File: ProcessGroupNCCL.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (5166 lines) | stat: -rw-r--r-- 189,989 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
#ifdef USE_C10D_NCCL

#include <exception>
#include <map>
#include <mutex>
#include <sstream>
#include <stdexcept>
#include <tuple>
#include <utility>

#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAGraph.h>
#include <c10/core/DeviceType.h>
#include <c10/cuda/CUDAAllocatorConfig.h>
#include <c10/cuda/CUDAGraphsC10Utils.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/CallOnce.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
#include <c10/util/WaitCounter.h>
#include <c10/util/irange.h>
#include <c10/util/thread_name.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/distributed/c10d/FlightRecorder.hpp>
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/NanCheck.hpp>
#include <torch/csrc/distributed/c10d/ParamCommsUtils.hpp>
#include <torch/csrc/distributed/c10d/PrefixStore.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#include <torch/csrc/distributed/c10d/TraceUtils.h>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <torch/csrc/distributed/c10d/logger.hpp>
#include <torch/torch.h>
#include <optional>

namespace c10d {

constexpr const char* const kNCCLAbortedCommStoreKey = "NCCLABORTEDCOMM";

namespace {

#if defined(NCCL_MAJOR) && \
    ((NCCL_MAJOR > 2) || (NCCL_MAJOR == 2) && (NCCL_MINOR >= 10))
#define NCCL_HAS_AVG 1
#endif

// NCCL op mapping
const std::map<ReduceOp::RedOpType, ncclRedOp_t> ncclOp = {
    {ReduceOp::MIN, ncclMin},
    {ReduceOp::MAX, ncclMax},
    {ReduceOp::SUM, ncclSum},
    {ReduceOp::PRODUCT, ncclProd},
#ifdef NCCL_HAS_AVG
    {ReduceOp::AVG, ncclAvg},
#endif
};

// NCCL type typing
std::map<at::ScalarType, ncclDataType_t> ncclDataType = {
    {at::kChar, ncclInt8},
    {at::kByte, ncclUint8},
    {at::kFloat, ncclFloat},
    {at::kDouble, ncclDouble},
    {at::kInt, ncclInt32},
    {at::kLong, ncclInt64},
    {at::kHalf, ncclHalf},
    {at::kBool, ncclUint8},
    {at::kFloat8_e5m2, ncclUint8},
    {at::kFloat8_e4m3fn, ncclUint8},
    {at::kFloat8_e4m3fnuz, ncclUint8},
    {at::kFloat8_e5m2fnuz, ncclUint8},
#if HAS_NCCL_BF16_DATATYPE
    {at::kBFloat16, ncclBfloat16},
#endif
};

// Helper function that gets the data type and issues error if not supported
ncclDataType_t getNcclDataType(at::ScalarType type) {
  auto it = ncclDataType.find(type);
  TORCH_CHECK_WITH(
      TypeError,
      it != ncclDataType.end(),
      "Input tensor data type is not supported for NCCL process group: ",
      type);
  return it->second;
}

bool complexViewAsRealAllowed(const ReduceOp& reduceOp) {
  switch (reduceOp) {
    // NOLINTNEXTLINE(bugprone-branch-clone)
    case ReduceOp::SUM:
      return true;
    case ReduceOp::AVG:
      return true;
    case ReduceOp::PREMUL_SUM:
      return true;
    case ReduceOp::UNUSED:
      return true;
    default:
      return false;
  }
  return false;
}

#ifdef ENABLE_NCCL_PREMUL_SUM_SUPPORT
template <typename T, ncclDataType_t dataType>
ncclRedOpRAII unpackPreMulSum(
    const ReduceOp& reduceOp,
    const ncclComm_t& comm) {
  const auto* preMulSupplement =
      reinterpret_cast<NCCLPreMulSumSupplement*>(reduceOp.supplement_.get());
  ncclRedOp_t preMulSum{};
  bool has_tensor = preMulSupplement->tensor_factor.defined();
  auto residence = has_tensor ? ncclScalarDevice : ncclScalarHostImmediate;
  const T* ptr_factor = has_tensor
      ? preMulSupplement->tensor_factor.const_data_ptr<T>()
      : nullptr;
  T scalar_factor = T(preMulSupplement->double_factor);
  ncclRedOpCreatePreMulSum(
      &preMulSum,
      // https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/ops.html#ncclredopcreatepremulsum
      // tells us that the scalar input is strictly a multiplier.
      // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
      /*scalar=*/has_tensor ? const_cast<T*>(ptr_factor) : &scalar_factor,
      dataType,
      residence,
      comm);
  return ncclRedOpRAII(preMulSum, comm);
}
#endif

ncclRedOpRAII getNcclReduceOp(
    const ReduceOp& reduceOp,
    at::Tensor& input,
    const ncclDataType_t& dataType,
    const ncclComm_t& comm) {
  try {
    if (input.scalar_type() == at::kBool) {
      if (reduceOp == ReduceOp::SUM) {
        // For bool tensors, map sum to max, which both represent a bitwise or.
        // This is to prevent overflow issues with sum, since we use uint8 to
        // represent a bool (see ncclDataType mapping).
        return ncclMax;
      }
#ifdef NCCL_HAS_AVG
      if (reduceOp == ReduceOp::AVG) {
        C10_THROW_ERROR(
            TypeError, "Cannot use ReduceOp.AVG with boolean inputs");
      }
#endif
    }
    if (reduceOp == ReduceOp::PREMUL_SUM) {
#ifdef ENABLE_NCCL_PREMUL_SUM_SUPPORT
      switch (dataType) {
        case ncclHalf:
          return unpackPreMulSum<at::Half, ncclHalf>(reduceOp, comm);
        case ncclFloat:
          return unpackPreMulSum<float, ncclFloat>(reduceOp, comm);
        case ncclDouble:
          return unpackPreMulSum<double, ncclDouble>(reduceOp, comm);
        default:
          C10_THROW_ERROR(
              TypeError, "PreMulSum Data type must be half, float, or double");
          return ncclRedOp_t{};
      }
#else
      C10_THROW_ERROR(ValueError, "PreMulSum requires NCCL>=2.11.1");
#endif
    }
    return ncclOp.at(reduceOp);
  } catch (const std::out_of_range&) {
    switch (reduceOp) {
      case ReduceOp::AVG:
        C10_THROW_ERROR(
            ValueError,
            c10::str(
                "AVG requires NCCL 2.10+. The current version is ",
                NCCL_MAJOR,
                ".",
                NCCL_MINOR));
        break;
      case ReduceOp::BAND:
        C10_THROW_ERROR(ValueError, "Cannot use ReduceOp.BAND with NCCL");
        break;
      case ReduceOp::BOR:
        C10_THROW_ERROR(ValueError, "Cannot use ReduceOp.BOR with NCCL");
        break;
      case ReduceOp::BXOR:
        C10_THROW_ERROR(ValueError, "Cannot use ReduceOp.BXOR with NCCL");
        break;
      default:
        C10_THROW_ERROR(ValueError, "Unhandled ReduceOp");
        break;
    }
  }
}

// Get a key string from device
inline std::string getKeyFromDevice(at::Device& device) {
  return std::to_string(device.index());
}

inline at::DeviceIndex getIndexFromDeviceKey(const std::string& deviceKey) {
  // initialize the device index to -1, which is an invalid value.
  int index = -1;
  try {
    index = std::stoi(deviceKey);
  } catch (const std::invalid_argument& e) {
    LOG(ERROR) << c10::str(
        "Invalid deviceKey: ", deviceKey, ",", e.what(), ".");
  } catch (const std::out_of_range& e) {
    LOG(ERROR) << "Out of range: " << e.what();
  }
  return static_cast<at::DeviceIndex>(index);
}

std::string getKeySendRecv(int myRank, int peer) {
  int lowRank = myRank < peer ? myRank : peer;
  int highRank = myRank < peer ? peer : myRank;
  std::string sendRecvPair =
      std::to_string(lowRank) + ":" + std::to_string(highRank);
  return sendRecvPair;
}

// Get device from tensor
inline at::Device getDevice(at::Tensor& tensor) {
  return tensor.device();
}

// [Sync Streams] Helper that lets the input ncclStreams to wait for the current
// stream. NCCL communications run on ncclStreams, but input tensors are
// allocated on different streams (i.e., current streams). Communications on
// ncclStreams cannot start before pending input tensor ops on current streams
// finish. Otherwise, ops on two streams might read/write same tensors
// concurrently.
//
// The synchronization above alone is not enough. We also need to make sure
// input tensors are not freed before their usages on ncclStreams finish. This
// can be achieved by calling c10::cuda::CUDACachingAllocator::recordStream,
// which remembers the usage stream (ncclStream), creates an event on the usage
// stream when GC attempts to free the input tensor, and delays GC until that
// event is done.
void syncStream(
    at::Device& device,
    at::cuda::CUDAEvent& ncclEvent,
    at::cuda::CUDAStream& ncclStream) {
  ncclEvent.record(at::cuda::getCurrentCUDAStream(device.index()));
  ncclEvent.block(ncclStream);
}

// Given a ncclUniqueId, convert it to a string representation that can be put
// in the store.
std::string buildNcclUniqueIdStr(const ncclUniqueId& ncclID) {
  const uint8_t* bytes = reinterpret_cast<const uint8_t*>(&ncclID);
  std::ostringstream oss;
  for (const auto i : c10::irange(NCCL_UNIQUE_ID_BYTES)) {
    oss << std::hex << static_cast<int>(bytes[i]);
  }
  return oss.str();
}

std::string getNcclAbortedCommStoreKey(const std::string& ncclIdStr) {
  return std::string(kNCCLAbortedCommStoreKey) + ":" + ncclIdStr;
}

// Returns exception's what() given an exception_ptr instance.
std::string getExceptionMsgFromExceptionPtr(
    const std::exception_ptr& exceptionPtr) {
  TORCH_CHECK(exceptionPtr != nullptr);
  try {
    std::rethrow_exception(exceptionPtr);
  } catch (const std::exception& e) {
    return e.what();
  } catch (...) {
    return "Unknown exception type";
  }
}

inline void errorIfCapturingNonCapturableNCCL(c10::cuda::CaptureStatus status) {
  // parentheses avoid some compiler warnings
  static const uint64_t min_version =
      (((uint64_t)2) << 32) + (((uint64_t)9) << 16) + ((uint64_t)6);
  static const uint64_t cur_version = torch::cuda::nccl::version();
  if (cur_version < min_version) {
    TORCH_CHECK_WITH(
        NotImplementedError,
        status == c10::cuda::CaptureStatus::None,
        "Capturing NCCL collectives is only allowed with NCCL >= 2.9.6");
  }
}

} // namespace

// Map from each communicator to its device index.
// This map is used when register/deregister cache segments from cache
// allocator. See design notes below:
// - Each segment should be registered only to the communicator on the
//   same device.
// - We cannot reuse devNCCLCommMap_ in each ProcessGroup because the key may be
//   ranks rather than device in point-to-point case.
// - This map has also to be maintained as global variable since the register
//   hooks are called outside the scope of any PG, thus we need traverse
//   communicators in all PGs.
static std::unordered_map<std::shared_ptr<NCCLComm>, int> ncclCommDevIdxMap;
static std::mutex ncclCommDevIdxMapMutex;
static bool allocatorHooksAttached = false;

std::atomic<bool> ProcessGroupNCCL::shouldDump_(false);

static void cacheAllocatorRegisterHook(
    const c10::cuda::CUDACachingAllocator::TraceEntry& te) {
  // Register after SEGMENT_ALLOC
  if (te.action_ !=
      c10::cuda::CUDACachingAllocator::TraceEntry::Action::SEGMENT_ALLOC) {
    return;
  }

  std::lock_guard<std::mutex> lock(ncclCommDevIdxMapMutex);
  for (auto& it : ncclCommDevIdxMap) {
    auto& ncclComm = it.first;
    auto& devIdx = it.second;
    if (te.device_ == devIdx) {
      // NOLINTNEXTLINE(performance-no-int-to-ptr)
      ncclComm->registerSegment(reinterpret_cast<void*>(te.addr_), te.size_);
    }
  }
}

static void cacheAllocatorDeregisterHook(
    const c10::cuda::CUDACachingAllocator::TraceEntry& te) {
  // deregister before SEGMENT_FREE
  if (te.action_ !=
      c10::cuda::CUDACachingAllocator::TraceEntry::Action::SEGMENT_FREE) {
    return;
  }

  std::lock_guard<std::mutex> lock(ncclCommDevIdxMapMutex);
  for (auto& it : ncclCommDevIdxMap) {
    auto& ncclComm = it.first;
    auto& devIdx = it.second;
    if (te.device_ == devIdx) {
      // NOLINTNEXTLINE(performance-no-int-to-ptr)
      ncclComm->deregisterSegment(reinterpret_cast<void*>(te.addr_));
    }
  }
}

static std::
    unordered_map<std::string, std::unordered_map<std::string, std::string>>
    getNCCLCommDumpMap() {
#if defined(IS_NCCLX) && defined(NCCL_COMM_DUMP)
  std::unordered_map<
      std::string /* ncclUniqueID */,
      std::unordered_map<std::string, std::string> /* dump from this comm */>
      ncclDumpMap;
  // dump_nccl_trace is only called from the default PG (local_id_=0), but we
  // want to dump from all comms so we need to iterate over ncclCommDevIdxMap,
  // which is static
  std::vector<std::shared_ptr<NCCLComm>> allNCCLComms;
  // within the critical section, we don't want to dump while holding the lock
  // as dump might hang
  ncclCommDevIdxMapMutex.lock();
  for (auto& [ncclComm, _] : ncclCommDevIdxMap) {
    allNCCLComms.push_back(ncclComm);
  }
  ncclCommDevIdxMapMutex.unlock();
  for (auto& ncclComm : allNCCLComms) {
    std::string ncclUniqueIDStr = buildNcclUniqueIdStr(ncclComm->getNcclId());
    ncclDumpMap[ncclUniqueIDStr] = ncclComm->ncclCommDump();
  }
  return ncclDumpMap;
#else
  return std::unordered_map<
      std::string,
      std::unordered_map<std::string, std::string>>();
#endif
}

std::string dump_nccl_trace(
    bool includeCollectives,
    bool includeStackTraces,
    bool onlyActive) {
  auto ncclDumpMap = getNCCLCommDumpMap();
  return FlightRecorder::get()->dump(
      ncclDumpMap, includeCollectives, includeStackTraces, onlyActive);
}

std::string dump_nccl_trace_json(bool includeCollectives, bool onlyActive) {
  auto ncclDumpMap = getNCCLCommDumpMap();
  return FlightRecorder::get()->dump_json(
      ncclDumpMap, includeCollectives, onlyActive);
}

std::optional<std::function<void(std::function<void(const std::string&)>)>>&
get_cpp_trace_dumper() {
  static std::optional<
      std::function<void(std::function<void(const std::string&)>)>>
      dumper(std::nullopt);
  return dumper;
}

gil_checker_t& get_gil_checker() {
  static gil_checker_t gil_checker = nullptr;
  return gil_checker;
}

static std::future<bool> launchAsyncGilCheck() {
  std::promise<bool> resultPromise;
  std::future<bool> resultFuture = resultPromise.get_future();
  TORCH_CHECK(get_gil_checker(), "Can't check GIL with null GIL checker");
  std::thread workerThread([promise = std::move(resultPromise)]() mutable {
    c10::setThreadName("pt_nccl_gil_chk");

    try {
      auto& gil_checker = get_gil_checker();
      promise.set_value((*gil_checker)());
    } catch (...) {
      promise.set_exception(std::current_exception());
    }
  });

  // Detach the thread to allow it to run independently
  workerThread.detach();

  return resultFuture;
}

const int64_t ProcessGroupNCCL::kWatchdogThreadSleepMillis = 100;
constexpr int64_t kSynchronizeBusyWaitMillis = 1;
thread_local uint64_t ProcessGroupNCCL::ncclActiveGroupCounter_ = 0;

std::ostream& operator<<(
    std::ostream& output,
    const ProcessGroupNCCL::WorkNCCL& workNCCL) {
  std::string workInfo;
  workInfo = c10::str(
      "WorkNCCL(",
      "SeqNum=",
      workNCCL.seq_,
      ", OpType=",
      opTypeToString(workNCCL.opType_),
      ", NumelIn=",
      workNCCL.numelIn_,
      ", NumelOut=",
      workNCCL.numelOut_,
      ", Timeout(ms)=",
      workNCCL.opTimeout_.count(),
      ")");
  return output << workInfo;
}

