_(Tensor[] tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, int root_rank, int root_tensor, bool asyncOp, int timeout) -> (Tensor[], __torch__.torch.classes.c10d.Work)");
m.def(
"allreduce_(Tensor[] tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, __torch__.torch.classes.c10d.ReduceOp reduce_op, Tensor? sparse_indices, int timeout) -> (Tensor[], __torch__.torch.classes.c10d.Work)");
m.def(
"allreduce_coalesced_(Tensor[] tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, __torch__.torch.classes.c10d.ReduceOp reduce_op, int timeout) -> __torch__.torch.classes.c10d.Work");
m.def(
"allgather_(Tensor[][] output_tensors, Tensor[] input_tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, int timeout) -> (Tensor[][], __torch__.torch.classes.c10d.Work)");
m.def(
"_allgather_base_(Tensor output_tensor, Tensor input_tensor, __torch__.torch.classes.c10d.ProcessGroup process_group, bool asyncOp, int timeout) -> (Tensor, __torch__.torch.classes.c10d.Work)");
m.def(
"allgather_coalesced_(Tensor[][] output_lists, Tensor[] input_list, __torch__.torch.classes.c10d.ProcessGroup process_group) -> __torch__.torch.classes.c10d.Work");
m.def(
"allgather_into_tensor_coalesced_(Tensor[] outputs, Tensor[] inputs, __torch__.torch.classes.c10d.ProcessGroup process_group) -> __torch__.torch.classes.c10d.Work");
m.def(
"reduce_scatter_(Tensor[] output_tensors, Tensor[][] input_tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, __torch__.torch.classes.c10d.ReduceOp reduce_op, int timeout) -> (Tensor[], __torch__.torch.classes.c10d.Work)");
m.def(
"_reduce_scatter_base_(Tensor output_tensor, Tensor input_tensor, __torch__.torch.classes.c10d.ProcessGroup process_group, __torch__.torch.classes.c10d.ReduceOp reduce_op, bool asyncOp, int timeout) -> (Tensor, __torch__.torch.classes.c10d.Work)");
m.def(
"reduce_scatter_tensor_coalesced_(Tensor[] outputs, Tensor[] inputs, __torch__.torch.classes.c10d.ProcessGroup process_group, __torch__.torch.classes.c10d.ReduceOp reduce_op, int timeout) -> __torch__.torch.classes.c10d.Work");
m.def(
"reduce_(Tensor[] tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, __torch__.torch.classes.c10d.ReduceOp reduce_op, int root_rank, int root_tensor, int timeout) -> __torch__.torch.classes.c10d.Work");
m.def(
"gather_(Tensor[][] output_tensors, Tensor[] input_tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, int root_rank, int timeout) -> __torch__.torch.classes.c10d.Work");
m.def(
"scatter_(Tensor[] output_tensors, Tensor[][] input_tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, int root_rank, bool asyncOp, int timeout) -> (Tensor[], __torch__.torch.classes.c10d.Work)");
m.def(
"alltoall_(Tensor[] output_tensors, Tensor[] input_tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, int timeout) -> (Tensor[], __torch__.torch.classes.c10d.Work)");
m.def(
"alltoall_base_(Tensor output, Tensor input, __torch__.torch.classes.c10d.ProcessGroup process_group, int[] output_split_sizes, int[] input_split_sizes, int timeout) -> __torch__.torch.classes.c10d.Work");
m.def(
"barrier(Tensor tensor, __torch__.torch.classes.c10d.ProcessGroup process_group, int[] device_ids, int timeout) -> __torch__.torch.classes.c10d.Work");
m.def(
"monitored_barrier_(Tensor tensor, __torch__.torch.classes.c10d.ProcessGroup process_group, int[] device_ids, int timeout, bool wait_all_ranks) -> ()");
m.def(
"send(Tensor[] tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, int dst, int tag) -> __torch__.torch.classes.c10d.Work");
m.def(
"recv_(Tensor[] tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, int src, int tag) -> __torch__.torch.classes.c10d.Work");
m.def(
"recv_any_source_(Tensor[] tensors, __torch__.torch.classes.c10d.ProcessGroup process_group, int tag) -> __torch__.torch.classes.c10d.Work");
}
} // namespace
namespace ops {
// Below are ProcessGroup's corresponding ops for each backend. Ops are but
// routed through the dispatcher to be dispatched to the appropriate backend.
