File: ProcessGroup.hpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (924 lines) | stat: -rw-r--r-- 33,617 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
#pragma once

#include <torch/csrc/distributed/c10d/Backend.hpp>
#include <torch/csrc/distributed/c10d/Work.hpp>
#include <memory>
#include <unordered_map>
#include <utility>
#include <vector>

#include <ATen/ATen.h>
#include <ATen/core/dispatch/Dispatcher.h>
#include <c10/macros/Macros.h>

#include <torch/csrc/distributed/c10d/Work.hpp>
// *************************************************************************
// PROCESS GROUP collective communication API IS BEING CHANGED BETWEEN
// versions 1.7 and 1.8.
// PLEASE DO NOT ADD ANY DEPENDENCIES.
// SEE RFC: https://github.com/pytorch/pytorch/issues/39662
// *************************************************************************

constexpr auto kProcessGroupDefaultTimeout =
    std::chrono::milliseconds(30 * 60 * 1000);

namespace c10d {

// We only call `register_work()` in two cases:
// 1. If the work object is created from a functional collective call.
// 2. If the work object is created from a non-functional collective call within
//    the `with allow_inflight_collective_as_graph_input_ctx()` context manager.
C10_EXPORT void register_work(
    const at::Tensor& tensor,
    const c10::intrusive_ptr<c10d::Work>& work);

C10_EXPORT at::Tensor wait_tensor(const at::Tensor& tensor);

// We only call `unregister_work()` in one case:
// 1. If the work object is created from a non-functional collective call within
//    the `with allow_inflight_collective_as_graph_input_ctx()` context manager.
//
// Q: What about the functional collective case?
// A: The unregistration of work object for functional collective is done in
//    the required user-side explicit call to `wait_tensor()`.
C10_EXPORT void unregister_work(const c10::intrusive_ptr<c10d::Work>& work);

C10_EXPORT size_t get_work_registry_size();

C10_EXPORT void set_allow_inflight_collective_as_graph_input(bool value);

C10_EXPORT bool allow_inflight_collective_as_graph_input();

// ProcessGroup is a base class that captures collective and point to
// point communication in a fixed set of processes.
//
// The functions specified in the class below describe the API alone;
// implementations are provided in subclasses.
//
// Every function that performs I/O is executed asynchronously by a
// thread pool owned by the ProcessGroup (by default). They return an
// object that can be used to wait for completion or error.
//
// The ProcessGroup can instantiate subgroups with fewer or an equal
// number of members. Implementations must take care that multiple
// process groups can be used in parallel and synchronize accordingly.
//
// The ProcessGroup assumes a fixed set of processes. If the set
// changes, existing instances must be destructed and instantiation
// and initialization must start from scratch. For members of the
// process group to find each other (referred to as rendezvous from
// hereon)
//
class TORCH_API ProcessGroup : public torch::CustomClassHolder {
 public:
  enum BackendType : uint8_t {
    UNDEFINED = 0,
    GLOO = 1,
    NCCL = 2,
    UCC = 3,
    MPI = 4,
    XCCL = 5,
    CUSTOM = 6,
  };

  static std::string backendTypeToString(const BackendType& type) {
    switch (type) {
      case BackendType::GLOO:
        return "gloo";
      case BackendType::NCCL:
        return "nccl";
      case BackendType::XCCL:
        return "xccl";
      case BackendType::UCC:
        return "ucc";
      case BackendType::MPI:
        return "mpi";
      case BackendType::UNDEFINED:
        return "undefined";
      case BackendType::CUSTOM:
        return "custom";
      default:
        TORCH_CHECK(false, "THis should never happen!");
    }
  }

  static BackendType strToBackendType(const std::string& backend) {
    if (backend == "undefined") {
      return BackendType::UNDEFINED;
    } else if (backend == "gloo") {
      return BackendType::GLOO;
    } else if (backend == "nccl") {
      return BackendType::NCCL;
    } else if (backend == "xccl") {
      return BackendType::XCCL;
    } else if (backend == "ucc") {
      return BackendType::UCC;
    } else if (backend == "mpi") {
      return BackendType::MPI;
    } else {
      return BackendType::CUSTOM;
    }
  }