ProcessGroupNCCL::WorkNCCL::WorkNCCL(
    std::string pgUID,
    std::string pgDesc,
    at::Device& device,
    int rank,
    OpType opType,
    uint64_t seq,
    bool isP2P,
    const char* profilingTitle,
    const std::optional<std::vector<at::Tensor>>& inputs,
    bool desyncDebug,
    bool enableTiming,
    bool cudaEventCacheEnabled,
    DebugLevel distDebugLevel)
    : Work(rank, opType, profilingTitle, inputs),
      pgUID_(std::move(pgUID)),
      pgDesc_(std::move(pgDesc)),
      device_(device),
      workStartTime_(std::chrono::steady_clock::now()),
      seq_(seq),
      isP2P_(isP2P),
      timingEnabled_(enableTiming),
      distDebugLevel_(distDebugLevel) {
  // Creates the CUDA event wrappers
  // Note: The actual events are lazily created when first recorded to with
  // DEFAULT_FLAGS = cudaEventDisableTiming.
  if (cudaEventCacheEnabled) {
    ncclStartEvent_ = enableTiming
        ? ProcessGroupNCCL::CUDAEventCache::get(device.index())
              .create(enableTiming)
        : nullptr;
    ncclEndEvent_ = ProcessGroupNCCL::CUDAEventCache::get(device.index())
                        .create(enableTiming);
  } else {
    ncclStartEvent_ = enableTiming
        ? std::make_shared<at::cuda::CUDAEvent>(cudaEventDefault)
        : nullptr;
    ncclEndEvent_ = std::make_shared<at::cuda::CUDAEvent>(
        enableTiming ? cudaEventDefault : cudaEventDisableTiming);
  }
  futureWorkResult_ =
      c10::make_intrusive<at::ivalue::Future>(c10::AnyEnumType::get());
}

ProcessGroupNCCL::WorkNCCL::WorkNCCL(const WorkNCCL& w)
    : Work(w.rank_, w.opType_),
      std::enable_shared_from_this<WorkNCCL>(w),
      pgUID_(w.pgUID_),
      pgDesc_(w.pgDesc_),
      device_(w.device_),
      ncclStartEvent_(w.ncclStartEvent_),
      ncclEndEvent_(w.ncclEndEvent_),
      ncclComm_(w.ncclComm_),
      blockingWait_(w.blockingWait_),
      opTimeout_(w.opTimeout_),
      ownedEphermeralTimeout_(w.ownedEphermeralTimeout_),
      workStartTime_(w.workStartTime_),
      seq_(w.seq_),
      isP2P_(w.isP2P_),
      startTraceUpdated_(w.startTraceUpdated_),
      numelIn_(w.numelIn_),
      numelOut_(w.numelOut_),
      store_(w.store_),
      futureWorkResult_(w.futureWorkResult_),
      timingEnabled_(w.timingEnabled_),
      trace_id_(w.trace_id_),
      distDebugLevel_(w.distDebugLevel_) {
  exception_ = w.exception_;
}

ProcessGroupNCCL::WorkNCCL::~WorkNCCL() = default;

bool ProcessGroupNCCL::WorkNCCL::isCompleted() {
  if (!ncclComm_->isAborted()) {
    checkAndSetException();
  }
  return exception() || finishedGPUExecutionInternal();
}

bool ProcessGroupNCCL::WorkNCCL::isStarted() {
  if (!ncclComm_->isAborted()) {
    checkAndSetException();
  }
  return exception() || startedGPUExecutionInternal();
}

bool ProcessGroupNCCL::WorkNCCL::isSuccess() const {
  C10_THROW_ERROR(NotImplementedError, "WorkNCCL::isSuccess() is deprecated");
}

void ProcessGroupNCCL::WorkNCCL::checkAndSetException() {
  if (exception()) {
    // We already have an exception.
    return;
  }

  auto exception_ptr = checkForNCCLErrors();
  std::unique_lock<std::mutex> lock(mutex_);
  exception_ = exception_ptr;
  if (exception_) {
    LOG(ERROR) << logPrefix() << "Collective " << *this
               << " raised the following async exception: "
               << getExceptionMsgFromExceptionPtr(exception_);

    // Mark future result as ERROR
    if (futureWorkResult_ && !futureWorkResult_->completed()) {
      futureWorkResult_->markCompleted(
          at::IValue(static_cast<uint8_t>(WorkResult::COMM_ERROR)));
    }
  }
}

const std::string& ProcessGroupNCCL::WorkNCCL::logPrefix() const {
  static std::string prefix = c10::str("[Rank ", rank_, "] ");
  return prefix;
}

void ProcessGroupNCCL::WorkNCCL::setException(
    std::exception_ptr exception_ptr) {
  std::unique_lock<std::mutex> lock(mutex_);
  exception_ = std::move(exception_ptr);
}

// Helper that checks if the NCCL kernels are completed on the GPUs
bool ProcessGroupNCCL::WorkNCCL::finishedGPUExecution() {
  checkAndSetException();
  return finishedGPUExecutionInternal();
}

bool ProcessGroupNCCL::WorkNCCL::startedGPUExecutionInternal() const {
  // if timing is disabled we won't have allocated start events
  if (!timingEnabled_) {
    return false;
  }
  // Checking the work's corresponding CUDA event's status
  if (!ncclStartEvent_->query()) {
    return false;
  }
  return true;
}

bool ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const {
  // Checking the work's corresponding CUDA event's status
  // It calls `cudaEventQuery` eventually. Although this seems to be a
  // non-blocking call, but we did notice hangs in the past. It can
  // hang if another thread is holding the CUDA global context lock. For
  // example, when doing a `cudaDeviceSynchronize` or even
  // `cudaStreamSynchronize`.
  if (!ncclEndEvent_->query()) {
    return false;
  }
  return true;
}

bool ProcessGroupNCCL::WorkNCCL::checkTimeout(
    std::optional<std::chrono::milliseconds> timeout) {
  STATIC_SCOPED_WAIT_COUNTER(
      pytorch.wait_counter.ProcessGroupNCCL__checkTimeout);
  auto currentTimepoint = std::chrono::steady_clock::now();
  auto timeElapsed = std::chrono::duration_cast<std::chrono::milliseconds>(
      currentTimepoint - workStartTime_);
  auto workTimeout = timeout ? *timeout : opTimeout_;

  if (timeElapsed < workTimeout) {
    return false;
  }

  // Timed out

  std::string exceptionMsg = c10::str(
      logPrefix(),
      "Watchdog caught collective operation timeout: ",
      *this,
      " ran for ",
      timeElapsed.count(),
      " milliseconds before timing out.");

  LOG(ERROR) << exceptionMsg;

  std::exception_ptr exception_ptr =
      std::make_exception_ptr(C10_BUILD_ERROR(DistBackendError, exceptionMsg));
  if (!exception()) {
    // if there is already an error, we don't override it
    setException(exception_ptr);
  }

  // Mark future result as TIMEOUT
  if (futureWorkResult_ && !futureWorkResult_->completed()) {
    futureWorkResult_->markCompleted(
        at::IValue(static_cast<uint8_t>(WorkResult::TIMEOUT)));
  }
  return true;
}

// Print the traceback of the collective at call time
void ProcessGroupNCCL::WorkNCCL::printTraceback() const {
  // First step we get the corresponding record entry from FR, based on work's
  // trace_id_
  std::optional<FlightRecorder::Entry> entry =
      FlightRecorder::get()->getEntry(trace_id_);
  if (entry.has_value()) {
    auto entryVal = entry.value();
    // Get stack trace from FR entry, in string format
    // Note: `getTraceback` call below invokes `torch::symbolize`, which may
    // need to acquire the GIL. In order for watchdog to be block-free, we make
    // the call with std::async.
    auto future = std::async(
        std::launch::async, [&entryVal]() { return entryVal.getTraceback(); });
    // Wait for the future to complete or timeout
    auto status = future.wait_for(std::chrono::seconds(8));
    if (status == std::future_status::ready) {
      std::string tracebackStr = future.get();
      LOG(ERROR) << "Stack trace of the failed collective: \n" << tracebackStr;
    } // else, symbolizer probably timed out, we skip logging the stack trace.
  } else {
    LOG(ERROR)
        << "Stack trace of the failed collective not found, "
        << "potentially because FlightRecorder is disabled. "
        << "You can enable it by setting TORCH_NCCL_TRACE_BUFFER_SIZE to a non-zero value.";
  }
}

void ProcessGroupNCCL::WorkNCCL::handleException(
    ErrorHandlingMode errorHandling) {
  if (exception_) {
    auto exceptionMsg = c10::str(
        "Some NCCL operations have failed or timed out. Due to the ",
        "asynchronous nature of CUDA kernels, subsequent GPU operations ",
        "might run on corrupted/incomplete data.");
    LOG(ERROR) << logPrefix() << exceptionMsg;
    C10_LOG_API_USAGE_ONCE("ProcessGroupNCCL.WorkNCCL.handleException");

    auto logger = c10d::C10dLogger::getLogger();
    if (logger) {
      ::c10d::C10dLoggingData data;
      data.strings["work_nccl_exception"] =
          getExceptionMsgFromExceptionPtr(exception_);
      logger->log(data);
    }

    if (SHOULD_TEAR_DOWN(errorHandling)) {
      auto tearDownMsg = c10::str(
          "To avoid data inconsistency, we are taking the entire process down.");
      LOG(ERROR) << logPrefix() << tearDownMsg;
      std::rethrow_exception(exception_);
    }
  }
}

void ProcessGroupNCCL::WorkNCCL::synchronize() {
  synchronizeStream();
  if (c10d::allow_inflight_collective_as_graph_input()) {
    c10d::unregister_work(
        c10::intrusive_ptr<
            ProcessGroupNCCL::WorkNCCL>::unsafe_reclaim_from_nonowning(this));
  }
}

void ProcessGroupNCCL::WorkNCCL::synchronizeStream() {
  auto currentStream = at::cuda::getCurrentCUDAStream(device_.index());
  // Block the current stream on the NCCL stream
  ncclEndEvent_->block(currentStream);

  if (avoidRecordStreams_) {
    stashed_for_allocator_safety_->clear();
  }
}

// Same as calling synchronize() when blockingWait_ is false
bool ProcessGroupNCCL::WorkNCCL::wait(std::chrono::milliseconds timeout) {
  RECORD_PARAM_COMMS(
      std::make_tuple(static_cast<int64_t>(this->seq_), this->isP2P_), // seq
      std::make_tuple(pgUID_, pgDesc_), // PG name tuple
      rank_, // rank
      "wait", // collective name
      0, // inNelems
      0, // outNelems
      at::kByte, // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      -1,
      -1,
      static_cast<int>(1)); // number of device?

  // synchronize() will block the current stream on the NCCL stream
  synchronize();

  // In case of blockingWait or a timeout value is specified by the user, we
  // block the CPU thread until the work is completed or timed out.
  if (blockingWait_ || timeout != kNoTimeout) {
    while (!isCompleted()) {
      bool timedOut = checkTimeout(
          timeout == kNoTimeout ? std::nullopt : std::make_optional(timeout));
      // Explicitly abort ncclComms here before throwing this timed out
      // exception to users.
      // If throwing timed out excepiton without aborting nccl communicators
      // here, it was observed that CUDA GPU will have 100% utilization and
      // can not run new events successfully.
      if (timedOut) {
        std::string exceptionMsg = c10::str(
            logPrefix(), "Work ", (*this), " timed out in blocking wait.");
        LOG(ERROR) << exceptionMsg;
        break;
      }
      // Yield
      std::this_thread::sleep_for(
          std::chrono::milliseconds(kSynchronizeBusyWaitMillis));
    }
  } else if (isBarrierOp_ && !isCompleted()) {
    // For barrier wait when timeout is unspecified, we block the CPU thread on
    // current stream. This is to minimize the CPU barrier wait time in healthy
    // path
    auto currentStream = at::cuda::getCurrentCUDAStream(device_.index());
    // CUDAStream wrapper will correctly use a DeviceGuard here
    currentStream.synchronize();
  }

  // If exception is detected, throw it from the main CPU thread
  if (exception()) {
    // Abort NCCL communicators
    abort();
    // Throw exception (from main thread here)
    handleException(TearDown);
  }

  // TODO(kwen2501): this should be moved to c10d tests, to qualify a NCCL
  // upgrade. Once a NCCL version is qualified, this code should not be needed
  // at runtime.
#ifdef PGNCCL_ENABLE_HASH
  if (distDebugLevel_ >= DebugLevel::Detail) {
    auto numel = getTensorsNumel(*outputs_);
    auto hashValue = hashTensors(*outputs_);
    PRINT_COLLECTIVE_HASH_SIGNATURE(
        "output", opTypeToString(opType_), numel, hashValue);
  }
#endif
  // Always return true, because abort API is not implemented.
  return true;
}

void ProcessGroupNCCL::WorkNCCL::abort() {
  // Abort all communicators of this work
  ncclComm_->abort();

  ncclCommDevIdxMapMutex.lock();
  ncclCommDevIdxMap.erase(ncclComm_);
  ncclCommDevIdxMapMutex.unlock();
}

ProcessGroupNCCL::CUDAEventCache::CUDAEventCache() = default;

// CUDA event is used to record the start/end of one Work.
// Instead of let the CUDA event gets destroyed, we now reuse it after the Work
// has been erased from workMetaList_.
// This is to avoid the potential deadlock caused by CudaEventDestroy.
std::shared_ptr<at::cuda::CUDAEvent> ProcessGroupNCCL::CUDAEventCache::create(
    bool timing) {
  // register the deleter as a callback when the WorkNCCL object is destroyed.
  auto deleter = [this, timing](at::cuda::CUDAEvent* event) {
    std::lock_guard<std::mutex> lock(this->cacheMutex_);
    // We put the event back to the cache deque once the WorkNCCL object is
    // destroyed.
    this->eventsArray_[timing ? 1 : 0].push_back(event);
  };
  at::cuda::CUDAEvent* event = nullptr;
  {
    std::lock_guard<std::mutex> lock(cacheMutex_);
    auto& events = eventsArray_[timing ? 1 : 0];
    // If we still have events in the cache, we reuse it. Otherwise, we create a
    // new one.
    if (!events.empty()) {
      event = events.front();
      events.pop_front();
    } else {
      event = new at::cuda::CUDAEvent(
          timing ? cudaEventDefault : cudaEventDisableTiming);
    }
  }
  return std::shared_ptr<at::cuda::CUDAEvent>(event, std::move(deleter));
}

ProcessGroupNCCL::CUDAEventCache& ProcessGroupNCCL::CUDAEventCache::get(
    at::DeviceIndex device) {
  // A per-thread singleton of device-to-CUDAEventCache map.
  // Map is needed because events cannot be reused across devices.
  // Per-thread ownership is needed to support multi-threaded case (instead of
  // multi-process case).
  static thread_local std::
      map<at::DeviceIndex, ProcessGroupNCCL::CUDAEventCache>
          cacheDeviceMap;
  // Check if device has already been in the map, if not, add a new entry
  auto it = cacheDeviceMap.find(device);
  if (it == cacheDeviceMap.end()) {
    // Use in-place contruction, which avoids move or copy of the cache
    // (the mutex of the cache is not movable/copiable)
    it = cacheDeviceMap.emplace_hint(
        it,
        std::piecewise_construct,
        std::forward_as_tuple(device),
        std::forward_as_tuple());
  }
  return it->second;
}

static std::atomic<size_t> process_group_id = 0;

constexpr const char* MULTI_DEVICE_ERROR_MSG =
    "Expecting one tensor only but got multiple. You are probably using multiple "
    "devices under one thread. The support for such usage has been deprecated. "
    "For details, please refer to "
    "https://pytorch.org/docs/stable/distributed.html#multi-gpu-collective-functions. "
    "ProcessGroupNCCL continues supporting multi-process and multi-thread modes.";

ProcessGroupNCCL::ProcessGroupNCCL(
    c10::intrusive_ptr<Store> store,
    int rank,
    int size,
    c10::intrusive_ptr<Options> options)
    : Backend(rank, size),
      store_(std::move(store)),
      options_(std::move(options)),
      terminateProcessGroup_(false),
      terminateHeartbeatMonitorThread_(false),
      local_id_(process_group_id++),
      intraNodeComm_(initIntraNodeComm()) {
  TORCH_CHECK_WITH(
      ValueError,
      at::cuda::getNumGPUs() != 0,
      "ProcessGroupNCCL is only supported with GPUs, no GPUs found!");