// Currently a no-op as the process group does not have a list of backends.
namespace {
#define IMPL_SEND(DEV) \
c10::intrusive_ptr<Work> send##DEV( \
at::TensorList tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
int64_t dstRank, \
int64_t tag) { \
auto tensor_vec = tensors.vec(); \
return process_group->getBackend(c10::DeviceType::DEV) \
->send(tensor_vec, static_cast<int>(dstRank), static_cast<int>(tag)); \
}
IMPL_SEND(CPU)
IMPL_SEND(CUDA)
IMPL_SEND(PrivateUse1)
#define IMPL_RECV(DEV) \
c10::intrusive_ptr<Work> recv_##DEV( \
at::TensorList tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
int64_t srcRank, \
int64_t tag) { \
auto tensor_vec = tensors.vec(); \
return process_group->getBackend(c10::DeviceType::DEV) \
->recv(tensor_vec, static_cast<int>(srcRank), static_cast<int>(tag)); \
}
IMPL_RECV(CPU)
IMPL_RECV(CUDA)
IMPL_RECV(PrivateUse1)
#define IMPL_RECV_ANY_SOURCE(DEV) \
c10::intrusive_ptr<Work> recv_any_source_##DEV( \
at::TensorList tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
int64_t tag) { \
auto tensor_vec = tensors.vec(); \
return process_group->getBackend(c10::DeviceType::DEV) \
->recvAnysource(tensor_vec, static_cast<int>(tag)); \
}
IMPL_RECV_ANY_SOURCE(CPU)
IMPL_RECV_ANY_SOURCE(CUDA)
IMPL_RECV_ANY_SOURCE(PrivateUse1)
#define IMPL_REDUCE(DEV) \
c10::intrusive_ptr<Work> reduce_##DEV( \
at::TensorList tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
const c10::intrusive_ptr<ReduceOp>& reduce_op, \
int64_t root_rank, \
int64_t root_tensor, \
int64_t timeout) { \
auto tensor_vec = tensors.vec(); \
return process_group->getBackend(c10::DeviceType::DEV) \
->reduce( \
tensor_vec, \
ReduceOptions{ \
*reduce_op.get(), \
root_rank, \
root_tensor, \
std::chrono::milliseconds(timeout)}); \
}
IMPL_REDUCE(CPU)
IMPL_REDUCE(CUDA)
IMPL_REDUCE(PrivateUse1)
#define IMPL_BROADCAST(DEV) \
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>> \
broadcast_##DEV( \
at::TensorList tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
int64_t root_rank, \
int64_t root_tensor, \
bool asyncOp, \
int64_t timeout) { \
auto tensor_vec = tensors.vec(); \
auto work = process_group->getBackend(c10::DeviceType::DEV) -> broadcast( \
tensor_vec, \
BroadcastOptions{ \
root_rank, \
root_tensor, \
std::chrono::milliseconds(timeout), \
asyncOp}); \
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>( \
std::move(tensor_vec), work); \
}
IMPL_BROADCAST(CPU)
IMPL_BROADCAST(CUDA)
IMPL_BROADCAST(PrivateUse1)
// Return input tensors as output tensors to make inplace allreduce look like
// a functional API, so that make_fx can correctly build the dependencies in
// the graph later.
#define IMPL_ALLREDUCE(DEV) \
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>> \
allreduce_##DEV( \
at::TensorList tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
const c10::intrusive_ptr<ReduceOp>& reduce_op, \
const std::optional<at::Tensor>& sparse_indices, \
int64_t timeout) { \
auto tensor_vec = tensors.vec(); \
auto work = process_group->getBackend(c10::DeviceType::DEV) -> allreduce( \
tensor_vec, \
AllreduceOptions{ \
*reduce_op.get(), std::chrono::milliseconds(timeout)}); \
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>( \
std::move(tensor_vec), work); \
}
IMPL_ALLREDUCE(CPU)
IMPL_ALLREDUCE(CUDA)
IMPL_ALLREDUCE(PrivateUse1)
#define IMPL_ALLREDUCE_COALESCED(DEV) \
c10::intrusive_ptr<Work> allreduce_coalesced_##DEV( \
at::TensorList tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
const c10::intrusive_ptr<ReduceOp>& reduce_op, \
int64_t timeout) { \
auto tensor_vec = tensors.vec(); \
AllreduceCoalescedOptions opts = AllreduceCoalescedOptions{}; \