  // Not used, set for backwards compatibility and only used for TypeDef in
  // Ops.cpp
  explicit ProcessGroup(int rank, int size);

  explicit ProcessGroup(
      c10::intrusive_ptr<::c10d::Store> store,
      int rank,
      int size);
  ~ProcessGroup() override;

  virtual int getRank() const {
    return rank_;
  }

  virtual int getSize() const {
    return size_;
  }

  // Returns an unique opaque ID of this process group object.
  int64_t getID() const {
    return reinterpret_cast<std::intptr_t>(this);
  }

  // Returns an unique opaque ID of a backend for the specific backend type
  // that can correlate with this process group's collectives.
  int64_t getBackendID(BackendType backend_type) const {
    return reinterpret_cast<std::intptr_t>(getBackend(backend_type).get());
  }

  virtual const std::string getBackendName() const {
    return backendTypeToString(backendType_);
  }

  BackendType getBackendType() const {
    return backendType_;
  }

  virtual void startCoalescing(c10::DeviceType deviceType) {
    // only nccl has implemented startCoalescing so only execute for nccl
    // backends
    auto backend = getBackend(deviceType);
    backend->startCoalescing();
  }

  virtual c10::intrusive_ptr<Work> endCoalescing(c10::DeviceType deviceType) {
    // only nccl has implemented endCoalescing so only execute for nccl
    // backends
    auto backend = getBackend(deviceType);
    auto work = backend->endCoalescing();
    return work;
  }

  virtual c10::intrusive_ptr<Work> broadcast(
      std::vector<at::Tensor>& tensors,
      const BroadcastOptions& opts = BroadcastOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::broadcast_", "")
            .typed<
                std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
                    at::TensorList,
                    const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                    int64_t,
                    int64_t,
                    bool,
                    int64_t)>();
    // It's awakward to unbox the opts here and box them again in the custom C++
    // op. But it's also complicated to make opts as a CustomClassHolder. Leave
    // it as it is now.
    auto work = std::get<1>(op.call(
        tensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        opts.rootRank,
        opts.rootTensor,
        opts.asyncOp,
        opts.timeout.count()));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : tensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> allreduce(
      std::vector<at::Tensor>& tensors,
      const AllreduceOptions& opts = AllreduceOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::allreduce_", "")
            .typed<
                std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
                    at::TensorList,
                    const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                    const c10::intrusive_ptr<::c10d::ReduceOp>&,
                    const std::optional<at::Tensor>& sparse_indices,
                    int64_t)>();

    auto work = std::get<1>(op.call(
        tensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        c10::make_intrusive<ReduceOp>(opts.reduceOp),
        opts.sparseIndices,
        opts.timeout.count()));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : tensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> allreduce_coalesced(
      std::vector<at::Tensor>& tensors,
      const AllreduceCoalescedOptions& opts = AllreduceCoalescedOptions()) {
    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::allreduce_coalesced_", "")
                         .typed<c10::intrusive_ptr<::c10d::Work>(
                             at::TensorList,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             const c10::intrusive_ptr<::c10d::ReduceOp>&,
                             int64_t)>();

    auto work = op.call(
        tensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        c10::make_intrusive<ReduceOp>(opts.reduceOp),
        opts.timeout.count());

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : tensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> reduce(
      std::vector<at::Tensor>& tensors,
      const ReduceOptions& opts = ReduceOptions()) {
    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::reduce_", "")
                         .typed<c10::intrusive_ptr<::c10d::Work>(
                             at::TensorList,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             const c10::intrusive_ptr<::c10d::ReduceOp>&,
                             int64_t,
                             int64_t,
                             int64_t)>();
    auto work = op.call(
        tensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        c10::make_intrusive<ReduceOp>(opts.reduceOp),
        opts.rootRank,
        opts.rootTensor,
        opts.timeout.count());

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : tensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> allgather(
      std::vector<std::vector<at::Tensor>>& outputTensors,
      std::vector<at::Tensor>& inputTensors,
      const AllgatherOptions& opts = AllgatherOptions()) {
    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::allgather_", "")
                         .typed<std::tuple<
                             std::vector<std::vector<at::Tensor>>,
                             c10::intrusive_ptr<Work>>(
                             const std::vector<std::vector<at::Tensor>>&,
                             at::TensorList,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             int64_t)>();

    auto work = std::get<1>(op.call(
        outputTensors,
        inputTensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        opts.timeout.count()));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor_list : outputTensors) {
        for (const auto& tensor : tensor_list) {
          c10d::register_work(tensor, work);
        }
      }
    }
    return work;
  }