  // getNcclVersion needs to get called before launching threads which can
  // potentially call getenv. getNcclVersion internally calls setenv to set some
  // environment variables from config file, which can race with getenv from
  // other threads and cause segfaults.
  const auto ncclVersion = getNcclVersion();
  this->setGroupUid(options_->group_name);
  this->localDeviceCount_ = static_cast<int>(at::cuda::getNumGPUs());
  logPrefix_ = createLogPrefix();
  blockingWait_ = getCvarBool(TORCH_NCCL_BLOCKING_WAIT, false);
  asyncErrorHandling_ = static_cast<ErrorHandlingMode>(
      getCvarInt(TORCH_NCCL_ASYNC_ERROR_HANDLING, 3 /*SkipCleanUp*/));
  desyncDebug_ = getCvarBool(TORCH_NCCL_DESYNC_DEBUG, false) ||
      (dist_debug_level_ >= DebugLevel::Detail);
  rethrowCUDAErrors_ = getCvarBool(TORCH_NCCL_RETHROW_CUDA_ERRORS, true);
  // TODO, we should either deprecate TORCH_NCCL_DUMP_ON_TIMEOUT
  // or change its name to reflect that dump happens on exception including
  // both timeout and other errors.
  dumpOnTimeoutOrEx_ = getCvarBool(TORCH_NCCL_DUMP_ON_TIMEOUT, false) ||
      (dist_debug_level_ >= DebugLevel::Detail);
  // logging C++ stack isn't safe. Introduce a variable to control it.
  logCppStackOnUncleanShutdown_ =
      getCvarBool(TORCH_NCCL_LOG_CPP_STACK_ON_UNCLEAN_SHUTDOWN, true);
  enableNanCheck_ = getCvarBool(TORCH_NCCL_NAN_CHECK, false);
  heartbeat_ = 1ULL;
  monitorThreadEnabled_.store(getCvarBool(TORCH_NCCL_ENABLE_MONITORING, true));
  cudaEventCacheEnabled_.store(getCvarBool(TORCH_NCCL_CUDA_EVENT_CACHE, true));
  heartbeatTimeoutInSec_ =
      getCvarInt(TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC, 60 * 8 /*8 Mins*/);
  waitTimeoutDumpInMilSec_ =
      getCvarInt(TORCH_NCCL_WAIT_TIMEOUT_DUMP_MILSEC, 60 * 1000 /*60 Sec*/);
  coordCheckIntervalMilSec_ = getCvarInt(TORCH_NCCL_COORD_CHECK_MILSEC, 1000);
  traceBufferSize_ = getCvarInt(TORCH_NCCL_TRACE_BUFFER_SIZE, 2000);
  enableCollecticeHashDebug_ = (dist_debug_level_ >= DebugLevel::Detail);
  // store_ usually is wrapped with PrefixStore and the prefix is different
  // across different ProcessGroupNCCL(PG) instances. We need to get the
  // underlying non-PrefixStore for sharing global information shared across
  // different PGs.
  PrefixStore* prefixStore = dynamic_cast<PrefixStore*>(store_.get());
  globalStore_ =
      prefixStore ? prefixStore->getUnderlyingNonPrefixStore() : store_;
#ifdef ENABLE_NCCL_ERROR_CHECKING
  enableTiming_.store(
      getCvarBool(TORCH_NCCL_ENABLE_TIMING, false) || desyncDebug_);
#endif
  avoidRecordStreams_ = getCvarBool(TORCH_NCCL_AVOID_RECORD_STREAMS, false);
#ifdef NCCL_HAS_COMM_REGISTER
  useTensorRegisterAllocatorHook_ =
      getCvarBool(TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK, false);
  if (c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::
          expandable_segments()) {
    useTensorRegisterAllocatorHook_ = false;
    LOG(INFO)
        << logPrefix()
        << "disables TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK because it is not compatible with CUDA allocator expandable segments mode.";
  }
#endif

  if (blockingWait_) {
    LOG(INFO)
        << logPrefix()
        << "TORCH_NCCL_BLOCKING_WAIT is enabled, NO watchdog thread is created.";
  } else {
    if (desyncDebug_ && asyncErrorHandling_ == NoHandling) {
      LOG(INFO)
          << logPrefix()
          << "TORCH_NCCL_DESYNC_DEBUG and TORCH_NCCL_ASYNC_ERROR_HANDLING "
          << "must both be enabled. "
          << "Enabling TORCH_NCCL_ASYNC_ERROR_HANDLING.";
      asyncErrorHandling_ = SkipCleanUp;
    }
  }

#ifdef ENABLE_NCCL_ERROR_CHECKING
  // in blockingWait mode, we don't need to enable the watchdog thread to check
  // the timeout or nccl error because the main thread would throw an exception
  // and it is the user's responsibility to handle the exception.
  if (!blockingWait_) {
    ncclCommWatchdogThread_ =
        std::thread(&ProcessGroupNCCL::ncclCommWatchdog, this);
  }
#endif

  init();
  const std::string OFF = "OFF";
  std::string torch_distributed_debug =
      getCvarString({"TORCH_DISTRIBUTED_DEBUG"}, OFF.c_str());
  LOG(INFO) << logPrefix() << "ProcessGroupNCCL initialization options: "
            << "size: " << size << ", global rank: " << globalRank()
            << ", TIMEOUT(ms): " << options_->timeout.count()
            << ", USE_HIGH_PRIORITY_STREAM: "
            << options_->is_high_priority_stream
            << ", SPLIT_FROM: " << options_->split_from
            << ", SPLIT_COLOR: " << options_->split_color
            << ", PG Name: " << options_->group_name;

  LOG(INFO) << logPrefix() << "ProcessGroupNCCL environments: "
            << "NCCL version: " << ncclVersion
            << ", TORCH_NCCL_ASYNC_ERROR_HANDLING: " << asyncErrorHandling_
            << ", TORCH_NCCL_DUMP_ON_TIMEOUT: " << dumpOnTimeoutOrEx_
            << ", TORCH_NCCL_WAIT_TIMEOUT_DUMP_MILSEC: "
            << waitTimeoutDumpInMilSec_
            << ", TORCH_NCCL_DESYNC_DEBUG: " << desyncDebug_
            << ", TORCH_NCCL_ENABLE_TIMING: " << enableTiming_.load()
            << ", TORCH_NCCL_BLOCKING_WAIT: " << blockingWait_
            << ", TORCH_DISTRIBUTED_DEBUG: " << torch_distributed_debug
#ifdef NCCL_HAS_COMM_REGISTER
            << ", TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK: "
            << useTensorRegisterAllocatorHook_
#endif
            << ", TORCH_NCCL_ENABLE_MONITORING: "
            << monitorThreadEnabled_.load()
            << ", TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC: " << heartbeatTimeoutInSec_
            << ", TORCH_NCCL_TRACE_BUFFER_SIZE: " << traceBufferSize_
            << ", TORCH_NCCL_COORD_CHECK_MILSEC: " << coordCheckIntervalMilSec_
            << ", TORCH_NCCL_NAN_CHECK: " << enableNanCheck_
            << ", TORCH_NCCL_CUDA_EVENT_CACHE: " << cudaEventCacheEnabled_
            << ", TORCH_NCCL_LOG_CPP_STACK_ON_UNCLEAN_SHUTDOWN: "
            << logCppStackOnUncleanShutdown_;

  if (options_->global_ranks_in_group.empty()) {
    this->globalRankStart = 0;
  } else {
    this->globalRankStart = options_->global_ranks_in_group[0];
  }

  if (options_->global_ranks_in_group.empty()) {
    this->globalRankStride = 1;
  } else if (options_->global_ranks_in_group.size() == 1) {
    this->globalRankStride = 0;
  } else {
    bool ranksAreStrided = true;
    auto startRank = options_->global_ranks_in_group[0];
    auto stride =
        options_->global_ranks_in_group[1] - options_->global_ranks_in_group[0];
    for (std::vector<uint64_t>::size_type i = 0;
         i < options_->global_ranks_in_group.size();
         i++) {
      if (options_->global_ranks_in_group[i] != startRank + i * stride) {
        ranksAreStrided = false;
        break;
      }
    }

    if (ranksAreStrided) {
      this->globalRankStride = options_->global_ranks_in_group[1] -
          options_->global_ranks_in_group[0];
    } else {
      this->globalRankStride = -1;
    }
  }

  // Attach hooks to cache allocator to trigger the hooks whenever a traced
  // action is called. In the following hooks, we register a newly allocated
  // segment when SEGMENT_ALLOC action occurs, and deregister a segment when
  // SEGMENT_FREE action occurs.
  // We attach hooks only once at the first PG creation.
  // Attaching hooks fails if CUDACachingAllocator is not initialized, so
  // Init for CUDA is called (and is a no-op if CUDA is already
  // initialized).
  if (useTensorRegisterAllocatorHook_ && !allocatorHooksAttached) {
    at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
    c10::cuda::CUDACachingAllocator::attachAllocatorTraceTracker(
        &cacheAllocatorRegisterHook);
    c10::cuda::CUDACachingAllocator::attachAllocatorTraceTracker(
        &cacheAllocatorDeregisterHook);
    allocatorHooksAttached = true;
  }

  // Enable Desync Debugger per user setting
  if (desyncDebug_) {
    desyncDebugger_.init(rank, size, store_);
  }
}

void ProcessGroupNCCL::eagerConnectSingleDevice(at::Device device) {
  const auto key = getKeyFromDevice(device);
  LOG(INFO) << logPrefix() << "Eagerly connecting nccl backend with device "
            << device;
  initNCCLComm(key, device, OpType::ALLREDUCE);
}

bool ProcessGroupNCCL::useNonblocking() {
#ifndef NCCL_HAS_COMM_NONBLOCKING
  return false;
#endif
  // Already parsed, return the cached value
  if (useNonblocking_.has_value()) {
    return useNonblocking_.value();
  }
  // Get environment variable.
  auto nbEnv = c10::utils::check_env("TORCH_NCCL_USE_COMM_NONBLOCKING");

  // 1st priority: Respect the user's setting
  if (options_->config.blocking != NCCL_CONFIG_UNDEF_INT) {
    useNonblocking_ = options_->config.blocking == 0;
  }
  // 2nd priority: Respect the environment variable
  else if (nbEnv.has_value()) {
    useNonblocking_ = nbEnv.value();
  }
  // 3rd priority: automatically use nonblocking if we are in eager init mode
  else if (getBoundDeviceId()) {
    useNonblocking_ = true;
  }
  // 4th priority: otherwise, nonblocking = false to preserve old behavior
  else {
    useNonblocking_ = false;
  }

  LOG(INFO) << logPrefix()
            << "Using non-blocking mode: " << useNonblocking_.value();
  return useNonblocking_.value();
}

void ProcessGroupNCCL::performNocolorSplit(at::Device device) {
  // If our backend doesn't support splitting, this is a no-op for
  // ranks not in the new subgroup (and ranks that would be in it will
  // just use a new communicator rather than split).
#ifdef NCCL_HAS_COMM_SPLIT
  const auto key = getKeyFromDevice(device);
  LOG(INFO) << logPrefix() << "Performing nocolor split on backend device "
            << device << ", key " << key << ", i am " << this;
  bool useNb = useNonblocking();
  options_->config.blocking = useNb ? 0 : 1;
  auto comm = getNCCLComm(key);
  if (comm == nullptr) {
    LOG(ERROR) << logPrefix()
               << "No parent communicator exists for nocolor split";
  }
  NCCLComm::split(
      comm.get(),
      NCCL_SPLIT_NOCOLOR,
      rank_,
      options_->config,
      options_->global_ranks_in_group);
#endif
}

bool ProcessGroupNCCL::isInitialized() {
  if (devNCCLCommMap_.empty()) {
    return false;
  }
  std::lock_guard<std::mutex> lock(mutex_);
  bool initialized = true;
  for (const auto& [_, comm] : devNCCLCommMap_) {
    if (!comm->isInitialized()) {
      initialized = false;
      break;
    }
  }
  return initialized;
}

void ProcessGroupNCCL::registerMemPool(c10::cuda::MemPool* pool) {
  const auto key = std::to_string(pool->device());
  auto device = at::Device(at::DeviceType::CUDA, pool->device());
  LOG(INFO) << logPrefix()
            << "Performing NCCL user buffer registration for all buffers in "
            << "MemPool: " << pool->id() << ", device index: " << key
            << ", i am " << this;
  auto ncclComm = getNCCLComm(key);
  if (ncclComm == nullptr) {
    // HACK: currently we are using this function for NVLS
    // reductions, and that's why using OpType::ALLREDUCE.
    // If we end up using this API for zero-copy P2P, we might
    // need to refactor and account for different OpType.
    ncclComm = initNCCLComm(key, device, OpType::ALLREDUCE);
  }
  TORCH_INTERNAL_ASSERT(ncclComm != nullptr);
  auto ctx = c10::cuda::MemPoolContext(pool);
  auto snapshot = c10::cuda::CUDACachingAllocator::snapshot();
  for (const auto& segmentInfo : snapshot.segments) {
    TORCH_INTERNAL_ASSERT(
        segmentInfo.device == pool->device(),
        "Mismatch between CUDA memory segment device and pool's device");
    ncclComm->registerSegment(
        reinterpret_cast<void*>(segmentInfo.address), segmentInfo.total_size);
  }
}

void ProcessGroupNCCL::deregisterMemPool(c10::cuda::MemPool* pool) {
  const auto key = std::to_string(pool->device());
  auto device = at::Device(at::DeviceType::CUDA, pool->device());
  LOG(INFO) << logPrefix()
            << "Performing NCCL user buffer deregistration for all buffers in "
            << "MemPool: " << pool->id() << ", device index: " << key
            << ", i am " << this;
  auto ncclComm = getNCCLComm(key);
  if (ncclComm == nullptr) {
    // HACK: currently we are using this function for NVLS
    // reductions, and that's why using OpType::ALLREDUCE.
    // If we end up using this API for zero-copy P2P, we might
    // need to refactor and account for different OpType.
    ncclComm = initNCCLComm(key, device, OpType::ALLREDUCE);
  }
  TORCH_INTERNAL_ASSERT(ncclComm != nullptr);
  auto ctx = c10::cuda::MemPoolContext(pool);
  auto snapshot = c10::cuda::CUDACachingAllocator::snapshot();
  for (const auto& segmentInfo : snapshot.segments) {
    TORCH_INTERNAL_ASSERT(
        segmentInfo.device == pool->device(),
        "Mismatch between CUDA memory segment device and pool's device");
    ncclComm->deregisterSegment(reinterpret_cast<void*>(segmentInfo.address));
  }
}

c10::intrusive_ptr<intra_node_comm::IntraNodeComm> ProcessGroupNCCL::
    initIntraNodeComm() {
  using IntraNodeComm = intra_node_comm::IntraNodeComm;
  if (!IntraNodeComm::isEnabled()) {
    return nullptr;
  }
  auto prefixStore = c10::make_intrusive<PrefixStore>("IntraNodeComm", store_);
  auto comm = c10::make_intrusive<IntraNodeComm>(prefixStore, rank_, size_);
  if (comm->rendezvous()) {
    return comm;
  } else {
    return nullptr;
  }
}

void ProcessGroupNCCL::setSequenceNumberForGroup() {
} // NCCL just starts sequence numbers at 0.

uint64_t ProcessGroupNCCL::getSequenceNumberForGroup() {
  return seqCollective_;
}

void ProcessGroupNCCL::registerOnCompletionHook(
    std::function<void(std::shared_ptr<WorkInfo>)>&& hook) {
  TORCH_WARN_ONCE(
      "ProcessGroupNCCL OnCompletion hook will be deprecated in favor of Flight Recorder. "
      "Please check out FlightRecorder.hpp for information that is recorded at work completion. "
      "You can file an issue if you want additional information to be recorded. "
      "You can also file an RFC if you want Flight Recorder to accept plugins that customize the recording.")

