1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
#include <ATen/ThreadLocalState.h>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/RankLocal.hpp>
#include <c10/util/Logging.h>
#include <fmt/format.h>
#include <string_view>
#include <torch/csrc/distributed/c10d/PrefixStore.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupMPI.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupUCC.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupWrapper.hpp>
namespace c10d {
std::string opTypeToString(OpType opType) {
switch (opType) {
case OpType::BROADCAST:
return "BROADCAST";
case OpType::ALLREDUCE:
return "ALLREDUCE";
case OpType::ALLREDUCE_COALESCED:
return "ALLREDUCE_COALESCED";
case OpType::REDUCE:
return "REDUCE";
case OpType::ALLGATHER:
return "ALLGATHER";
case OpType::_ALLGATHER_BASE:
return "_ALLGATHER_BASE";
case OpType::ALLGATHER_COALESCED:
return "ALLGATHER_COALESCED";
case OpType::GATHER:
return "GATHER";
case OpType::SCATTER:
return "SCATTER";
case OpType::REDUCE_SCATTER:
return "REDUCE_SCATTER";
case OpType::ALLTOALL_BASE:
return "ALLTOALL_BASE";
case OpType::ALLTOALL:
return "ALLTOALL";
case OpType::SEND:
return "SEND";
case OpType::RECV:
return "RECV";
case OpType::RECVANYSOURCE:
return "RECVANYSOURCE";
case OpType::BARRIER:
return "BARRIER";
case OpType::UNKNOWN:
return "UNKNOWN";
case OpType::_REDUCE_SCATTER_BASE:
return "_REDUCE_SCATTER_BASE";
case OpType::COALESCED:
return "COALESCED";
case OpType::_ALLREDUCE_SPARSE:
return "_ALLREDUCE_SPARSE";
default:
TORCH_INTERNAL_ASSERT(false, "Unknown op type!");
}
return "UNKNOWN";
}
bool isP2POp(OpType opType, bool batchP2P /*= false*/) {
if (batchP2P)
return false;
return opType == OpType::SEND || opType == OpType::RECV ||
opType == OpType::RECVANYSOURCE;
}
c10::intrusive_ptr<Backend> ProcessGroup::getBackend(
c10::DeviceType deviceType) {
// If there is a backend associated with this device type then return it
if (deviceTypeToBackend_.find(deviceType) != deviceTypeToBackend_.end()) {
return deviceTypeToBackend_.at(deviceType);
}
// Get the backend type associated with the device
ProcessGroup::BackendType backendType{ProcessGroup::BackendType::UNDEFINED};
try {
backendType = deviceTypeToBackendType_.at(deviceType);
} catch (const std::out_of_range& e) {
TORCH_CHECK(
false, "No backend type associated with device type ", deviceType);
}
// Check if the backend has already been initialized
if (backendTypeToBackend_.find(backendType) != backendTypeToBackend_.end()) {
auto backend = backendTypeToBackend_.at(backendType);
deviceTypeToBackend_[deviceType] = backend;
return backend;
}
TORCH_CHECK(
false,
"Could not retrieve or create the backend ",
backendType,
" for device type ",
deviceType);
}
ProcessGroup::ProcessGroup(
c10::intrusive_ptr<::c10d::Store> store,
int rank,
int size)
: store_(std::move(store)),
rank_(rank),
size_(size),
backendType_(BackendType::UNDEFINED),
dist_debug_level_(debug_level()) {
C10_LOG_API_USAGE_ONCE("c10d.process_group");
}
ProcessGroup::ProcessGroup(int rank, int size)
: rank_(rank), size_(size), backendType_(BackendType::UNDEFINED) {}
ProcessGroup::~ProcessGroup() = default;
void ProcessGroup::init() {
C10_LOG_API_USAGE_ONCE(
fmt::format("c10d.process_group_{}", getBackendName()));
}
const std::string& ProcessGroup::getGroupName() const {
TORCH_CHECK(!deviceTypeToBackend_.empty(), "ProcessGroup name not set");
return deviceTypeToBackend_.begin()->second->getGroupUid();
}
void ProcessGroup::setGroupName(const std::string& name) {
for (auto& kv : deviceTypeToBackend_) {
kv.second->setGroupUid(name);
}
}
const std::string& ProcessGroup::getGroupDesc() const {
return pg_desc_;
}
void ProcessGroup::setGroupDesc(const std::string& name) {
pg_desc_ = name;
// Also set the group desc for all backends
for (auto& kv : deviceTypeToBackend_) {
kv.second->setGroupDesc(name);
}
}
void ProcessGroup::enableCollectivesTiming() {
for (auto& kv : deviceTypeToBackend_) {
kv.second->enableCollectivesTiming();
}
}
void ProcessGroup::release_resources() {
store_.reset();
deviceTypeToBackend_.clear();
backendTypeToBackend_.clear();
}
} // namespace c10d
namespace {
class WorkRegistry {
public:
void register_work(
const at::Tensor& tensor,
const c10::intrusive_ptr<c10d::Work>& work) {
if (!tensor.has_storage()) {
TORCH_WARN_ONCE(
"Registering collective work for tensor without storage is not supported. "
"Calling c10d_functional.wait_tensor() on this tensor will not wait for the collective to complete. "
"Unsupported tensor type: " +
tensor.toString());
return;
}
auto storage = tensor.storage().getWeakStorageImpl();
std::unique_lock lock(lock_);
auto it = registry_.find(storage);
if (it == registry_.end()) {
registry_.emplace(
std::move(storage),
std::vector<c10::intrusive_ptr<c10d::Work>>{work});
} else {
// There is no guarantee that the previous work object for this
// tensor storage is completed before the new work object is registered.