  // Gathers a single tensor inputBuffer into a single buffer outputBuffer that
  // is interpreted as a contiguous collection of size inputBuffer * WORLD_SIZE.
  // For implementers of ProcessGroup API and advanced users only.
  // Note: this function will be deprecated in near future.
  virtual c10::intrusive_ptr<Work> _allgather_base(
      at::Tensor& outputBuffer,
      at::Tensor& inputBuffer,
      const AllgatherOptions& opts = AllgatherOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::_allgather_base_", "")
            .typed<std::tuple<at::Tensor, c10::intrusive_ptr<Work>>(
                at::Tensor&,
                at::Tensor&,
                const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                bool,
                int64_t)>();

    auto work = std::get<1>(op.call(
        outputBuffer,
        inputBuffer,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        opts.asyncOp,
        opts.timeout.count()));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      c10d::register_work(outputBuffer, work);
    }
    return work;
  }

  // This function is deprecated and will be moved out of ProcessGroup to comms:
  // * do not add dependencies on this function,
  // * do not implement it in your ProcessGroup, implement _allgather_base
  //   instead.
  virtual c10::intrusive_ptr<Work> allgather_coalesced(
      std::vector<std::vector<at::Tensor>>& outputTensorLists,
      std::vector<at::Tensor>& inputTensors,
      const AllgatherOptions& opts = AllgatherOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::allgather_coalesced_", "")
            .typed<c10::intrusive_ptr<Work>(
                const std::vector<std::vector<at::Tensor>>&,
                const at::TensorList&,
                const c10::intrusive_ptr<::c10d::ProcessGroup>&)>();

    auto work = op.call(
        outputTensorLists,
        inputTensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor_list : outputTensorLists) {
        for (const auto& tensor : tensor_list) {
          c10d::register_work(tensor, work);
        }
      }
    }
    return work;
  }

  // This function is a coalesced version of `allgather_into_tensor` (currently
  // still named as `_allgather_base`). Each tensor in the vector corresponds to
  // an input/output of one `allgather_into_tensor` operation.
  virtual c10::intrusive_ptr<Work> allgather_into_tensor_coalesced(
      std::vector<at::Tensor>& outputTensors,
      std::vector<at::Tensor>& inputTensors,
      const AllgatherOptions& opts = AllgatherOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::allgather_into_tensor_coalesced_", "")
            .typed<c10::intrusive_ptr<Work>(
                const at::TensorList,
                const at::TensorList,
                const c10::intrusive_ptr<::c10d::ProcessGroup>&)>();

    auto work = op.call(
        outputTensors,
        inputTensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : outputTensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> gather(
      std::vector<std::vector<at::Tensor>>& outputTensors,
      std::vector<at::Tensor>& inputTensors,
      const GatherOptions& opts = GatherOptions()) {
    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::gather_", "")
                         .typed<c10::intrusive_ptr<::c10d::Work>(
                             const std::vector<std::vector<at::Tensor>>&,
                             const at::TensorList&,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             int64_t,
                             int64_t)>();
    auto work = op.call(
        outputTensors,
        inputTensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        opts.rootRank,
        opts.timeout.count());

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor_list : outputTensors) {
        for (const auto& tensor : tensor_list) {
          c10d::register_work(tensor, work);
        }
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> scatter(
      std::vector<at::Tensor>& outputTensors,
      std::vector<std::vector<at::Tensor>>& inputTensors,
      const ScatterOptions& opts = ScatterOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::scatter_", "")
            .typed<
                std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
                    const at::TensorList&,
                    const std::vector<std::vector<at::Tensor>>&,
                    const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                    int64_t,
                    bool,
                    int64_t)>();
    auto work = std::get<1>(op.call(
        outputTensors,
        inputTensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        opts.rootRank,
        opts.asyncOp,
        opts.timeout.count()));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : outputTensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> reduce_scatter(
      std::vector<at::Tensor>& outputTensors,
      std::vector<std::vector<at::Tensor>>& inputTensors,
      const ReduceScatterOptions& opts = ReduceScatterOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::reduce_scatter_", "")
            .typed<
                std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
                    const at::TensorList&,
                    const std::vector<std::vector<at::Tensor>>&,
                    const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                    const c10::intrusive_ptr<::c10d::ReduceOp>&,
                    int64_t)>();
    auto work = std::get<1>(op.call(
        outputTensors,
        inputTensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        c10::make_intrusive<::c10d::ReduceOp>(opts.reduceOp),
        opts.timeout.count()));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : outputTensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> _reduce_scatter_base(
      at::Tensor& outputBuffer,
      at::Tensor& inputBuffer,
      const ReduceScatterOptions& opts = ReduceScatterOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::_reduce_scatter_base_", "")
            .typed<std::tuple<at::Tensor, c10::intrusive_ptr<Work>>(
                at::Tensor&,
                at::Tensor&,
                const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                const c10::intrusive_ptr<::c10d::ReduceOp>&,
                bool,
                int64_t)>();
    auto work = std::get<1>(op.call(
        outputBuffer,
        inputBuffer,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        c10::make_intrusive<::c10d::ReduceOp>(opts.reduceOp),
        opts.asyncOp,
        opts.timeout.count()));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      c10d::register_work(outputBuffer, work);
    }
    return work;
  }