  TORCH_CHECK_WITH(
      DistBackendError,
      onCompletionHook_ == nullptr,
      "ProcessGroupNCCL OnCompletion hook already registered");

  TORCH_CHECK_WITH(
      ValueError,
      enableTiming_.load(),
      "ProcessGroupNCCL OnCompletion hook requires recording start and end "
      "events which require setting TORCH_NCCL_ENABLE_TIMING environment variable. "
      "This is only available for NCCL version >= 2.4.");
  onCompletionHook_ = std::move(hook);
  onCompletionHookThread_ = std::thread(&ProcessGroupNCCL::runHookLoop, this);
}

// must release GIL when calling this method
void ProcessGroupNCCL::waitForPendingWorks() {
  // Reasoning about hook completion:
  // 1. waitForPendingWorks should be called after user code has finished
  // calling
  //    all collectives. This means, when we got here, all of the collectives
  //    are either in workMetaList_ or has been erased from workMetaList_.
  // 2. The watchdog thread grabs both locks to move Work object from the
  //    workMetaList_ to the completedWorkList_, and the hook thread only erases
  //    a Work object after the hook is returned. Therefore, after user code
  //    calls a collective, its Work object is either in workMetaList_ or in
  //    completedWorkList_ before it finishes.
  // 3. We have three threads and two locks.
  //      a. main thread (this function) grabs two locks atomically
  //      b. watchdog thread (watchdogHandler function) always grabs
  //      workMetaListMutex_
  //         first and then grabs completedWorkListMutex_.
  //      c. hook thread (runHookLoop function) only grabs
  //      completedWorkListMutex_. Therefore, locks are always acquired in the
  //      same order and hence no deadlocks.
  while (true) {
    {
      std::lock(workMetaListMutex_, completedWorkListMutex_);
      std::lock_guard<std::mutex> lockWork(workMetaListMutex_, std::adopt_lock);
      std::lock_guard<std::mutex> lockHook(
          completedWorkListMutex_, std::adopt_lock);

      if (workMetaList_.empty() && completedWorkList_.empty()) {
        return;
      }
    }

    std::this_thread::sleep_for(
        std::chrono::milliseconds(kWatchdogThreadSleepMillis));
  }
}

void ProcessGroupNCCL::enableCollectivesTiming() {
  enableTiming_.store(true);
}

bool ProcessGroupNCCL::waitForFutureOrTimeout(
    std::future<bool>& fut,
    const std::chrono::milliseconds& timeOutMilSec,
    const std::string& futDescription,
    bool throwException,
    bool log) {
  std::string errorMsg;
  bool complete = false;

  ::c10d::C10dLoggingData data;
  if (log) {
    data.integers["pg_id"] = static_cast<int64_t>(local_id_);
    data.integers["rank"] = rank_;
    data.integers["global_rank"] = globalRank();
    data.integers["world_size"] = getSize();
    data.strings["flight_recorder_version"] = c10d::version_val_str;
  }

  TORCH_CHECK(fut.valid(), "Expected a valid future");
  std::future_status status = fut.wait_for(timeOutMilSec);
  if (status == std::future_status::ready) {
    // Calling .get() will re-raise any exception from the future, and we don't
    // care about the retval
    try {
      bool result = fut.get();
      if (result) {
        VLOG(2) << logPrefix()
                << "future successfully executed for: " << futDescription;
        if (log) {
          data.strings["status"] = "SUCCESS";
        }
        complete = true;
      }
    } catch (const std::exception& e) {
      errorMsg = c10::str(
          logPrefix(),
          "Exception thrown when waiting for future ",
          futDescription,
          ": ",
          e.what());
      if (log) {
        data.strings["status"] = "EXCEPTION";
        data.strings["exception"] = e.what();
      }
      LOG(ERROR) << errorMsg;
    } catch (...) {
      errorMsg = c10::str(
          logPrefix(),
          "Unknown exception thrown when waiting for future ",
          futDescription);
      if (log) {
        data.strings["status"] = "EXCEPTION";
        data.strings["exception"] = "Unknown exception";
      }
      LOG(ERROR) << errorMsg;
    }
  } else {
    errorMsg = c10::str(
        logPrefix(),
        "Future for ",
        futDescription,
        " timed out after ",
        timeOutMilSec.count(),
        " ms");
    data.strings["status"] = "TIMEOUT";
    LOG(ERROR) << errorMsg;
  }
  if (log) {
    auto logger = c10d::C10dLogger::getLogger();
    if (logger) {
      logger->log(data);
    }
  }
  if (throwException && !errorMsg.empty()) {
    C10_THROW_ERROR(DistBackendError, errorMsg);
  }
  return complete;
}

void ProcessGroupNCCL::abortCommsFromMap(
    std::unordered_map<std::string, std::shared_ptr<NCCLComm>>& ncclCommsMap,
    const std::optional<std::string>& abortReason) {
  // The process may control multiple devices, loop through the communicators on
  // each device
  for (auto& it : ncclCommsMap) {
    auto& devName = it.first;
    auto& ncclComm = it.second;
    VLOG(2) << logPrefix() << "ProcessGroupNCCL destroying ncclComm_ "
            << ncclComm->repr() << " on CUDA device: " << devName;
    // abort() call now has GPU guard inside
    ncclComm->abort(abortReason);
    // Note that we don't remove the aborted communicators from the
    // cache. The reason is that if we do remove the communicator
    // from the cache, it is possible that a new collective operation
    // calls `ncclCommInitRank` to create a new communicator whereas
    // other ranks might have failed/timed out and didn't enter
    // `ncclCommInitRank`. As a result, when there is a failure on
    // a communicator the application receives an exception and its
    // their responsibility to destroy the process group and recreate
    // it to recover from errors.

    VLOG(2) << logPrefix() << "ProcessGroupNCCL destroyed "
            << " communicator on CUDA device: " << devName;
  }
}

// Abort all communicators on this rank
// Note: original name of this method is `abort`. It was renamed to
// `abortComms` to distinguish from the `abort` method below. The `abort`
// method calls `abortComms` but does more destruction than the latter.
bool ProcessGroupNCCL::abortComms(
    const std::optional<std::string>& abortReason) {
  // Remove record from global ncclCommDevIdxMapMutex before aboarting,
  // so that a new cache segment would not register to already aborded
  // communicators. Note that ncclCommDevIdxMap is a global container which may
  // contain other PG's communicators, thus we need to only erase communicators
  // for the current PG.
  ncclCommDevIdxMapMutex.lock();
  for (auto& it : devNCCLCommMap_) {
    auto& ncclComm = it.second;
    ncclCommDevIdxMap.erase(ncclComm);
  }
  ncclCommDevIdxMapMutex.unlock();

  std::lock_guard<std::mutex> lock(mutex_);
  abortCommsFromMap(devNCCLCommMap_, abortReason);
  abortCommsFromMap(inInitializationCommMap_, abortReason);
  return true;
}

// Abort this backend.
void ProcessGroupNCCL::abort() {
  // This will log counter for how long the abort actually takes.
  STATIC_SCOPED_WAIT_COUNTER(pytorch.ProcessGroupNCCL__abort);

  // Don't join threads here since the purpose of this method is to abort all
  // communicators and signal the threads to exit. Joining on the threads could
  // potentially block and hence avoid it in this method.
  terminateProcessGroup_.store(true);
  workMetaListCV_.notify_one();

  // lauch abort asynchrounously and wait for it to complete or timeout
  LOG(INFO) << logPrefix()
            << "Launching ProcessGroupNCCL abort asynchrounously.";
  std::future<bool> fut =
      std::async(std::launch::async, [this]() { return this->abortComms(); });

  waitForFutureOrTimeout(
      fut, options_->timeout, "ProcessGroup abort", true, false);
  LOG(INFO) << logPrefix() << "ProcessGroupNCCL aborts successfully.";

  // We need to wait for abort to finish before we can safely shut down
  // heartbeat monitoring thread.
  terminateHeartbeatMonitorThread_.store(true);
  monitorWakeUpCV_.notify_one();
}

// Difference between `abort()` and `shutdown()`:
// 1. `abort()` will signal communicators to terminate all NCCL kernels
// immediately.
// 2. `shutdown()` will wait for all NCCL kernels to finish before destroying
// communicators.

// Destroy (shutdown) this backend -- normal exit.
void ProcessGroupNCCL::shutdown() {
  LOG(INFO) << logPrefix()
            << "Starting to destroy process group, flushing operations.";
  // Flush all collectives
  {
    std::lock_guard<std::mutex> lock(mutex_);
    for (auto& it : devNCCLCommMap_) {
      auto& ncclComm = it.second;
      ncclComm->finalize();
    }
  }
  // Wait for all operations to complete.  If NCCL comm is non-blocking and
  // timeout is reach, this will throw an exception.
  for (auto& it : devNCCLCommMap_) {
    auto& ncclComm = it.second;
    // Use long interval to avoid acquiring CPU too frequently
    ncclComm->waitReady(true);
  }
  // Tell watchdog to (1) flush its queue and (2) do not use comm objects
  // anymore because I am going to destroy them now
  LOG(INFO) << logPrefix() << "Operations flushed, joining watchdog thread.";
  terminateProcessGroup_.store(true);
  workMetaListCV_.notify_one();
  if (ncclCommWatchdogThread_.joinable()) {
    ncclCommWatchdogThread_.join();
  }
  if (onCompletionHookThread_.joinable()) {
    onCompletionHookThread_.join();
  }
  // Watchdog thread exiting, retire heartbeat monitoring thread now to avoid
  // false alarm
  terminateHeartbeatMonitorThread_.store(true);
  monitorWakeUpCV_.notify_one();
  // Destroy the communicator, reclaim resources
  LOG(INFO) << logPrefix() << "Watchdog joined, destroying NCCL communicators.";
  {
    std::lock_guard<std::mutex> lock(mutex_);
    for (auto& it : devNCCLCommMap_) {
      auto& ncclComm = it.second;
      ncclComm->destroy();
    }
  }
  LOG(INFO) << logPrefix() << "Destroy complete.";
}

// NOLINTNEXTLINE(bugprone-exception-escape)
ProcessGroupNCCL::~ProcessGroupNCCL() {
  LOG(INFO) << logPrefix() << "ProcessGroupNCCL destructor entered.";

  if (terminateProcessGroup_.load())
    // `shutdown()` or `abort` already called. Skip the favor of disposing
    // communicators.
    goto join_threads;

  // If user haven't explicitly destroy/shutdown process group, destructor
  // needs to do so
  // First print warning on first rank of each node
  if (rank_ % localDeviceCount_ == 0) {
    TORCH_WARN_ONCE(
        "WARNING: destroy_process_group() was not called before program exit, "
        "which can leak resources. For more info, please see "
        "https://pytorch.org/docs/stable/distributed.html#shutdown");
  }

  // Note 1: in distributed_c10d.py, a reference to PG is held by the global
  // context. Therefore, we are here only when the global context is tearing
  // down, which means the entire program is exiting.  At this point, user will
  // no longer care about the result of any collective, thus we can use abort
  // instead of destroy to make the destruction non-blocking.

  // TODO: Note 1 is not true in case of a C++ program using libtorch, which
  // does not have the global context mentioned. In that case, calling `abort()`
  // here could lead to corrupted result. We should consider not doing anything
  // and just let things leak.
  // Adversarial example:
  /*
    Work routine(Tensor& t) {
      pg = ProcessGroupNCCL(…);
      w = pg.allReduce(t);
      return w;
    }
  */
  abort();

join_threads:
  // Make sure we've told threads to stop; doesn't hurt if we'd done so before.
  // Tell watchdog and onCompletionHook:
  terminateProcessGroup_.store(true);
  workMetaListCV_.notify_one();
  // Tell heartbeat thread:
  terminateHeartbeatMonitorThread_.store(true);
  monitorWakeUpCV_.notify_one();

  // Wait for all threads to finish before returning
  if (ncclCommWatchdogThread_.joinable()) {
    ncclCommWatchdogThread_.join();
    LOG(INFO) << logPrefix() << "ProcessGroupNCCL watchdog thread joined.";
  }
  if (ncclHeartbeatMonitorThread_.joinable()) {
    ncclHeartbeatMonitorThread_.join();
    LOG(INFO) << logPrefix()
              << "ProcessGroupNCCL heart beat monitor thread joined.";
  }
  if (onCompletionHookThread_.joinable()) {
    onCompletionHookThread_.join();
    LOG(INFO) << logPrefix()
              << "ProcessGroupNCCL onCompletionHookThread thread joined.";
  }
}

bool ProcessGroupNCCL::dumpDebuggingInfo(bool includeStackTrace /*=true*/) {
  // Serialize all calls to this function to avoid corrupting data, but allow
  // multiple calls in one runtime. User is responsible for preserving the
  // output file from an earlier call before a later call overwrites it.
  static std::mutex writeDebugInfoMutex;
  std::lock_guard<std::mutex> lock(writeDebugInfoMutex);
  LOG(ERROR)
      << logPrefix()
      << "ProcessGroupNCCL preparing to dump debug info. Include stack trace: "
      << includeStackTrace;
  if (traceBufferSize_ > 0) {
    // We dump nccl trace into local disk by default and users can register
    // their customized writer by inheriting `DebugInfoWriter` via
    // `registerDebugInfoWriter`.
    auto ncclTrace = dump_nccl_trace(true, includeStackTrace, false);
    DebugInfoWriter& writer = DebugInfoWriter::getWriter(globalRank());
    LOG(INFO) << logPrefix() << "ProcessGroupNCCL dumping nccl trace to "
              << writer.getWriterTarget();
    writer.write(ncclTrace);
    return true;
  }
  return false;
}

void ProcessGroupNCCL::terminateProcess(const std::string& errMsg) {
  // Logging with `FATAL`, after errMsg printed, it calls `std::abort()`
  // to terminate the program execution.
  LOG(FATAL) << logPrefix() << errMsg;
}

static long computeDeltaMS(
    std::chrono::time_point<std::chrono::steady_clock> start,
    std::chrono::time_point<std::chrono::steady_clock> end) {
  return std::chrono::duration_cast<std::chrono::milliseconds>(end - start)
      .count();
}

std::string ProcessGroupNCCL::getNCCLWatchdogTimeoutErrorMsg(
    const std::string& extraMsg) {
  return c10::str(
      logPrefix(),
      "Received a dump signal due to a collective timeout from ",
      extraMsg,
      " and we will try our best to dump the debug info. ",
      "Last enqueued NCCL work: ",
      pgStatus_->lastEnqueuedSeq,
      ", last completed NCCL work: ",
      pgStatus_->lastCompletedSeq,
      ".",
      "This is most likely caused by incorrect usages of collectives, e.g., wrong ",
      "sizes used across ranks, the order of collectives is not same for all ranks ",
      "or the scheduled collective, for some reason, didn't run. Additionally, ",
      "this can be caused by GIL deadlock or other reasons such as network errors or ",
      "bugs in the communications library (e.g. NCCL), etc. ");
}

std::string ProcessGroupNCCL::getNCCLWatchdogTimeoutExitMsg(
    const std::string& exitReason) {
  return c10::str(
      logPrefix(),
      "Terminating the process after attempting to dump debug info, due to ",
      exitReason,
      ".");
}

void ProcessGroupNCCL::heartbeatMonitor() {
  c10::setThreadName("pt_nccl_heartbt");

  uint64_t heartBeatCounter = 0ULL;
  std::string errorMsg;
  std::string exitReason;
  bool checkDumpSignal = (dumpOnTimeoutOrEx_ && local_id_ == 0);
  int monitorPollInterval = checkDumpSignal ? coordCheckIntervalMilSec_
                                            : heartbeatTimeoutInSec_ * 1000;
  auto lastTimePollStore = std::chrono::steady_clock::now();
  auto lastTimeHeartBeatCheck = std::chrono::steady_clock::now();
  std::optional<DumpPipe> dumpPipe = std::nullopt;
  if (local_id_ == 0) {
    // DumpPipe is one per-trainer process, and its convenient to name them
    // after 'global' ranks in the system, So we assume processgroup (uid)==0 is
    // the global PG and has globally unique rank ids across trainers.
    dumpPipe.emplace(rank_);
  }
  while (true) {
    // This won't have any lock since this lock is only used here.
    // Please be aware that mutex `monitorMutex_` should not be used
    // somewhere else to avoid the deadlock.
    std::unique_lock<std::mutex> lock(monitorMutex_);
    if (monitorWakeUpCV_.wait_for(
            lock, std::chrono::milliseconds(monitorPollInterval), [&] {
              return terminateHeartbeatMonitorThread_.load();
            })) {
      // For the normal complete or user interception, monitorWakeUpCV_
      // will get notified, we early return and exit heartbeatMonitor.
      return;
    }
    auto currentTime = std::chrono::steady_clock::now();

    // We put extra functionality in the thread for the default PG (aka,
    // local_id_=0) because the signal is same across different PGs. We only
    // need to run once per process to avoid duplicate things performed in too
    // many separate threads. For example, we check a global flag on the
    // TCPStore periodically to see if any PG on any rank observed a timeout and
    // signaled peers to dump debugging info, and we avoid hammering the
    // TCPStore from all PGs on the same rank.
    if (checkDumpSignal) {
      // There are two scenarios where monitor thread will dump on timeout:
      // 1. The current rank is the first to observe a timeout in watchdog.
      // (shouldDump_ was set to true by the watchdog thread).
      // 2. Other ranks detected the timeout and signal the current rank to
      // dump. In addtion, monitor threads will dump if watchdog threads has no
      // heartbeat or dumpPipe is not empty.
      if (shouldDump_.load()) {
        errorMsg = getNCCLWatchdogTimeoutErrorMsg("this local rank");
        exitReason = "collective timeout or exception";
        break;
      }
      // We poll store to see if some ranks have flagged a timeout when
      // we haven't polled for `heartbeat_timeout` seconds and there haven't
      // any work added or removed for `watchdog_timeout` seconds.
      if (computeDeltaMS(lastWorkListUpdateTime_, currentTime) >=
              kWatchdogThreadSleepMillis &&
          computeDeltaMS(lastTimePollStore, currentTime) >=
              coordCheckIntervalMilSec_) {
        lastTimePollStore = currentTime;
        // Wrap globalStore_->check() in a try-catch block to avoid crashing if
        // the store is not available.
        bool checkExceptionDump = false;
        try {
          checkExceptionDump =
              globalStore_->check({std::string(EXCEPTION_DUMP)});
        } catch (const std::exception& e) {
          LOG(WARNING)
              << logPrefix()
              << "Failed to check the \"should dump\" flag on TCPStore, "
              << "(maybe TCPStore server has shut down too early), with error: "
              << e.what();
          // We give up for now assuming TCPStore has been torn down.
          return;
        }

        if (checkExceptionDump) {
          int timeOutRank = -1;
          if (!shouldDump_.load()) {
            LOG(ERROR)
                << logPrefix()
                << "Observed flight recorder dump signal from another rank via TCPStore.";
          }
          shouldDump_.store(true);
          try {
            auto vec = globalStore_->get(std::string(EXCEPTION_DUMP));
            TORCH_CHECK_WITH(
                DistBackendError,
                vec.size() == sizeof(int),
                "Invalid size for the timeout rank ID");
            std::memcpy(&timeOutRank, vec.data(), vec.size());
          } catch (const std::exception& e) {
            LOG(ERROR) << logPrefix()
                       << "Failed to get timeout rank ID from TCPStore."
                       << e.what();
          }
          errorMsg =
              getNCCLWatchdogTimeoutErrorMsg(c10::str(" rank ", timeOutRank));
          exitReason = "collective timeout or exception";
          break;
        }
      }
    }

    if (computeDeltaMS(lastTimeHeartBeatCheck, currentTime) >=
        heartbeatTimeoutInSec_ * 1000) {
      // Check the heart beat of watchdog thread.
      lastTimeHeartBeatCheck = currentTime;
      auto heartbeat = heartbeat_.load();
      if (heartbeat != heartBeatCounter) {
        heartBeatCounter = heartbeat;
      } else {
        shouldDump_.store(true);
        // Watchdog heartbeat timeout.
        errorMsg = c10::str(
            logPrefix(),
            "ProcessGroupNCCL's watchdog got stuck for ",
            heartbeatTimeoutInSec_,
            " seconds without making progress in monitoring enqueued collectives. ",
            "This typically indicates a NCCL/CUDA API (e.g., CudaEventDestroy) hang blocking the watchdog, ",
            "and could be triggered by another thread holding the GIL inside a ",
            "CUDA api (for example, CudaEventDestroy), or other deadlock-prone behaviors.",
            "If you suspect the watchdog is not actually stuck and a longer timeout would help, ",
            "you can either increase the timeout (TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC) to a larger value "
            "or disable the heartbeat monitor (TORCH_NCCL_ENABLE_MONITORING=0)."
            "If either of aforementioned helps, feel free to file an issue to PyTorch about the short timeout "
            "or false positive abort; otherwise, please attempt to debug the hang. ");
        exitReason = "ProcessGroupNCCL watchdog hang";
        break;
      }
    }
    // process a request to dump the trace. only PG uid 0 will respond to dump
    // requests, but this is fine since all PG's feed into the same flight
    // recorder and dump. After dump, the training should continue.
    if (dumpPipe.has_value() && dumpPipe->shouldDump()) {
      // best effort dump, not waiting for the dump here
      std::future<bool> fut = std::async(
          std::launch::async, [this]() { return this->dumpDebuggingInfo(); });
    }
  }
  LOG(ERROR) << errorMsg;