opts.reduceOp = *reduce_op.get(); \
opts.timeout = std::chrono::milliseconds(timeout); \
return process_group->getBackend(c10::DeviceType::DEV) \
->allreduce_coalesced(tensor_vec, opts); \
}
IMPL_ALLREDUCE_COALESCED(CPU)
IMPL_ALLREDUCE_COALESCED(CUDA)
IMPL_ALLREDUCE_COALESCED(PrivateUse1)
// Copy output tensors (not storage) so that this can be used in a functional
// manner
#define IMPL_ALLGATHER(DEV) \
std::tuple<std::vector<std::vector<at::Tensor>>, c10::intrusive_ptr<Work>> \
allgather_##DEV( \
const std::vector<std::vector<at::Tensor>>& output_tensors, \
at::TensorList input_tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
int64_t timeout) { \
auto input_tensors_vec = input_tensors.vec(); \
auto work = process_group->getBackend(c10::DeviceType::DEV) -> allgather( \
const_cast<std::vector<std::vector<at::Tensor>>&>(output_tensors), \
input_tensors_vec, \
AllgatherOptions{std::chrono::milliseconds(timeout)}); \
return std:: \
tuple<std::vector<std::vector<at::Tensor>>, c10::intrusive_ptr<Work>>( \
output_tensors, work); \
}
// NOLINTBEGIN(cppcoreguidelines-pro-type-const-cast)
IMPL_ALLGATHER(CPU)
IMPL_ALLGATHER(CUDA)
IMPL_ALLGATHER(PrivateUse1)
#define IMPL__ALLGATHER_BASE(DEV) \
std::tuple<at::Tensor, c10::intrusive_ptr<Work>> _allgather_base_##DEV( \
at::Tensor& output_tensor, \
at::Tensor& input_tensor, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
bool asyncOp, \
int64_t timeout) { \
auto work = \
process_group->getBackend(c10::DeviceType::DEV) -> _allgather_base( \
output_tensor, \
input_tensor, \
AllgatherOptions{std::chrono::milliseconds(timeout), asyncOp}); \
return std::tuple<at::Tensor, c10::intrusive_ptr<Work>>( \
output_tensor, work); \
}
IMPL__ALLGATHER_BASE(CPU)
IMPL__ALLGATHER_BASE(CUDA)
IMPL__ALLGATHER_BASE(PrivateUse1)
#define IMPL_ALLGATHER_COALESCED(DEV) \
c10::intrusive_ptr<Work> allgather_coalesced_##DEV( \
const std::vector<std::vector<at::Tensor>>& output_lists, \
const at::TensorList& input_list, \
const c10::intrusive_ptr<ProcessGroup>& process_group) { \
auto input_list_vec = input_list.vec(); \
return process_group->getBackend(c10::DeviceType::DEV) \
->allgather_coalesced( \
const_cast<std::vector<std::vector<at::Tensor>>&>(output_lists), \
input_list_vec); \
}
IMPL_ALLGATHER_COALESCED(CPU)
IMPL_ALLGATHER_COALESCED(CUDA)
IMPL_ALLGATHER_COALESCED(PrivateUse1)
#define IMPL_ALLGATHER_INTO_TENSOR_COALESCED(DEV) \
c10::intrusive_ptr<c10d::Work> allgather_into_tensor_coalesced_##DEV( \
at::TensorList outputs, \
at::TensorList inputs, \
const c10::intrusive_ptr<ProcessGroup>& process_group) { \
auto output_vec = outputs.vec(); \
auto input_vec = inputs.vec(); \
return process_group->getBackend(c10::DeviceType::DEV) \
->allgather_into_tensor_coalesced(output_vec, input_vec); \
}
IMPL_ALLGATHER_INTO_TENSOR_COALESCED(CPU)
IMPL_ALLGATHER_INTO_TENSOR_COALESCED(CUDA)
IMPL_ALLGATHER_INTO_TENSOR_COALESCED(PrivateUse1)
#define IMPL_REDUCE_SCATTER(DEV) \
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>> \
reduce_scatter_##DEV( \
const at::TensorList& output_tensors, \
const std::vector<std::vector<at::Tensor>>& input_tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
const c10::intrusive_ptr<ReduceOp>& reduce_op, \
int64_t timeout) { \
auto output_tensors_vec = output_tensors.vec(); \
auto work = \
process_group->getBackend(c10::DeviceType::DEV) -> reduce_scatter( \
output_tensors_vec, \
const_cast<std::vector<std::vector<at::Tensor>>&>(input_tensors), \
ReduceScatterOptions{ \
*reduce_op.get(), std::chrono::milliseconds(timeout)}); \
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>( \
output_tensors_vec, work); \