  // This function is a coalesced version of `reduce_scatter_tensor` (currently
  // still named as `_reduce_scatter_base`). Each tensor in the vector
  // corresponds to an input/output of one `reduce_scatter_tensor` operation.
  virtual c10::intrusive_ptr<Work> reduce_scatter_tensor_coalesced(
      std::vector<at::Tensor>& outputTensors,
      std::vector<at::Tensor>& inputTensors,
      const ReduceScatterOptions& opts = ReduceScatterOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::reduce_scatter_tensor_coalesced_", "")
            .typed<c10::intrusive_ptr<Work>(
                const at::TensorList,
                const at::TensorList,
                const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                const c10::intrusive_ptr<::c10d::ReduceOp>&,
                int64_t)>();

    auto work = op.call(
        outputTensors,
        inputTensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        c10::make_intrusive<::c10d::ReduceOp>(opts.reduceOp),
        opts.timeout.count());

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : outputTensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> alltoall_base(
      at::Tensor& outputBuffer,
      at::Tensor& inputBuffer,
      std::vector<int64_t>& outputSplitSizes,
      std::vector<int64_t>& inputSplitSizes,
      const AllToAllOptions& opts = AllToAllOptions()) {
    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::alltoall_base_", "")
                         .typed<c10::intrusive_ptr<::c10d::Work>(
                             at::Tensor&,
                             at::Tensor&,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             std::vector<int64_t>,
                             std::vector<int64_t>,
                             int64_t)>();
    auto work = op.call(
        outputBuffer,
        inputBuffer,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        outputSplitSizes,
        inputSplitSizes,
        opts.timeout.count());

    if (c10d::allow_inflight_collective_as_graph_input()) {
      c10d::register_work(outputBuffer, work);
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> alltoall(
      std::vector<at::Tensor>& outputTensors,
      std::vector<at::Tensor>& inputTensors,
      const AllToAllOptions& opts = AllToAllOptions()) {
    static auto op =
        c10::Dispatcher::singleton()
            .findSchemaOrThrow("c10d::alltoall_", "")
            .typed<
                std::tuple<std::vector<at::Tensor>, c10::intrusive_ptr<Work>>(
                    const at::TensorList&,
                    const at::TensorList&,
                    const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                    int64_t)>();
    auto work = std::get<1>(op.call(
        outputTensors,
        inputTensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        opts.timeout.count()));

    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : outputTensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual void monitoredBarrier(
      const BarrierOptions& opts,
      bool wait_all_ranks = false) {
    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::monitored_barrier_", "")
                         .typed<void(
                             at::Tensor,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             const std::vector<int64_t>&,
                             int64_t,
                             bool)>();
    // Default to using cpu implementation, monitored barrier is only for GLOO
    at::Tensor tensor = at::empty({0}, at::TensorOptions().device(at::kCPU));
    op.call(
        tensor,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        opts.device_ids,
        opts.timeout.count(),
        wait_all_ranks);
  }