  // We perform some checks to help users debug the timeout/hang issue:
  // 1. Dump the nccl trace (flight recorder) to help debug the issue
  //    (timeout after waitTimeoutDumpInMilSec_, which is one minute).
  // 2. Check if there is a GIL deadlock (timeout after 300ms).
  // 3. Try to dump the c++ stacktraces (blocking and would hang,
  //    users can turn this off by set
  //    TORCH_NCCL_LOG_CPP_STACK_ON_UNCLEAN_SHUTDOWN=0).

  // Dump the nccl trace (flight recorder).
  if (checkDumpSignal && shouldDump_.load()) {
    // Store debug info to storage if no other thread does it. (By default to
    // local disk)
    bool dumpStackTrace = true;
    for (int i = 0; i < 2; i++) {
      std::future<bool> asyncDebugDump =
          std::async(std::launch::async, [this, dumpStackTrace]() {
            return this->dumpDebuggingInfo(dumpStackTrace);
          });

      // wait for the dump until timeout - log data
      auto complete = waitForFutureOrTimeout(
          asyncDebugDump,
          std::chrono::milliseconds(waitTimeoutDumpInMilSec_),
          "Flight recorder dump in heartbeatMonitor",
          false,
          true);

      if (complete) {
        LOG(INFO)
            << logPrefix()
            << "Finished flight recorder successfully. Output can be analyzed using the fr_trace script.";
        break;
      }
      // If we failed to dump, try dumping without stack trace in the 2nd
      // iteration.
      dumpStackTrace = false;
    }
    // Indicate to watchdog thread that we have finished dumping.
    promiseFlightRecorderDump_.set_value();
  }

  // GIL deadlock check.
  if (get_gil_checker() != nullptr) {
    auto fut = launchAsyncGilCheck();
    auto kGilCheckTimeout = std::chrono::milliseconds(300);
    auto futStatus = fut.wait_for(kGilCheckTimeout);
    if (futStatus != std::future_status::ready) {
      TORCH_CHECK(
          futStatus != std::future_status::deferred,
          "Expected the future to have been launched eagerly.");
      LOG(ERROR)
          << logPrefix()
          << "Could not acquire GIL within 300 ms on exit, possible GIL induced hang";
    }
  } else {
    VLOG(2)
        << logPrefix()
        << "GIL checker was not registered, perhaps this is a no-python build?";
  }

  // Dump the c++ stacktraces.
  auto& cpp_dumper = get_cpp_trace_dumper();
  if (logCppStackOnUncleanShutdown_ && cpp_dumper.has_value()) {
    LOG(INFO) << logPrefix() << "Dumping c++ stacktraces:";
    cpp_dumper.value()(
        [&](const std::string& line) { LOG(INFO) << logPrefix() << line; });
    LOG(INFO) << logPrefix() << "Finished c++ stacktraces dump.";
  }

  // There are two possible cases for the watchdog thread exit:
  // Case one: desync report runs quickly, and it follows the step:
  // collective timeout -> desync -> exception handling -> destructors
  // -> set terminateHeartbeatMonitorThread_ -> notify monitorWakeUpCV_.
  // So the code either early returns above or will skip the sleep below.
  // Case two: desync might be slow or get stuck. Or we get stuck in
  // destructors, we will sleep for some time before calling std::abort() to
  // kill the whole process.
  if ((terminateProcessGroup_.load() || desyncDebug_ || shouldDump_.load()) &&
      !terminateHeartbeatMonitorThread_.load()) {
    // Leave another two mins for desync report generation or process group
    // destroy.
    std::this_thread::sleep_for(std::chrono::seconds(heartbeatTimeoutInSec_));
    LOG(INFO) << logPrefix() << "slept for " << heartbeatTimeoutInSec_
              << " waiting for desync report or process group destroy.";
  }

  // At this point, we either already sleep for another `heartbeatTimeoutInSec_`
  // or the thread has finished. Because we don't want to block the monitor
  // thread, so We mark the thread detach and the dump of debug info becomes
  // "best effort". If the process exit normally, marking it detach also makes
  // sense because we don't really care about dumping the debug info.

  // We already log completion inside the thread, so it may not be necessary to
  // check the return value here.  We mainly use a future so we can exit early
  // if done.

  if (!terminateHeartbeatMonitorThread_.load()) {
    // Create a error message reported from MonitorThread, so
    // we throw exception and make the whole process to be killed.
    // TODO(fduwjj): After having a hang debug wiki, we need to update the wiki
    // url here.
    if (monitorThreadEnabled_.load()) {
      terminateProcess(getNCCLWatchdogTimeoutExitMsg(exitReason));
    } else {
      // Ideally we want to merge this one with the above one, but we are going
      // to remove the kill switch for monitor thread soon, so we keep this one
      // for now.
      LOG(ERROR)
          << logPrefix()
          << "ProcessGroupNCCL monitor thread is disabled, but would have terminated the process"
          << "after attempting to dump debug info, due to " << exitReason
          << ".";
    }
  }
}

void ProcessGroupNCCL::ncclCommWatchdog() {
  c10::setThreadName("pt_nccl_watchdg");

  try {
    VLOG(2) << logPrefix() << "Process group watchdog thread started!";
    ncclHeartbeatMonitorThread_ =
        std::thread(&ProcessGroupNCCL::heartbeatMonitor, this);
    watchdogHandler();
    VLOG(2) << logPrefix()
            << "Process group watchdog thread terminated normally";
  } catch (std::exception& e) {
    if (std::string(e.what()).find("driver shutting down") !=
        std::string::npos) {
      VLOG(2)
          << logPrefix()
          << "main process destroyed cuda before watchdog loop exited, terminating watchdog."
          << " (Watchdog caught exception: " << e.what();

    } else {
      // Append error message reported from watchdogHandler
      const auto exitMsg = c10::str(
          logPrefix(),
          "Process group watchdog thread terminated with exception: ",
          e.what());
      LOG(ERROR) << exitMsg;
      if (C10_LIKELY(rethrowCUDAErrors_) ||
          !(std::string(e.what()).find("CUDA Error"))) {
        // TODO(whc) clean up the rethrow - why is it stored in a class var and
        // rethrown?
        watchDogException_ =
            std::make_exception_ptr(C10_BUILD_ERROR(DistBackendError, exitMsg));
        std::rethrow_exception(watchDogException_);
      }
    }
  } catch (...) {
    const auto exitMsg = c10::str(
        logPrefix(),
        "Process group watchdog thread terminated with exception: unknown");
    LOG(ERROR) << exitMsg;
    watchDogException_ =
        std::make_exception_ptr(C10_BUILD_ERROR(DistBackendError, exitMsg));
    std::rethrow_exception(watchDogException_);
  }
}

// Initialize and enable DesyncDebugger
void ProcessGroupNCCL::DesyncDebugger::init(
    int rank,
    int size,
    c10::intrusive_ptr<Store> store) {
  rank_ = rank;
  size_ = size;
  store_ = store;
  enabled_ = true;
  traceKeyStart_ = getTraceStartKey("NCCL", rank);
  traceKeyEnd_ = getTraceEndKey("NCCL", rank);
}

// Run desync debug. This function is called by watchdog at time of timeout.
void ProcessGroupNCCL::DesyncDebugger::run() {
  if (!enabled_)
    return;
  auto logPrefix = c10::str("Rank ", rank_);
  try {
    std::string desyncMsg = retrieveDesyncReport(store_, "NCCL", rank_, size_);
    LOG(ERROR) << logPrefix << desyncMsg;
  } catch (const std::exception& e) {
    enabled_ = false;
    LOG(ERROR) << logPrefix
               << " Failed to retrieve TORCH_NCCL_DESYNC_DEBUG report. "
               << " Please file an issue. Error: " << e.what();
  } catch (...) {
    enabled_ = false;
    LOG(ERROR)
        << logPrefix
        << " Failed to rerieve TORCH_NCCL_DESYNC_DEBUG report with unknown error."
        << " Please file an issue.";
  }
}

// Log work start to store.
void ProcessGroupNCCL::DesyncDebugger::logWorkStart(WorkNCCL& work) {
  if (!enabled_)
    return;
  if (work.startTraceUpdated_)
    return;

  work.startTraceUpdated_ = true;
  // If not successful, disable the debugger
  enabled_ = c10d::traceUpdate(
      store_, traceKeyStart_, work.seq_, opTypeToString(work.opType_));
}

// Log work end to store.
void ProcessGroupNCCL::DesyncDebugger::logWorkEnd(WorkNCCL& work) {
  if (!enabled_)
    return;

  // In case the start of the work hasn't been logged
  if (!work.startTraceUpdated_) {
    logWorkStart(work);
  }

  // If not successful, disable the debugger
  enabled_ = c10d::traceUpdate(
      store_, traceKeyEnd_, work.seq_, opTypeToString(work.opType_));
}

// We want to have both PG ID and global unique ID (guid) for the logging
// prefix. PG ID records how many ProcessGroupNCCL objects were created on a
// specific rank and is a stable index across ranks, which lets users reason
// about, for example, the second PG we initialized on this rank is for FSDP,
// and corresponds with PG ID = 1 on other ranks as well. Unlike PG ID, guid (or
// group name) is a global unique ID across ranks. The guid is either a hash of
// all the ranks in the group or a counter of how many times
// `_process_group_name` is called, essentially it means how many times we
// have PGs users have created. Before using split_group, even if
// we are creating a new sub-PG, all ranks have to call the API at the same
// time, and this makes `group_name` a unique identifier for a group (PG).
std::string ProcessGroupNCCL::createLogPrefix() const {
  if (!pg_desc_.empty() && pg_desc_ != "undefined") {
    return c10::str(
        "[PG ID ",
        local_id_,
        " PG GUID ",
        pg_uid_,
        "(",
        pg_desc_,
        ") Rank ",
        rank_,
        "] ");
  }
  return c10::str(
      "[PG ID ", local_id_, " PG GUID ", pg_uid_, " Rank ", rank_, "] ");
}

const std::string& ProcessGroupNCCL::logPrefix() const {
  return logPrefix_;
}

const int& ProcessGroupNCCL::globalRank() const {
  static int globalRank = rank_;
  return globalRank;
}

const std::vector<uint64_t>& ProcessGroupNCCL::groupRanks() const {
  if (options_->global_ranks_in_group.empty() && local_id_ == 0) {
    static std::vector<uint64_t> globalRanks(size_);
    std::iota(globalRanks.begin(), globalRanks.end(), 0);
    return globalRanks;
  }
  return options_->global_ranks_in_group;
}

void ProcessGroupNCCL::addEphemeralTimeout(
    const std::chrono::milliseconds& timeout) {
  std::lock_guard<std::mutex> timeoutLock(mtxTimeoutExtension_);
  ephemeralTimeoutActive_ += timeout;
}

bool ProcessGroupNCCL::verifyWorkTimeoutForTest(
    const c10::intrusive_ptr<Work>& work,
    const std::chrono::milliseconds& timeout) {
  // Since collective returns a c10d::Work, we need to cast it to WorkNCCL.
  if (auto workNCCL = c10::dynamic_intrusive_pointer_cast<WorkNCCL>(work)) {
    // workNCCL is now a c10::intrusive_ptr<WorkNCCL>
    return workNCCL->opTimeout_ == timeout;
  }
  C10_THROW_ERROR(
      DistBackendError, "Non c10d::WorkNCCL object returned from collective");
}

// Broadcast flight-recorder dump signal
void ProcessGroupNCCL::broadcastDumpSignal() {
  try {
    auto rank = globalRank();
    auto vec = std::vector<uint8_t>(
        reinterpret_cast<uint8_t*>(&rank),
        reinterpret_cast<uint8_t*>(&rank) + sizeof(rank));
    globalStore_->set(std::string(EXCEPTION_DUMP), vec);
    if (!shouldDump_.load()) {
      LOG(INFO)
          << logPrefix()
          << "Broadcasting flight recorder dump signal to other processes via TCPStore.";
    }
    // signal the monitor thread on PG0 to start dumping
    shouldDump_.store(true);
    // Give time for dumping before throwing exception
    auto start = std::chrono::steady_clock::now();
    // Give 2 * waitTimeoutDumpInMilSec_ to dump the flight recorder.
    // We try capturing with stack traces first, and if it fails, we try without
    // stack traces.
    auto status = promiseFlightRecorderDump_.get_future().wait_for(
        std::chrono::milliseconds(2 * waitTimeoutDumpInMilSec_));
    if (status == std::future_status::timeout) {
      LOG(WARNING) << logPrefix() << "timed out after waiting for "
                   << 2 * waitTimeoutDumpInMilSec_ << "ms"
                   << " flight recorder dumps to finish.";
    } else if (status == std::future_status::ready) {
      auto end = std::chrono::steady_clock::now();
      LOG(INFO) << logPrefix() << "slept for " << computeDeltaMS(start, end)
                << "ms"
                << " giving time for flight recorder dumps to finish.";
    }
  } catch (const std::exception& e) {
    LOG(ERROR) << logPrefix() << "Failed to set dump signal in tcpstore. "
               << "Error: " << e.what();
  }
}

void ProcessGroupNCCL::watchdogHandler() {
  bool done = false;
  lastWorkListUpdateTime_ = std::chrono::steady_clock::now();
  auto lastStatusUpdateTime = std::chrono::steady_clock::now();
  std::list<ProcessGroupNCCL::WorkNCCL> completedWorkList;

  while (!done || !terminateProcessGroup_.load()) {
    std::unique_lock<std::mutex> lock(workMetaListMutex_);
    // We busy-poll the work vector every kWatchdogThreadSleepMillis
    // milliseconds as long as the atomic is True.
    workMetaListCV_.wait_for(
        lock,
        std::chrono::milliseconds(kWatchdogThreadSleepMillis),
        [&]() -> bool { return terminateProcessGroup_.load(); });
    // Bump up heart beat by one.
    heartbeat_++;