}
IMPL_REDUCE_SCATTER(CPU)
IMPL_REDUCE_SCATTER(CUDA)
IMPL_REDUCE_SCATTER(PrivateUse1)
#define IMPL__REDUCE_SCATTER_BASE(DEV) \
std::tuple<at::Tensor, c10::intrusive_ptr<Work>> _reduce_scatter_base_##DEV( \
at::Tensor& output_tensor, \
at::Tensor& input_tensor, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
const c10::intrusive_ptr<ReduceOp>& reduce_op, \
bool asyncOp, \
int64_t timeout) { \
auto work = process_group->getBackend(c10::DeviceType::DEV) \
-> _reduce_scatter_base( \
output_tensor, \
input_tensor, \
ReduceScatterOptions{ \
*reduce_op.get(), \
std::chrono::milliseconds(timeout), \
asyncOp}); \
return std::tuple<at::Tensor, c10::intrusive_ptr<Work>>( \
output_tensor, work); \
}
IMPL__REDUCE_SCATTER_BASE(CPU)
IMPL__REDUCE_SCATTER_BASE(CUDA)
IMPL__REDUCE_SCATTER_BASE(PrivateUse1)
#define IMPL_REDUCE_SCATTER_TENSOR_COALESCED(DEV) \
c10::intrusive_ptr<c10d::Work> reduce_scatter_tensor_coalesced_##DEV( \
at::TensorList outputs, \
at::TensorList inputs, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
const c10::intrusive_ptr<ReduceOp>& reduce_op, \
int64_t timeout) { \
auto output_vec = outputs.vec(); \
auto input_vec = inputs.vec(); \
return process_group->getBackend(c10::DeviceType::DEV) \
->reduce_scatter_tensor_coalesced( \
output_vec, \
input_vec, \
ReduceScatterOptions{ \
*reduce_op.get(), std::chrono::milliseconds(timeout)}); \
}
IMPL_REDUCE_SCATTER_TENSOR_COALESCED(CPU)
IMPL_REDUCE_SCATTER_TENSOR_COALESCED(CUDA)
IMPL_REDUCE_SCATTER_TENSOR_COALESCED(PrivateUse1)
#define IMPL_GATHER(DEV) \
c10::intrusive_ptr<Work> gather_##DEV( \
const std::vector<std::vector<at::Tensor>>& output_tensors, \
const at::TensorList& input_tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
int64_t root_rank, \
int64_t timeout) { \
auto input_tensors_vec = input_tensors.vec(); \
return process_group->getBackend(c10::DeviceType::DEV) \
->gather( \
const_cast<std::vector<std::vector<at::Tensor>>&>(output_tensors), \
input_tensors_vec, \
GatherOptions{root_rank, std::chrono::milliseconds(timeout)}); \
}
IMPL_GATHER(CPU)
IMPL_GATHER(CUDA)
IMPL_GATHER(PrivateUse1)
#define IMPL_SCATTER(DEV) \
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>> scatter_##DEV( \
const at::TensorList& output_tensors, \
const std::vector<std::vector<at::Tensor>>& input_tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
int64_t root_rank, \
bool asyncOp, \
int64_t timeout) { \
auto output_tensors_vec = output_tensors.vec(); \
auto work = process_group->getBackend(c10::DeviceType::DEV) -> scatter( \
output_tensors_vec, \
const_cast<std::vector<std::vector<at::Tensor>>&>(input_tensors), \
ScatterOptions{ \
root_rank, std::chrono::milliseconds(timeout), asyncOp}); \
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>( \
std::move(output_tensors_vec), work); \
}
IMPL_SCATTER(CPU)
IMPL_SCATTER(CUDA)
IMPL_SCATTER(PrivateUse1)
#define IMPL_ALLTOALL(DEV) \
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>> \
alltoall_##DEV( \
const at::TensorList& output_tensors, \
const at::TensorList& input_tensors, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
int64_t timeout) { \
auto output_tensors_vec = output_tensors.vec(); \
auto input_tensors_vec = input_tensors.vec(); \
auto work = process_group->getBackend(c10::DeviceType::DEV) -> alltoall( \
output_tensors_vec, \
input_tensors_vec, \
AllToAllOptions{std::chrono::milliseconds(timeout)}); \
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>( \
std::move(output_tensors_vec), work); \
}
IMPL_ALLTOALL(CPU)
IMPL_ALLTOALL(CUDA)
IMPL_ALLTOALL(PrivateUse1)
#define IMPL_ALLTOALL_BASE(DEV) \