// Therefore we need to maintain a list of work objects for each tensor
// storage.
// Check if work is already in the list
bool work_exists = false;
for (const auto& existing_work : it->second) {
if (existing_work == work) {
work_exists = true;
break;
}
}
// Only append if work is not already in the list
if (!work_exists) {
it->second.push_back(work);
}
}
}
std::vector<c10::intrusive_ptr<c10d::Work>> pop_works(
const at::Tensor& tensor) {
const auto storage = tensor.storage().getWeakStorageImpl();
std::unique_lock lock(lock_);
auto it = registry_.find(storage);
if (it == registry_.end()) {
return {};
}
auto works = it->second;
registry_.erase(it);
return works;
}
void unregister_work(const c10::intrusive_ptr<c10d::Work>& work) {
std::unique_lock lock(lock_);
for (auto it = registry_.begin(); it != registry_.end();) {
std::vector<c10::intrusive_ptr<c10d::Work>> nonmatching_works;
for (const auto& _work : it->second) {
if (_work != work) {
nonmatching_works.push_back(_work);
}
}
if (nonmatching_works.empty()) {
it = registry_.erase(it);
} else {
it->second = std::move(nonmatching_works);
++it;
}
}
}
size_t get_work_registry_size() {
std::unique_lock lock(lock_);
size_t total_size = 0;
for (const auto& [storage, works] : registry_) {
total_size += works.size();
}
return total_size;
}
void set_allow_inflight_collective_as_graph_input(bool value) {
std::unique_lock lock(lock_);
allow_inflight_collective_as_graph_input_ = value;
}
bool allow_inflight_collective_as_graph_input() {
std::unique_lock lock(lock_);
return allow_inflight_collective_as_graph_input_;
}
~WorkRegistry() {
// If there are still unwaited work objects, their corresponding process
// groups should have already been destroyed at this stage. Any attempts to
// wait for these work objects or to destroy them will only result in
// confusing errors. Therefore, we simply issue a warning and intentionally
// allow the unwaited work objects to leak.
size_t registry_size = get_work_registry_size();
if (registry_size > 0) {
TORCH_WARN(
"At the time of process termination, there are still ",
registry_size,
" unwaited collective calls. "
"Please review your program to ensure that:\n"
"1. c10d_functional.wait_tensor() is invoked on all tensors returned from c10d_functional collective,\n"
"2. c10d_functional.wait_tensor() is invoked on all output tensors of async_op=True torch.distributed collective "
"called under `with allow_inflight_collective_as_graph_input_ctx():`,\n"
"before the output tensors of the collective are used.");
}
for (auto& it : registry_) {
for (auto& work : it.second) {
work.release();
}
}
}
private:
std::unordered_map<
c10::weak_intrusive_ptr<c10::StorageImpl>,
std::vector<c10::intrusive_ptr<c10d::Work>>>
registry_;
bool allow_inflight_collective_as_graph_input_ = false;
std::mutex lock_;
};
static WorkRegistry process_registry;
} // namespace
namespace c10d {
void register_work(
const at::Tensor& tensor,
const c10::intrusive_ptr<c10d::Work>& work) {
RankLocal<WorkRegistry>::get().register_work(tensor, work);
}
at::Tensor wait_tensor(const at::Tensor& tensor) {
auto works = RankLocal<WorkRegistry>::get().pop_works(tensor);
for (const auto& work : works) {
work->wait();
}
return tensor;
}
void unregister_work(const c10::intrusive_ptr<c10d::Work>& work) {
RankLocal<WorkRegistry>::get().unregister_work(work);
}
size_t get_work_registry_size() {
return RankLocal<WorkRegistry>::get().get_work_registry_size();
}
void set_allow_inflight_collective_as_graph_input(bool value) {
return RankLocal<WorkRegistry>::get()
.set_allow_inflight_collective_as_graph_input(value);
}
bool allow_inflight_collective_as_graph_input() {
return RankLocal<WorkRegistry>::get()
.allow_inflight_collective_as_graph_input();
}
} // namespace c10d
|