  // Agrees on an initial sequence number for the whole group by having rank 0
  // create it and broadcast it to other ranks using the store. Only implemented
  // for GLOO and NCCL backends currently.
  virtual void setSequenceNumberForGroup() {
    auto backendType = getBackendType();
    // TODO: HACK for backend name to get sequence number for that backend.
    if (backendType == ProcessGroup::BackendType::GLOO ||
        backendType == ProcessGroup::BackendType::NCCL ||
        backendType == ProcessGroup::BackendType::UCC) {
      getDefaultBackend()->setSequenceNumberForGroup();
    } else {
      TORCH_CHECK(
          false,
          c10::str(
              "ProcessGroup ",
              getBackendName(),
              " does not yet support sequence numbers."));
    }
  }

  // Retrieves the current sequence number for the whole group, which should be
  // in sync. If the returned number is not consistent across the group, it
  // may indicate that there is some sort of collective desynchronization.
  virtual uint64_t getSequenceNumberForGroup() {
    auto backendType = getBackendType();

    // TODO: HACK for backend name to get sequence number for that backend.
    if (backendType == ProcessGroup::BackendType::GLOO ||
        backendType == ProcessGroup::BackendType::NCCL ||
        backendType == ProcessGroup::BackendType::UCC) {
      return getDefaultBackend()->getSequenceNumberForGroup();
    } else {
      TORCH_CHECK(
          false,
          c10::str(
              "ProcessGroup ",
              getBackendName(),
              " does not yet support sequence numbers."));
    }
  }

  virtual c10::intrusive_ptr<Work> send(
      std::vector<at::Tensor>& tensors,
      int dstRank,
      int tag) {
    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::send", "")
                         .typed<c10::intrusive_ptr<::c10d::Work>(
                             at::TensorList,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             int64_t,
                             int64_t)>();
    auto work = op.call(
        tensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        dstRank,
        tag);
    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : tensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> recv(
      std::vector<at::Tensor>& tensors,
      int srcRank,
      int tag) {
    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::recv_", "")
                         .typed<c10::intrusive_ptr<::c10d::Work>(
                             at::TensorList,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             int64_t,
                             int64_t)>();
    auto work = op.call(
        tensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        srcRank,
        tag);
    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : tensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> recvAnysource(
      std::vector<at::Tensor>& tensors,
      int tag) {
    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::recv_any_source_", "")
                         .typed<c10::intrusive_ptr<::c10d::Work>(
                             at::TensorList,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             int64_t)>();
    auto work = op.call(
        tensors,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        tag);
    if (c10d::allow_inflight_collective_as_graph_input()) {
      for (const auto& tensor : tensors) {
        c10d::register_work(tensor, work);
      }
    }
    return work;
  }

  virtual c10::intrusive_ptr<Work> barrier(
      const BarrierOptions& opts = BarrierOptions()) {
    static at::Tensor tensor;
    // TODO: if nccl was specified then use it
    auto device = opts.device;
    if (device.has_value()) {
      // set device tensor from argument
      tensor = at::empty(
          {1}, at::TensorOptions().device(device.value()).dtype(at::kByte));
    } else if (backendType_ == c10d::ProcessGroup::BackendType::NCCL) {
      // set cuda tensor
      tensor = at::empty(
          {1},
          at::TensorOptions().device(at::DeviceType::CUDA).dtype(at::kByte));
    } else {
      // Default to using cpu implementation
      tensor = at::empty(
          {1},
          at::TensorOptions().device(at::DeviceType::CPU).dtype(at::kByte));
    }

    static auto op = c10::Dispatcher::singleton()
                         .findSchemaOrThrow("c10d::barrier", "")
                         .typed<c10::intrusive_ptr<::c10d::Work>(
                             at::Tensor,
                             const c10::intrusive_ptr<::c10d::ProcessGroup>&,
                             const std::vector<int64_t>&,
                             int64_t)>();

    auto work = op.call(
        tensor,
        c10::intrusive_ptr<ProcessGroup>::unsafe_reclaim_from_nonowning(this),
        opts.device_ids,
        opts.timeout.count());
    if (c10d::allow_inflight_collective_as_graph_input()) {
      c10d::register_work(tensor, work);
    }
    return work;
  }