// Some versions of GLOG support less-spammy version of LOG_EVERY_MS
// in which case we don't want to spam the logs.
#ifdef LOG_EVERY_MS
    // Log the progress of this PG periodically
    C10_LOG_EVERY_MS(INFO, kWorkStatusUpdatePeriodMs) << c10::str(
        logPrefix(),
        "NCCL Work update periodically: ",
        "last enqueued NCCL work: ",
        pgStatus_->lastEnqueuedSeq,
        ", last completed NCCL work: ",
        pgStatus_->lastCompletedSeq,
        ".");
#endif
    auto logger = ::c10d::C10dLogger::getLogger();
    if (logger &&
        computeDeltaMS(
            lastStatusUpdateTime, std::chrono::steady_clock::now()) >=
            kWorkStatusUpdatePeriodMs) {
      ::c10d::C10dLoggingData data;
      // logging integers
      data.integers["pg_id"] = local_id_;
      data.integers["rank"] = rank_;
      data.integers["global_rank"] = globalRank();
      data.integers["last_enqueued_work"] = pgStatus_->lastEnqueuedSeq;
      data.integers["last_started_work"] = pgStatus_->lastStartedSeq;
      data.integers["last_completed_work"] = pgStatus_->lastCompletedSeq;
      data.integers["last_enqueued_numel_in"] = pgStatus_->lastEnqueuedNumelIn;
      data.integers["last_enqueued_numel_out"] =
          pgStatus_->lastEnqueuedNumelOut;
      data.integers["last_completed_numel_in"] =
          pgStatus_->lastCompletedNumelIn;
      data.integers["last_completed_numel_out"] =
          pgStatus_->lastCompletedNumelOut;
      data.integers["last_started_numel_in"] = pgStatus_->lastStartedNumelIn;
      data.integers["last_started_numel_out"] = pgStatus_->lastStartedNumelOut;
      // logging strings
      data.strings["last_enqueued_work_name"] = pgStatus_->lastEnqueuedWorkName;
      data.strings["last_started_work_name"] = pgStatus_->lastStartedWorkName;
      data.strings["last_completed_work_name"] =
          pgStatus_->lastCompletedWorkName;
      data.strings["pg_name"] = pg_uid_;
      data.strings["pg_desc"] = pg_desc_;
      logger->log(data);
      lastStatusUpdateTime = std::chrono::steady_clock::now();
    }

    for (auto it = workMetaList_.begin(); it != workMetaList_.end();
         /* no increment */) {
      auto& work = *it;
      // When terminateProcessGroup_ is true, communicators have already been
      // aborted, So cannot check exception based on them. But watchdog needs to
      // finish the check for the works that have already been enqueued to
      // workMetaList_

      // check NCCL errors first
      if (!terminateProcessGroup_.load()) {
        work.checkAndSetException();
      }
      // Then check if work has timed out
      // Skip if work has encountered an error
      bool timedout = !work.exception() && work.checkTimeout();

      // Report desync state in case of timeout (if TORCH_NCCL_DESYNC_DEBUG is
      // turned on; otherwise, run() is no-op)
      if (timedout) {
        desyncDebugger_.run();
      }

      // If work hits an exception (either an error or timeout)
      if (work.exception()) {
        LOG(ERROR) << c10::str(
            logPrefix(),
            " failure detected by watchdog at work sequence id: ",
            work.seq_,
            " PG status: last enqueued work: ",
            pgStatus_->lastEnqueuedSeq,
            ", last completed work: ",
            pgStatus_->lastCompletedSeq);

        // Print the traceback of the collective at call time
        work.printTraceback();

        // try to notify other ranks via global TCPStore to dump the flight
        // recorder when a collective timeout or exception happens. Flight
        // recorder behavior is independent of desync Debug.
        if (dumpOnTimeoutOrEx_) {
          broadcastDumpSignal();
        }

        if (SHOULD_CLEAN_UP(asyncErrorHandling_)) {
          // Abort work and corresponding communicators
          work.abort();
          // PG level abort, which would abort all other communicators on this
          // rank
          abortComms();
        }
        // Throw exception
        work.handleException(asyncErrorHandling_);
      }

      // Work status logging for desync debug
      desyncDebugger_.logWorkStart(work);

      // a work could be started but not completed, so we should not update
      // lastStartedSeq and lastStartedOpName if the work state is checked
      // multiple times after the start
      if (pgStatus_->lastStartedSeq < static_cast<int64_t>(work.seq_) &&
          work.isStarted()) {
        pgStatus_->lastStartedSeq = static_cast<int64_t>(work.seq_);
        pgStatus_->lastStartedWorkName = opTypeToString(work.opType_);
        pgStatus_->lastStartedNumelIn = work.numelIn_;
        pgStatus_->lastStartedNumelOut = work.numelOut_;
      }

      // Clean up completed work
      if (work.isCompleted()) {
        // Work status logging for desync debug
        desyncDebugger_.logWorkEnd(work);

        if (work.futureWorkResult_ && work.finishedGPUExecutionInternal() &&
            !work.futureWorkResult_->completed()) {
          work.futureWorkResult_->markCompleted(
              at::IValue(static_cast<uint8_t>(WorkResult::SUCCESS)));
        }
        {
          // Reset the timeout and first work if the work is completed.
          std::lock_guard<std::mutex> timeoutLock(mtxTimeoutExtension_);
          if (work.ownedEphermeralTimeout_.count() > 0) {
            ephemeralTimeoutActive_ -= work.ownedEphermeralTimeout_;
            ephemeralTimeoutInflight_ -= work.ownedEphermeralTimeout_;
          }
        }
        pgStatus_->lastCompletedSeq = static_cast<int64_t>(work.seq_);
        pgStatus_->lastCompletedWorkName = opTypeToString(work.opType_);
        pgStatus_->lastCompletedNumelIn = work.numelIn_;
        pgStatus_->lastCompletedNumelOut = work.numelOut_;
        FlightRecorder::get()->retire_id(work.trace_id_, true);
        if (onCompletionHook_) {
          // Move Work object to completedWorkList_ to be consumed by the hook
          // thread
          {
            const std::lock_guard<std::mutex> lock(completedWorkListMutex_);
            completedWorkList_.splice(
                completedWorkList_.end(), workMetaList_, it++);
          }
          completedWorkListCV_.notify_one();
        } else {
          it = workMetaList_.erase(it);
          lastWorkListUpdateTime_ = std::chrono::steady_clock::now();
        }
        at::cuda::CUDAGraph::dec_pending_event_queries();
      } else {
        // Increment the iterator if the current WorkNCCL object is not
        // completed.
        ++it;
      }
      // Increment heartbeat after each work processed,
      // in case processing is slowed down (but not hung) by cuda api contention
      heartbeat_++;
    }
    done = workMetaList_.empty();
  }
}

void ProcessGroupNCCL::runHookLoop() {
  c10::setThreadName("pt_nccl_runhook");

  bool done = false;
  while (!done || !terminateProcessGroup_.load()) {
    std::unique_lock<std::mutex> lock(completedWorkListMutex_);
    // We busy-poll the work vector every kWatchdogThreadSleepMillis
    // milliseconds as long as the atomic is True.
    completedWorkListCV_.wait_for(
        lock,
        std::chrono::milliseconds(kWatchdogThreadSleepMillis),
        [&]() -> bool {
          return !completedWorkList_.empty() || terminateProcessGroup_.load();
        });

    try {
      for (auto it = completedWorkList_.begin(); it != completedWorkList_.end();
           /* no increment */) {
        const WorkNCCL& work = *it;
        // Hook might grab GIL, unlock first to prevent deadlock
        lock.unlock();

        auto timeStarted =
            std::chrono::system_clock::now() +
            std::chrono::duration_cast<std::chrono::system_clock::duration>(
                work.workStartTime_ - std::chrono::steady_clock::now());
        onCompletionHook_(std::make_shared<WorkInfo>(
            work.retrieveOpType(), // OpType
            work.getSequencenumber(), // seq
            timeStarted, // timeStarted
            std::chrono::system_clock::now(), // timeFinished
            std::chrono::duration<float, std::milli>(
                work.getDuration()) // activeDuration
            ));

        lock.lock();
        it = completedWorkList_.erase(it);
      }
    } catch (std::exception& e) {
      if (std::string(e.what()).find("driver shutting down") !=
          std::string::npos) {
        LOG(INFO)
            << logPrefix()
            << "main process destroyed cuda before runHookLoop exited, terminating runHookLoop."
            << " (runHookLoop caught exception: " << e.what();

      } else {
        // PythonOnCompletionHook has already extracted Python exception message
        // and wrapped it with a cpp one. So we no longer need to acquire GIL
        // here.
        const auto errorStr = c10::str(
            "Caught exception on rank ",
            rank_,
            " while running onCompletion hook for ProcessGroupNCCL: ",
            e.what(),
            ". Aborting all communicators.");

        // No need to call abort() on WorkNCCL here as that collective has
        // already finished successfully at this point. We just need to abort
        // the process Abort all NCCL Communicators on this ProcessGroupNCCL
        // instance.
        abortComms(errorStr);
      }
    }

    // Lock is still acquired at this point
    done = completedWorkList_.empty();
  }
}

std::exception_ptr ProcessGroupNCCL::WorkNCCL::checkForNCCLErrors() {
  return checkForNCCLErrorsInternal(ncclComm_);
}

std::exception_ptr ProcessGroupNCCL::checkForNCCLErrors(
    std::shared_ptr<NCCLComm>& ncclComm) {
  return checkForNCCLErrorsInternal(ncclComm);
}

std::exception_ptr ProcessGroupNCCL::checkForNCCLErrorsInternal(
    std::shared_ptr<NCCLComm>& ncclComm) {
  // Prioritize commFailureReason over checkForNcclError() result if
  // commFailureReason is set.
  auto commFailureReason = ncclComm->getNcclCommFailureReason();
  if (commFailureReason != std::nullopt) {
    return std::make_exception_ptr(C10_BUILD_ERROR(
        DistBackendError,
        c10::str(
            "NCCL communicator encountered error set by ProcessGroupNCCL: ",
            *commFailureReason)));
  }
  ncclResult_t ncclAsyncErr = ncclComm->checkForNcclError();
  // When nonblocking mode is enabled by TORCH_NCCL_USE_COMM_NONBLOCKING,
  // ncclInProgress could be returned when there are pending NCCL calls.
  // In this case, no exception should be thrown
#ifdef NCCL_HAS_COMM_NONBLOCKING
  // ncclInProgress is defined only if NCCL_HAS_COMM_NONBLOCKING is defined
  if (ncclAsyncErr != ncclSuccess && ncclAsyncErr != ncclInProgress) {
#else
  if (ncclAsyncErr != ncclSuccess) {
#endif
    return std::make_exception_ptr(C10_BUILD_ERROR(
        DistBackendError,
        "NCCL error: " + ncclGetErrorWithVersion(ncclAsyncErr) + "\n" +
            getNcclErrorDetailStr(ncclAsyncErr)));
  }

  return nullptr;
}

void ProcessGroupNCCL::broadcastUniqueNCCLID(
    ncclUniqueId* ncclID,
    bool isSingleP2POp,
    const std::string& p2pKey,
    int p2pRank) {
  // For collective operations:
  // For every NCCL communicator that we create we need to broadcast
  // a unique ID from rank 0 to all other ranks. This broadcast is
  // done by rank 0 setting a key in the store and all other ranks
  // retrieving the contents of that key. A single process group
  // may create multiple NCCL communicators, so we use a sequence
  // number to differentiate between them.
  // For single point-to-point operations:
  // The sequence number will only be increased on 2 out of all the
  // processes in a Process Group. So all following collective
  // operations will see different sequence numbers which will cause
  // runtime errors. To avoid that, use the src:target pair instead
  // of sequence number for p2p communications.

  std::string storeKey;
  if (!isSingleP2POp) {
    storeKey = std::to_string(ncclCommCounter_++);
  } else {
    storeKey = p2pKey;
  }
  if (rank_ == 0 || (isSingleP2POp && p2pRank == 0)) {
    auto vec = std::vector<uint8_t>(
        reinterpret_cast<uint8_t*>(ncclID),
        reinterpret_cast<uint8_t*>(ncclID) + NCCL_UNIQUE_ID_BYTES);
    store_->set(storeKey, vec);
  } else {
    try {
      auto vec = store_->get(storeKey);
      TORCH_CHECK_WITH(
          DistBackendError,
          vec.size() == NCCL_UNIQUE_ID_BYTES,
          "Invalid size for ncclUniqueId");
      std::memcpy(ncclID, vec.data(), vec.size());
    } catch (const std::exception& e) {
      std::string exceptionMsg = c10::str(
          "[",
          rank_,
          "] is setting up NCCL communicator and "
          "retrieving ncclUniqueId from [0] via c10d key-value store by key '",
          storeKey,
          "', but store->get('",
          storeKey,
          "') got error: ");
      C10_THROW_ERROR(
          DistBackendError,
          exceptionMsg + e.what() +
              ". This may indicate a possible application crash on rank 0 or a network set up issue.");
    } catch (...) {
      C10_THROW_ERROR(
          DistBackendError,
          c10::str(
              "Unknown exception while [",
              rank_,
              "] is setting up NCCL communicator and "
              "retrieving ncclUniqueId from [0] via c10d key-value store by key '",
              storeKey,
              "'",
              ". This may indicate a possible application crash on rank 0 or a network set up issue."));
    }
  }
}

void ProcessGroupNCCL::destroyNCCLComms(const std::string& devNCCLCommMapKey) {
  std::lock_guard<std::mutex> lock(mutex_);
  if (devNCCLCommMap_.find(devNCCLCommMapKey) == devNCCLCommMap_.end()) {
    TORCH_INTERNAL_ASSERT(
        false,
        "Expected to find key ",
        devNCCLCommMapKey,
        " in NCCL communicator map.");
  }
  std::shared_ptr<NCCLComm>& ncclComm = devNCCLCommMap_[devNCCLCommMapKey];
  // ncclCommDestroy(comm->getNcclComm()) results in segfault when PG is being
  // destroyed, so using ncclCommAbort here.
  ncclComm->abort();
  // Remove communicators from the cache.
  devNCCLCommMap_.erase(devNCCLCommMapKey);
  // Clear used device indices.
  usedDeviceIdxs_.clear();

  ncclCommDevIdxMapMutex.lock();
  ncclCommDevIdxMap.erase(ncclComm);
  ncclCommDevIdxMapMutex.unlock();
}

std::shared_ptr<NCCLComm> ProcessGroupNCCL::initNCCLComm(
    const std::string& deviceKey,
    at::Device& device,
    OpType opType,
    int p2pRank,
    bool isSendRecvSelf) {
  // Sanity check
  if (deviceKey.empty()) {
    C10_THROW_ERROR(
        DistBackendError,
        "Not able to create/get the NCCL Communicator since "
        "the GPU devices are not known");
  }
  if (bound_device_id_) {
    if (*bound_device_id_ != device) {
      LOG(ERROR) << logPrefix() << "Tensor found on device " << device
                 << " but backend constrained to " << *bound_device_id_;
      C10_THROW_ERROR(
          DistBackendError,
          "Attempt to perform collective on tensor not on device passed to init_process_group");
    }
  }

  usedDeviceIdxs_.insert(device.index());

  // NCCL communicator not cached, create a new entry
  std::shared_ptr<NCCLComm> ncclComm;

  // Create the unique NCCL ID and broadcast it
  ncclUniqueId ncclID;

  // reset log prefix to include group_desc
  logPrefix_ = createLogPrefix();

#ifdef NCCL_COMM_DESCRIPTION
  // Pass process group name and description to NCCL communicator
  std::string commDesc = pg_desc_ + ':' + pg_uid_;
  options_->config.commDesc = strdup(commDesc.c_str());
#endif

  // For batch_isend_irecv, ncclGroupStart() would be called upfront
  bool batchP2P = ncclActiveGroupCounter_ > 0;
  bool singleP2POp = isP2POp(opType, batchP2P);

  // Get the device index
  auto deviceIndex = device.index();
  at::cuda::OptionalCUDAGuard gpuGuard(device);

  // [Group Start/End Note] This is used to ensure that nccl communicator will
  // be created before communication primitives are called. Let's look at this
  // example: Using the batch_isend_irecv to send a tensor to a target process.
  // On the sender side, the corresponding underlying NCCL calls will look like
  //   ncclGroupStart() // This is in batch_isend_irecv
  //   ncclCommInitRank() // Inside NCCLComm::create
  //   ncclSend()
  //   ncclGroupEnd() // This is in batch_isend_irecv
  // With this pattern, the nccl communicator will be created in the last
  // ncclGroupEnd which means when ncclSend is processed, the passed
  // communicator argument is NULL which will lead to runtime error. So we need
  // to "close" all active nccl groups to ensure nccl communicator is actually
  // created before encountering any communication calls. This is why we need
  // the following for loop.
  for (const auto i : c10::irange(ncclActiveGroupCounter_)) {
    (void)i;
    // comms have not been initiated yet, so can only check in blocking-way
    C10D_NCCL_CHECK(ncclGroupEnd(), std::nullopt);
  }

  // GPU world size and GPU rank
  int numRanks = -1, rank = -1;

  if (!singleP2POp) {
    // Collective, all-to-all, or batch P2P
    numRanks = getSize();
    rank = getRank();
  } else if (isSendRecvSelf) {
    // Same process send and recv.
    numRanks = 1;
    rank = 0;
  } else {
    // For single point-to-point operation, there are only 2 processes
    // involved so the GPU rank is either 0 or 1.
    numRanks = 2;
    rank = p2pRank;
  }

#ifdef NCCL_HAS_COMM_NONBLOCKING
  bool useNb = useNonblocking();
  options_->config.blocking = useNb ? 0 : 1;
#endif