c10::intrusive_ptr<Work> alltoall_base_##DEV( \
at::Tensor& output, \
at::Tensor& input, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
std::vector<int64_t> output_split_sizes, \
std::vector<int64_t> input_split_sizes, \
int64_t timeout) { \
return process_group->getBackend(c10::DeviceType::DEV) \
->alltoall_base( \
output, \
input, \
output_split_sizes, \
input_split_sizes, \
AllToAllOptions{std::chrono::milliseconds(timeout)}); \
}
IMPL_ALLTOALL_BASE(CPU)
IMPL_ALLTOALL_BASE(CUDA)
IMPL_ALLTOALL_BASE(PrivateUse1)
// NOLINTBEGIN(performance-unnecessary-value-param)
#define IMPL_BARRIER(DEV) \
c10::intrusive_ptr<Work> barrier##DEV( \
at::Tensor /* unused */, \
const c10::intrusive_ptr<ProcessGroup>& process_group, \
const std::vector<int64_t>& device_ids, \
int64_t timeout) { \
return process_group->getBackend(c10::DeviceType::DEV) \
->barrier( \
BarrierOptions{device_ids, std::chrono::milliseconds(timeout)}); \
}
IMPL_BARRIER(CPU)
IMPL_BARRIER(CUDA)
IMPL_BARRIER(PrivateUse1)
// NOLINTEND(performance-unnecessary-value-param)
// NOLINTEND(cppcoreguidelines-pro-type-const-cast)
void monitored_barrier_CPU(
// NOLINTNEXTLINE(performance-unnecessary-value-param)
at::Tensor /* unused */,
const c10::intrusive_ptr<::c10d::ProcessGroup>& process_group,
const std::vector<int64_t>& device_ids,
int64_t timeout,
bool wait_all_ranks) {
process_group->getBackend(c10::DeviceType::CPU)
->monitoredBarrier(
BarrierOptions{device_ids, std::chrono::milliseconds(timeout)},
wait_all_ranks);
}
std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>
allreduce_sparse_cuda_(
at::TensorList tensors,
const c10::intrusive_ptr<ProcessGroup>& process_group,
const c10::intrusive_ptr<ReduceOp>& reduce_op,
const std::optional<at::Tensor>& sparse_indices,
int64_t timeout) {
auto tensor_vec = tensors.vec();
auto work = process_group->getBackend(c10::DeviceType::CUDA)
->allreduce_sparse(
tensor_vec,
AllreduceOptions{
*reduce_op,
std::chrono::milliseconds(timeout),
sparse_indices});
return std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
std::move(tensor_vec), work);
}
} // namespace
// register functions to dispatcher
namespace {
// 2nd level expansion
// FUNC: op name
// DEV: device
#define REGISTER_C10D_OP1(FUNC, DEV) \
TORCH_LIBRARY_IMPL(c10d, DEV, m) { \
m.impl(#FUNC, FUNC##DEV); \
}
// 1st level expansion
#define REGISTER_C10D_OP(FUNC) \
REGISTER_C10D_OP1(FUNC, CPU) \
REGISTER_C10D_OP1(FUNC, CUDA) \
REGISTER_C10D_OP1(FUNC, PrivateUse1)
// Now we start to register ops with the three device keys
REGISTER_C10D_OP(send)
REGISTER_C10D_OP(recv_)
REGISTER_C10D_OP(recv_any_source_)
REGISTER_C10D_OP(reduce_)
REGISTER_C10D_OP(broadcast_)
REGISTER_C10D_OP(allreduce_)
REGISTER_C10D_OP(allreduce_coalesced_)
REGISTER_C10D_OP(allgather_)
REGISTER_C10D_OP(_allgather_base_)
REGISTER_C10D_OP(allgather_coalesced_)
REGISTER_C10D_OP(allgather_into_tensor_coalesced_)
REGISTER_C10D_OP(reduce_scatter_)
REGISTER_C10D_OP(_reduce_scatter_base_)
REGISTER_C10D_OP(reduce_scatter_tensor_coalesced_)
REGISTER_C10D_OP(gather_)
REGISTER_C10D_OP(scatter_)
REGISTER_C10D_OP(alltoall_)
REGISTER_C10D_OP(alltoall_base_)
REGISTER_C10D_OP(barrier)
// The following ops are specialized, register them separately
TORCH_LIBRARY_IMPL(c10d, CPU, m) {
m.impl("monitored_barrier_", monitored_barrier_CPU);
}
// TODO: The SparseCPU/SparseCUDA dispatched methods are only used to support
// sparse all_reduce in the Gloo backend
TORCH_LIBRARY_IMPL(c10d, SparseCPU, m) {
m.impl("allreduce_", allreduce_CPU);
}
TORCH_LIBRARY_IMPL(c10d, SparseCUDA, m) {
m.impl("allreduce_", allreduce_sparse_cuda_);
}
} // namespace
} // namespace ops
} // namespace c10d
|