  bool hasBackends() {
    return !deviceTypeToBackendType_.empty();
  }

  void setBackend(
      c10::DeviceType deviceType,
      BackendType backendType,
      const std::optional<c10::intrusive_ptr<Backend>>& backend) {
    // TODO: should we add these entries after the backend setting succeeds?
    deviceTypeToBackendType_[deviceType] = backendType;
    deviceTypes_.insert(deviceType);
    // if the backendType is already set then reuse it for this device
    if (backendTypeToBackend_.find(backendType) !=
        backendTypeToBackend_.end()) {
      auto existingBackend = backendTypeToBackend_.at(backendType);
      deviceTypeToBackend_[deviceType] = existingBackend;
      TORCH_CHECK(
          existingBackend->getBoundDeviceId() ==
          (*backend)->getBoundDeviceId());
    } else {
      // check if backend has value
      if (backend.has_value()) {
        deviceTypeToBackend_[deviceType] = backend.value();
        backendTypeToBackend_[backendType] = backend.value();
        (*backend)->setBoundDeviceId(bound_device_id_);
      }
    }
  }

  c10::intrusive_ptr<Backend> getDefaultBackend() const {
    TORCH_CHECK(
        backendTypeToBackend_.find(backendType_) != backendTypeToBackend_.end(),
        "Could not find the default backend type ",
        backendType_,
        " for Process Group with name ",
        getBackendName(),
        ".");
    return backendTypeToBackend_.at(backendType_);
  }

  void setDefaultBackend(const BackendType& backendType) {
    backendType_ = backendType;
  }

  void setDefaultBackend(const std::string& backend) {
    backendType_ = strToBackendType(backend);
  }

  c10::intrusive_ptr<Backend> getBackend(c10::DeviceType deviceType);

  c10::intrusive_ptr<Backend> getBackend(BackendType backendType) const {
    TORCH_CHECK(
        backendTypeToBackend_.find(backendType) != backendTypeToBackend_.end(),
        "Could not find backend type ",
        backendType,
        ".");
    return backendTypeToBackend_.at(backendType);
  }

  // Return device types supported by this ProcessGroup.
  // Note: the return type is `Device` rather than `DeviceType` for the purpose
  // of easy comparison at Python level. The `Device` will have default index
  // (-1).
  std::vector<c10::Device> getDeviceTypes() const {
    std::vector<c10::Device> devices;
    devices.reserve(deviceTypes_.size());
    for (auto& dt : deviceTypes_) {
      devices.emplace_back(dt);
    }
    return devices;
  }

  void registerOnCompletionHook(
      std::function<void(std::shared_ptr<WorkInfo>)>&& hook) {
    getDefaultBackend()->registerOnCompletionHook(std::move(hook));
  }

  void waitForPendingWorks() {
    getDefaultBackend()->waitForPendingWorks();
  }

  bool hasHooks() const {
    return getDefaultBackend()->hasHooks();
  }

  virtual const std::string& getGroupName() const;
  virtual void setGroupName(const std::string& name);
  virtual const std::string& getGroupDesc() const;
  virtual void setGroupDesc(const std::string& name);
  void enableCollectivesTiming();

  void release_resources() override;

  // ProcessGroups optionally can be "bound" to a specific device.
  // Currently this is only for nccl and allows for some opt-in
  // optimizations such as automatic use of ncclCommSplit.  The device
  // is specified in `init_process_group` and eventually makes it
  // here and then down into the actual backend instances.
  std::optional<at::Device> getBoundDeviceId() const {
    return bound_device_id_;
  }

  void setBoundDeviceId(std::optional<at::Device> device) {
    if (device) {
      TORCH_CHECK(device->has_index(), "setBoundDeviceId must have an index");
    }
    bound_device_id_ = device;
  }

 protected:
  // Implementations of this interface need to call this to setup
  // appropriate logging etc.
  void init();

  c10::intrusive_ptr<c10d::Store> store_;
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  const int rank_;
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  const int size_;
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-const-or-ref-data-members)
  BackendType backendType_;
  std::string pg_desc_;

  // Debug level setting. It is parsed once when ProcessGroup is constructed and
  // remains the same across use of this process group.
  DebugLevel dist_debug_level_{DebugLevel::Off};

  // Backend classes for this ProcessGroup
  std::unordered_set<c10::DeviceType> deviceTypes_;
  std::unordered_map<c10::DeviceType, BackendType> deviceTypeToBackendType_;
  std::unordered_map<c10::DeviceType, c10::intrusive_ptr<Backend>>
      deviceTypeToBackend_;
  std::unordered_map<BackendType, c10::intrusive_ptr<Backend>>
      backendTypeToBackend_;

  std::optional<at::Device> bound_device_id_;
};

} // namespace c10d