#ifdef NCCL_HAS_COMM_SPLIT
  // Use split to create a new communicator only if:
  // 1. The parent comm is known; AND
  // 2. The new comm is not for a point-to-point operation.
  // ncclCommSplit() is a collective call, so it does not work for P2P
  // operations.
  if (options_->split_from && !singleP2POp) {
    // Find a valid, healthy communicator to split from if possible.
    std::lock_guard<std::mutex> lock(options_->split_from->mutex_);
    auto& other_comms = options_->split_from->devNCCLCommMap_;
    auto dit = other_comms.find(getKeyFromDevice(device));
    if (dit != other_comms.end()) {
      auto& parentComm = dit->second;
      if (parentComm != nullptr && !parentComm->isAborted()) {
        LOG(INFO) << logPrefix() << "Splitting NCCL communicator from "
                  << parentComm->repr();
        ncclComm = NCCLComm::split(
            parentComm.get(),
            options_->split_color,
            rank,
            options_->config,
            options_->global_ranks_in_group);
      }
    }
  }
#endif

  // To simplify conditional nesting, just create the ncclComms[i]
  // entry if it hasn't been yet rather than untangling the
  // conditions that might have resulted in a split above.
  if (!ncclComm) {
    if (getCvarBool(TORCH_NCCL_BCAST_UNIQUEID, true) && !isSendRecvSelf) {
      // For point-to-point communication, lower rank of the two will get unique
      // id.
      if (rank_ == 0 || (singleP2POp && p2pRank == 0)) {
        C10D_NCCL_CHECK(ncclGetUniqueId(&ncclID), std::nullopt);
      }

      // Broadcast so that each process can have a unique NCCL ID
      auto timeStarted = std::chrono::steady_clock::now();
      broadcastUniqueNCCLID(&ncclID, singleP2POp, deviceKey, p2pRank);
      auto timerDeltaMs =
          std::chrono::duration_cast<std::chrono::duration<double>>(
              std::chrono::steady_clock::now() - timeStarted)
              .count() *
          1000;
      LOG(INFO) << logPrefix()
                << "ProcessGroupNCCL broadcast unique ID through store took "
                << timerDeltaMs << " ms";
    }

#ifdef NCCL_HAS_COMM_NONBLOCKING
    ncclComm =
        NCCLComm::create(numRanks, rank, ncclID, deviceIndex, options_->config);
#else
    ncclComm = NCCLComm::create(numRanks, rank, ncclID, deviceIndex);
#endif
  }

  // Creates the NCCL streams
  bool force_high = getCvarBool(TORCH_NCCL_HIGH_PRIORITY, false);
  auto streamVal = at::cuda::getStreamFromPool(
      options_->is_high_priority_stream || force_high);

  {
    std::lock_guard<std::mutex> lock(mutex_);
    inInitializationCommMap_.emplace(deviceKey, ncclComm);
  }

  FlightRecorder::get()->record_pg_ranks(
      std::make_tuple(pg_uid_, pg_desc_), groupRanks());

  RECORD_PARAM_COMMS(
      std::make_tuple(0, false), // seq
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      rank, // rank
      "init", // collective name
      0, // inNelems
      0, // outNelems
      at::kByte, // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      size_); // worldSize

  VLOG(2) << logPrefix() << "ProcessGroupNCCL created ncclComm_ "
          << ncclComm->repr()
          << " on CUDA device: " << static_cast<int>(deviceIndex);

  // At this point NCCL should have been initialized, hence we can accurately
  // get the env value even if NCCL sets it by reading from nccl.conf file
  LOG(INFO) << logPrefix()
            << "NCCL_DEBUG: " << getCvarString({"NCCL_DEBUG"}, "N/A");

  // See [Group Start/End Note]
  for (const auto i : c10::irange(ncclActiveGroupCounter_)) {
    (void)i;
    C10D_NCCL_CHECK(ncclGroupStart(), std::nullopt);
  }

  ncclStreams_.emplace(deviceKey, streamVal);

  // Note: these events are created with the (default) cudaEventDisableTiming
  // flag This flag provides the best performance when used with
  // cudaStreamWaitEvent() and cudaEventQuery(). Since we here don't measure the
  // performance using cudaEvent, this should be set.
  // TODO(kwen2501): is ncclEvents_ used anywhere else?
  ncclEvents_.emplace(deviceKey, at::cuda::CUDAEvent(cudaEventDisableTiming));

  // Move the NCCL resource to cache
  auto it = inInitializationCommMap_.find(deviceKey);
  // A previous thread could've already removed devicesKey from
  // inInitializationCommMap_ and added it to devNCCLCommMap_
  if (it != inInitializationCommMap_.end()) {
    devNCCLCommMap_.emplace(deviceKey, std::move(it->second));
    inInitializationCommMap_.erase(deviceKey);

    // Now ncclComms are fully initialized.
    // Register all active CUDA memory segments in cache allocator to
    // the new NCCL communicators
    if (useTensorRegisterAllocatorHook_) {
      auto snapshot = c10::cuda::CUDACachingAllocator::snapshot();
      // Register the segment to a new NCCL communicator if on the same device
      for (const auto& segmentInfo : snapshot.segments) {
        TORCH_INTERNAL_ASSERT(
            segmentInfo.device == device.index(),
            "Mismatch between CUDA memory segment device and current device");
        ncclComm->registerSegment(
            reinterpret_cast<void*>(segmentInfo.address),
            segmentInfo.total_size);
      }
    }
    // Record the mapping between ncclComm and device index so that later
    // register hook can register a newly allocated segment to communicators
    // on the same device.
    // NOTE: we need remove the communicator from this map when it is
    // destroyed, otherwise may register onto an invalid communicator.
    ncclCommDevIdxMapMutex.lock();
    ncclCommDevIdxMap.emplace(ncclComm, device.index());
    ncclCommDevIdxMapMutex.unlock();
  }

  it = devNCCLCommMap_.find(deviceKey);
  TORCH_INTERNAL_ASSERT(
      it != devNCCLCommMap_.end(), "Communicators not populated in cache!");
  return it->second;
}

std::shared_ptr<NCCLComm> ProcessGroupNCCL::getNCCLComm(
    const std::string& deviceKey) {
  std::lock_guard<std::mutex> lock(mutex_);
  if (devNCCLCommMap_.find(deviceKey) != devNCCLCommMap_.end()) {
    // Reuse the cached communicator if there is one.
    return devNCCLCommMap_[deviceKey];
  }
  return nullptr;
}

uint64_t ProcessGroupNCCL::getCommSplitCounter() const {
  uint64_t ret = 0;
  for (const auto& i : devNCCLCommMap_) {
    auto& ncclComm = i.second;
    ret += ncclComm->getCommSplitCounter();
  }
  return ret;
}

namespace {

// Check validity of tensor
void check_gpu_single_tensor(
    const at::Tensor& tensor,
    const bool p2p = false // whether operation is a P2P operation
) {
  if (!tensor.is_cuda() || tensor.is_sparse()) {
    C10_THROW_ERROR(ValueError, "Tensors must be CUDA and dense");
  }
  // Skip the following requirements for P2P operations
  if (!tensor.is_contiguous(tensor.suggest_memory_format())) {
    if (p2p) {
      TORCH_WARN_ONCE(
          "Detected non-contiguous tensor in P2P operations. It is user "
          "responsibility to guarantee that source and destination tensors have "
          "the same contiguity format.");
    } else {
      C10_THROW_ERROR(ValueError, "Tensors must be contiguous");
    }
  }
}

// Checks that all `tensors' have the same type and shape and reside on the same
// GPU.
// TODO: test_c10d_nccl.py should consider adding tests for the error conditions
// here, ie, that deliberately pass invalid tensors and check the right
// exception is thrown. The "Expected list of tensors on the same device"
// condition may be a challenge because the test would need to pass tensors on
// different devices in the same process.
int64_t check_gpu_tensors_same_device(const std::vector<at::Tensor>& tensors) {
  if (tensors.empty()) {
    C10_THROW_ERROR(ValueError, "Tensor list must be nonempty");
  }

  const auto& first = tensors.front();

  int64_t total_numel = 0;
  for (const auto& t : tensors) {
    if (!t.is_cuda() || t.is_sparse()) {
      C10_THROW_ERROR(ValueError, "Tensors must be CUDA and dense");
    }
    if (t.scalar_type() != first.scalar_type()) {
      C10_THROW_ERROR(TypeError, "Tensors must have identical type");
    }
    if (!t.is_non_overlapping_and_dense()) {
      C10_THROW_ERROR(ValueError, "Tensors must be non-overlapping and dense");
    }
    // If we're in this function, the user called a _coalesced collective
    // on a set of tensors with potentially different sizes and strides.
    // Therefore, we don't check for matching sizes and strides,
    // but we do double-check tensors are on the same device.
    TORCH_CHECK_WITH(
        ValueError,
        t.get_device() == tensors[0].get_device(),
        "Expected list of tensors on the same device");
    total_numel += t.numel();
  }

  return total_numel;
}

bool check_same_size(const std::vector<at::Tensor>& input_tensors) {
  for (const auto& input_tensor : input_tensors) {
    if (!input_tensors[0].is_same_size(input_tensor)) {
      return false;
    }
  }
  return true;
}

} // namespace

c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> ProcessGroupNCCL::initWork(
    at::Device& device,
    int rank,
    OpType opType,
    bool isP2P,
    const char* profilingTitle,
    const std::vector<at::Tensor>& inputs,
    const std::vector<at::Tensor>& outputs, // TODO(kwen2501): necessary?
    bool record) {
  auto r = c10::make_intrusive<ProcessGroupNCCL::WorkNCCL>(
      pg_uid_,
      pg_desc_,
      device,
      rank,
      opType,
      isP2P ? seqP2P_ : seqCollective_,
      isP2P,
      profilingTitle,
      profilingTitle != nullptr ? std::optional<std::vector<at::Tensor>>(inputs)
                                : std::nullopt,
      desyncDebug_,
      enableTiming_.load(),
      cudaEventCacheEnabled_.load(),
      dist_debug_level_);
  if (record) {
    bool isP2P = isP2POp(opType);
    // Ideally record every work that we enqueue, rather than every work we
    // create.
    // - at the time of this PR we do not currently enqueue every created work
    // - but it is unsafe to steal refs to start/end cuda events from Works that
    //   may go out of scope before flight recorder has retired them,
    //   so we must ensure that any work that is initialized via initWork will
    //   be enqueued
    // - initially, moved record() into workEnqueue(), but found that makes it
    //   hard to get access to profilingTitle,
    //   inputs, and outputs for metadata recording, and we don't want to attach
    //   these objects to the Work becuase it has implications for keeping those
    //   tensors alive longer and adds overhead when copying Work objects
    //   between threads
    r->trace_id_ = FlightRecorder::get()->record(
        local_id_,
        std::make_tuple(pg_uid_, pg_desc_),
        seqCollective_,
        seqP2P_,
        op_id_,
        profilingTitle ? profilingTitle : "",
        inputs,
        outputs,
        r->ncclStartEvent_.get(),
        r->ncclEndEvent_.get(),
        options_->timeout,
        pgStatus_,
        isP2P);
  }
  return r;
}

// TODO(kwen2501): deprecate
std::vector<at::Tensor> ProcessGroupNCCL::WorkNCCL::result() {
  return *outputs_;
}

c10::intrusive_ptr<c10::ivalue::Future> ProcessGroupNCCL::WorkNCCL::
    getFuture() {
  return future_;
}

c10::intrusive_ptr<c10::ivalue::Future> ProcessGroupNCCL::WorkNCCL::
    getFutureResult() {
  return futureWorkResult_;
}

float ProcessGroupNCCL::WorkNCCL::getDuration() const {
  TORCH_CHECK(timingEnabled_, "getDuration only works if timing was enabled");
  TORCH_CHECK(
      ncclStartEvent_,
      "getDuration only works if ncclStartEvents_ is populated, true if timing enabled");
  TORCH_CHECK(
      ncclEndEvent_,
      "getDuration only works if ncclEndEvents_ is populated, which should always be true");
  return ncclStartEvent_->elapsed_time(*ncclEndEvent_);
}

uint64_t ProcessGroupNCCL::WorkNCCL::getSequencenumber() const {
  return seq_;
}

void ProcessGroupNCCL::assignTimeoutToWork(
    const c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work,
    const c10::intrusive_ptr<ProcessGroupNCCL::Options>& option) {
  std::chrono::milliseconds timeout = option->timeout;
  std::lock_guard<std::mutex> timeoutLock(mtxTimeoutExtension_);
  if (ephemeralTimeoutActive_.count() > 0) {
    timeout += ephemeralTimeoutActive_;
  }
  work->opTimeout_ = timeout;
  work->ownedEphermeralTimeout_ =
      ephemeralTimeoutActive_ - ephemeralTimeoutInflight_;
  ephemeralTimeoutInflight_ = ephemeralTimeoutActive_;
}

void ProcessGroupNCCL::workEnqueue(
    const c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
  // in blockingWait_ mode, we don't need watchdog thread, so no need to enqueue
  // the work
  if (!terminateProcessGroup_.load() && !blockingWait_) {
    std::lock_guard<std::mutex> lock(workMetaListMutex_);
    // Avoid view tensors to be processed in cleanup thread.
    // View tensors' destruction invokes autograd_meta, which
    // needs to be destructed in user thread. Otherwise will
    // get deadlock. Here we enqueue work without outputs_.
    workMetaList_.emplace_back(*work);
    // update the PG status related to the last enqueued work
    pgStatus_->lastEnqueuedSeq = work->seq_;
    pgStatus_->lastEnqueuedWorkName = opTypeToString(work->opType_);
    pgStatus_->lastEnqueuedNumelIn = work->numelIn_;
    pgStatus_->lastEnqueuedNumelOut = work->numelOut_;
    lastWorkListUpdateTime_ = std::chrono::steady_clock::now();
  }
}

ProcessGroupNCCL::Options::Options(bool is_high_priority_stream)
    : Backend::Options(NCCL_BACKEND_NAME, kProcessGroupNCCLDefaultTimeout),
      is_high_priority_stream(is_high_priority_stream) {}

static constexpr int CoalActive = 0x01, CoalColl = 0x02, CoalP2P = 0x04;

void ProcessGroupNCCL::startCoalescing() {
  // Other collective ops bump seq_ before creating a work. Thus, if coalesced
  // ops bump seq_ only after initing a work they will collide with (reuse) the
  // seq_ of the last non-coalesced collective.  Previously, seq_ was bumped
  // inside endCoalescing, but before initWork. Since we now record individual
  // ops from a coalesce group into the flight recorder, we want to have the
  // same seq_ for those ops and its 'endCoalescing' op. Hence we bump during
  // start, which has one minor downside- we burn a seq_ if someone ever does a
  // 'start' and 'end' coalescing region without doing an operation inbetween.

  coalescedDevice_.set_index(-1);
  coalescedComm_ = nullptr;
  coalescing_state_ |= CoalActive;
  groupStart();
}

// `optype` is for specifying a composite optype, such as ALLGATHER and
// REDUCE_SCATTER
c10::intrusive_ptr<Work> ProcessGroupNCCL::endCoalescing(OpType optype) {
  if (coalescedComm_ == nullptr) {
    // There is no actual work being coalesced, return here
    groupEnd();
    coalescing_state_ = 0;
    return nullptr;
  }
  TORCH_CHECK(
      coalescedDevice_.index() >= 0,
      "Somthing went wrong. Did you call end_coalescing before start_coalescing?");

  // `coalescedComm_` should have same set of comms across collectives
  auto comm = coalescedComm_;
  // `coalescedDevice_` should have same set of devices across collectives
  auto device = coalescedDevice_;

  // `getKeyFromDevice` is how we get keys for both collectives and batch P2P
  const auto key = getKeyFromDevice(device);
  auto ncclStream = ncclStreams_.at(key);

  // Create Work object
  c10::cuda::CaptureStatus capture_status =
      c10::cuda::currentStreamCaptureStatusMayInitCtx();
  bool enqueue =
      (coalescing_state_) && capture_status == c10::cuda::CaptureStatus::None;
  auto work = initWork(
      device,
      rank_,
      optype,
      coalescing_state_ & CoalP2P,
      "nccl:coalesced",
      {},
      {},
      enqueue);
  work->ncclComm_ = comm;
  work->blockingWait_ = blockingWait_;
  work->avoidRecordStreams_ = avoidRecordStreams_;
  work->store_ = store_;
  assignTimeoutToWork(work, options_);

  // Record start before ncclGroupEnd
  if (work->timingEnabled_) {
    work->ncclStartEvent_->record(ncclStream);
  }

  if (useNonblocking()) {
    groupEndNonblocking(comm);
  } else {
    groupEnd();
  }

  // Record end after ncclGroupEnd
  // TODO(eqy): is this still necessary if avoidRecordStreams_ is set?
  work->ncclEndEvent_->record(ncclStream);

  if (avoidRecordStreams_) {
    // other functions expect an initialized ptr if avoidRecordStreams_ is set
    work->stashed_for_allocator_safety_ =
        std::make_shared<std::vector<at::Tensor>>();
  }

  // Notify graphs before we check the capture status preemptively
  at::cuda::CUDAGraph::inc_pending_event_queries();

  if (enqueue) {
    workEnqueue(work);
  } else {
    at::cuda::CUDAGraph::dec_pending_event_queries();
  }

  coalescing_state_ = 0;
  coalescedComm_ = nullptr;
  return work;
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::endCoalescing() {
  // Default OpType to COALESCED if not specified
  return endCoalescing(OpType::COALESCED);
}

template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collective(
    std::vector<at::Tensor>& inputs,
    std::vector<at::Tensor>& outputs,
    Fn fn,
    PreProcess pre,
    PostProcess post,
    OpType opType,
    const char* profilingTitle,
    bool avoidRecordStreams,
    bool nanCheck) {
  // Environment setting by the user may add onto collective call's option
  avoidRecordStreams |= avoidRecordStreams_;
  nanCheck &= enableNanCheck_;

  auto device = getDevice(inputs[0]);
  // Guard must be created before `currentStreamCaptureStatusMayInitCtx`;
  // otherwise, extra CUDA context could be created on device 0.
  at::cuda::OptionalCUDAGuard gpuGuard(device);

  c10::cuda::CaptureStatus capture_status =
      c10::cuda::currentStreamCaptureStatusMayInitCtx();
  errorIfCapturingNonCapturableNCCL(capture_status);

  // Bump collective counter
  if (!coalescing_state_) {
    seqCollective_++;
  }
  op_id_++;

  const auto key = getKeyFromDevice(device);
  std::shared_ptr<NCCLComm> ncclComm = getNCCLComm(key);
  if (ncclComm == nullptr) {
    ncclComm = initNCCLComm(key, device, opType);
  }

  if (coalescing_state_ & CoalActive) {
    if ((coalescing_state_ & CoalColl) == 0) {
      // First op in coalesced operations
      seqCollective_++;
    }
    coalescing_state_ |= CoalColl;
    if (coalescedDevice_.index() < 0) {
      coalescedDevice_ = device;
    } else {
      TORCH_CHECK(
          coalescedDevice_.index() == device.index(), MULTI_DEVICE_ERROR_MSG);
    }
    if (coalescedComm_ == nullptr) {
      coalescedComm_ = ncclComm;
    } else {
      TORCH_CHECK(coalescedComm_ == ncclComm, MULTI_DEVICE_ERROR_MSG);
    }
  }

  // Used many times below, so we stash the unordered_map lookup
  auto ncclStream = ncclStreams_.at(key);

  // First let NCCL streams wait for input tensors allocation streams
  syncStream(device, ncclEvents_[key], ncclStream);

  bool enqueue =
      !coalescing_state_ && capture_status == c10::cuda::CaptureStatus::None;
  auto work = initWork(
      device, rank_, opType, false, profilingTitle, inputs, outputs, enqueue);

  // Store references to outputs to be used by WorkNCCL::result and operator<<.
  work->outputs_ = std::make_shared<std::vector<at::Tensor>>(outputs);

  if (avoidRecordStreams) {
    work->stashed_for_allocator_safety_ =
        std::make_shared<std::vector<at::Tensor>>(inputs);
  }

  if (nanCheck) {
    for (const auto& input : inputs) {
      checkForNan(input, ncclStream);
    }
  }

  // Start event should only be recorded before the ncclGroupStart()
  if (work->timingEnabled_) {
    work->ncclStartEvent_->record(ncclStream);
  }

  pre(ncclStream, work);

  ncclComm_t comm = ncclComm->getNcclComm();

  // Both `inputs' and `outputs' are created on a worker stream and used in
  // different ncclStreams.  Hence, both must record the ncclStream to
  // prevent being freed before the collective finishes.
  //
  // We only record `inputs' here, and leave recording `outputs' to `fn' for
  // operations where `inputs' and `outputs' are not the same.
  //
  // See [Sync Streams].
  if (!avoidRecordStreams) {
    for (const auto& input : inputs) {
      if (!input.is_sparse()) {
        c10::cuda::CUDACachingAllocator::recordStream(
            input.storage().data_ptr(), ncclStream);
      } else {
        // for sparse input case record streams on both index and value
        // tensors
        c10::cuda::CUDACachingAllocator::recordStream(
            input.values().storage().data_ptr(), ncclStream);
        c10::cuda::CUDACachingAllocator::recordStream(
            input.indices().storage().data_ptr(), ncclStream);
      }
    }
  }

// Not all collectives have the same signature, e.g, all-reduce take in a Tensor
// as the input and output while all-to-all take in a vector of Tensors as input
// and output. Because we define the signature of the fn to take only single
// tensor as input and output, we need to do a hack to get the first element in
// the vector and pass it to fn.
// TODO: we should clean up this in future (by either entirely removing lambda's
// or removing input and output from lambda's signature).
#ifndef NCCL_HAS_COMM_NONBLOCKING
  C10D_NCCL_CHECK(
      fn(inputs[0], outputs[0], comm, ncclStream),
      ncclComm->getNcclCommFailureReason());
#else
  C10D_NCCL_CHECK_TIMEOUT(
      fn(inputs[0], outputs[0], comm, ncclStream),
      comm,
      ncclComm->getNcclCommFailureReason());
#endif

  post(ncclStream, work);

  // End event should only be recorded after the ncclGroupEnd()
  if (!coalescing_state_) {
    work->ncclEndEvent_->record(ncclStream);
  }
  work->ncclComm_ = ncclComm;

  {
    c10::cuda::CUDAMultiStreamGuard streamGuard(ncclStream);
    std::vector<at::Device> devices{device};
    work->future_ = c10::make_intrusive<at::ivalue::Future>(
        c10::ListType::create(c10::TensorType::get()), devices);

    // Add a callback that runs profiling end callbacks. wrapCallback() in CUDA
    // future blocks the stream this callback runs on the corresponding
    // ncclEndEvents_ ensuring appropriate synchronization.
    if (work->recordFunctionEndCallback_) {
      work->future_->addCallback(
          [work](at::ivalue::Future& /* unused */) {
            work->recordFunctionEndCallback_();
          },
          // uses_future = false allows us to skip synchronization in
          // ivalue::Future, but is only valid as long as the lambda doesn't use
          // the "Future" argument.
          /*uses_future=*/false);
    }
    work->future_->markCompleted(at::IValue(*work->outputs_));
  }

  // Set appropriate work parameters.
  work->blockingWait_ = blockingWait_;
  work->avoidRecordStreams_ = avoidRecordStreams;
  work->store_ = store_;
  assignTimeoutToWork(work, options_);
  // Record size info for debug. We only record the size on the first device as
  // multi-device per process is deprecated
  work->numelIn_ = 0;
  work->numelOut_ = 0;
  for (const auto& input : inputs) {
    work->numelIn_ += input.numel();
  }
  for (const auto& output : outputs) {
    work->numelOut_ += output.numel();
  }

  // Notify graphs before we check the capture status preemptively
  at::cuda::CUDAGraph::inc_pending_event_queries();
  if (enqueue) {
    workEnqueue(work);
  } else {
    at::cuda::CUDAGraph::dec_pending_event_queries();
  }

  return work;
}

template <typename Fn>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collectiveCoalesced(
    std::vector<at::Tensor>& inputs,
    std::vector<at::Tensor>& outputs,
    Fn fn,
    OpType opType,
    const char* profilingTitle,
    bool avoidRecordStreams) {
  // Environment setting by the user may add onto collective call's option
  avoidRecordStreams |= avoidRecordStreams_;

  // Currently, the API permits one scenario where inputs.size() and
  // outputs.size() are > 0.
  // 1. If the call was a _coalesced call, all inputs must be on the same
  // device.
  //    The group of nccl calls applies the collective separately to each input,
  //    but the group as a whole should be efficient, and might even execute as
  //    a single fused kernel.
  auto device = getDevice(inputs[0]);
  // Guard must be created before `currentStreamCaptureStatusMayInitCtx`;
  // otherwise, extra CUDA context could be created on device 0.
  at::cuda::OptionalCUDAGuard gpuGuard(device);

  c10::cuda::CaptureStatus capture_status =
      c10::cuda::currentStreamCaptureStatusMayInitCtx();
  errorIfCapturingNonCapturableNCCL(capture_status);

  // Bump collective counter
  seqCollective_++;

  // For coalescingManager collectives, there is no individual c++ call per
  // collective so there is no flight record and we increment seqCollective_ and
  // op_id_ together. Compare this to startCoalescing/endCoalescing flow where
  // we increment either seqP2P_ or seqCollective_ once per group and increment
  // op_id_ once per indvidual operation within the group
  op_id_++;

  const auto key = getKeyFromDevice(device);
  std::shared_ptr<NCCLComm> ncclComm = getNCCLComm(key);
  if (ncclComm == nullptr) {
    ncclComm = initNCCLComm(key, device, opType);
  }

  if (coalescing_state_ & CoalActive) {
    coalescing_state_ |= CoalColl;
    if (coalescedDevice_.index() < 0) {
      coalescedDevice_ = device;
    } else {
      TORCH_CHECK(
          coalescedDevice_.index() == device.index(), MULTI_DEVICE_ERROR_MSG);
    }
    if (coalescedComm_ == nullptr) {
      coalescedComm_ = ncclComm;
    } else {
      TORCH_CHECK(coalescedComm_ == ncclComm, MULTI_DEVICE_ERROR_MSG);
    }
  }

  // Used many times below, so we stash the unordered_map lookup
  auto ncclStream = ncclStreams_.at(key);

  // First let NCCL streams wait for input tensors allocation streams
  syncStream(device, ncclEvents_[key], ncclStream);

  auto work = initWork(
      device,
      rank_,
      opType,
      false,
      profilingTitle,
      inputs,
      outputs,
      /*record=*/true);

  // Store references to outputs to be used by WorkNCCL::result and operator<<.
  work->outputs_ = std::make_shared<std::vector<at::Tensor>>(outputs);

  if (avoidRecordStreams) {
    work->stashed_for_allocator_safety_ =
        std::make_shared<std::vector<at::Tensor>>(inputs);
  }

  // Start event should only be recorded before the ncclGroupStart() (which
  // happens inside AutoNcclGroup guard below)
  if (work->timingEnabled_) {
    work->ncclStartEvent_->record(ncclStream);
  }

  ncclComm_t comm = ncclComm->getNcclComm();

// TODO(kwen2501): this should be moved to c10d tests, to qualify a NCCL
// upgrade. Once a NCCL version is qualified, this code should not be needed at
// runtime.
#ifdef PGNCCL_ENABLE_HASH
  if (enableCollecticeHashDebug_.load()) {
    auto numel = getTensorsNumel(inputs);
    auto hashValue = hashTensors(inputs);
    PRINT_COLLECTIVE_HASH_SIGNATURE(
        "input", opTypeToString(opType), numel, hashValue);
  }
#endif

  {
    torch::cuda::nccl::AutoNcclGroup nccl_group_guard(comm, useNonblocking());
    for (const auto i : c10::irange(inputs.size())) {
      // Both `inputs' and `outputs' are created on a worker stream and used in
      // different ncclStreams.  Hence, both must record the ncclStream to
      // prevent being freed before the collective finishes.
      //
      // We only record `inputs' here, and leave recording `outputs' to `fn' for
      // operations where `inputs' and `outputs' are not the same.
      //
      // See [Sync Streams].
      if (!avoidRecordStreams) {
        if (!inputs[i].is_sparse()) {
          c10::cuda::CUDACachingAllocator::recordStream(
              inputs[i].storage().data_ptr(), ncclStream);
        } else {
          // for sparse input case record streams on both index and value
          // tensors
          c10::cuda::CUDACachingAllocator::recordStream(
              inputs[i].values().storage().data_ptr(), ncclStream);
          c10::cuda::CUDACachingAllocator::recordStream(
              inputs[i].indices().storage().data_ptr(), ncclStream);
        }
      }
#ifndef NCCL_HAS_COMM_NONBLOCKING
      C10D_NCCL_CHECK(
          fn(inputs[i], outputs[i], comm, ncclStream),
          ncclComm->getNcclCommFailureReason());
#else
      C10D_NCCL_CHECK_TIMEOUT(
          fn(inputs[i], outputs[i], comm, ncclStream),
          comm,
          ncclComm->getNcclCommFailureReason());
#endif
    }
  }

  work->ncclEndEvent_->record(ncclStream);
  work->ncclComm_ = ncclComm;

  {
    c10::cuda::CUDAMultiStreamGuard streamGuard(ncclStream);
    std::vector<at::Device> devices{device};
    work->future_ = c10::make_intrusive<at::ivalue::Future>(
        c10::ListType::create(c10::TensorType::get()), devices);

    // Add a callback that runs profiling end callbacks. wrapCallback() in CUDA
    // future blocks the stream this callback runs on the corresponding
    // ncclEndEvents_ ensuring appropriate synchronization.
    if (work->recordFunctionEndCallback_) {
      work->future_->addCallback(
          [work](at::ivalue::Future& /* unused */) {
            work->recordFunctionEndCallback_();
          },
          // uses_future = false allows us to skip synchronization in
          // ivalue::Future, but is only valid as long as the lambda doesn't use
          // the "Future" argument.
          /*uses_future=*/false);
    }
    work->future_->markCompleted(at::IValue(*work->outputs_));
  }

  // Set appropriate work parameters.
  work->blockingWait_ = blockingWait_;
  work->avoidRecordStreams_ = avoidRecordStreams;
  work->store_ = store_;
  assignTimeoutToWork(work, options_);
  // Record size info for debug. We only record the size on the first device as
  // multi-device per process is deprecated
  work->numelIn_ = inputs[0].numel();
  work->numelOut_ = outputs[0].numel();

  /* Note [cuda graph capture and workEnqueue]

  Normal behavior of the C10D watchdog is to query cuda events on work objects
  periodically, but when cuda graph recording is active these event queries
  would crash or mess up the recording.

  To ensure we do not enqueue a work object to the watchdog when cuda graph
  capture is active, we use a one-way sync. We increment a flag pre-emptively,
  indicating our intent to enqueue a work object. Then we check capture_status
  to see if (a) capturing is already in progress (we cannot enqueue in this
  case), (b) capturing hasn't started yet, so we can trust that no capture will
  start (since a pre-condition of starting a capture is to check the event query
  count is 0).

  If we are not able to enqueue the work due to capture-in-progress, we finally
  decrement the counter.

  For this reason we cannot easily move the increment inside workEnqueue unless
  we also change the semantic of workEnqueue to 'maybeWorkEnqueue'.

  TODO:
   - Is our design for flight recorder safe in this context?  are we recording
  any FR events during cudagraph capture? if so, they won't be safe to poll for
  completion status.
  */
  at::cuda::CUDAGraph::inc_pending_event_queries();
  if (capture_status == c10::cuda::CaptureStatus::None) {
    workEnqueue(work);
  } else {
    at::cuda::CUDAGraph::dec_pending_event_queries();
  }
  // TODO(whc) if the work isn't enqueued, I don't feel great about returning
  // it, since interactions with it by usercode won't behave normally - they
  // won't observe work completion, for instance.  Will this lead to silent
  // problems during capture?
  return work;
}

template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> ProcessGroupNCCL::pointToPoint(
    at::Tensor& tensor,
    Fn fn,
    int peer,
    OpType opType,
    PreProcess pre,
    PostProcess post,
    const char* profilingTitle) {
  // avoidRecordStreams_ note:
  // send, recv, and irecv should be ok with avoidRecordStreams,
  // However, for isend, I don't think the API requires the user
  // to wait() on the returned handle, so ProcessGroupNCCL can't know
  // when it's safe to release the input back to the allocator,
  // and the present call has no way to know it's not an isend.
  // Therefore, we warn and fall back to the typical recordStream logic:
  if (avoidRecordStreams_) {
    TORCH_WARN_ONCE(
        "TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point "
        "collectives.");
  }

  auto device = getDevice(tensor);
  at::cuda::OptionalCUDAGuard gpuGuard(device);

  std::string key;
  int p2pRank = 0, p2pTargetRank = 0;
  bool isSendRecvSelf = false;
  // For batch_isend_irecv, ncclGroupStart() would be called upfront
  bool batchP2P = ncclActiveGroupCounter_ > 0;
  if (batchP2P) {
    // For batch P2P, we need to treat it like a collective when selecting
    // communicator, because other ranks can call into this batch other than my
    // rank and my peer
    key = getKeyFromDevice(device);
    p2pRank = rank_;
    p2pTargetRank = peer;
  } else {
    // For single P2P, preserve the old two-rank behavior (to avoid perf diff)
    key = getKeySendRecv(rank_, peer);
    p2pRank = rank_ <= peer ? 0 : 1;
    isSendRecvSelf = rank_ == peer;
    p2pTargetRank = isSendRecvSelf ? 0 : 1 - p2pRank;

    if (!coalescing_state_) {
      // Bump P2P sequence number.
      seqP2P_++;
    }
  }

  // Bump the logical operation counter regardless of whether this op is
  // coalesced or individual
  op_id_++;

  std::shared_ptr<NCCLComm> ncclComm = getNCCLComm(key);
  if (ncclComm == nullptr) {
    ncclComm = initNCCLComm(key, device, opType, p2pRank, isSendRecvSelf);
  }

  if (coalescing_state_ & CoalActive) {
    // Bump  seqP2P_ once per coalesced group, not once per individual op.
    if ((coalescing_state_ & CoalP2P) == 0) {
      seqP2P_++;
    }
    coalescing_state_ |= CoalP2P;
    if (coalescedDevice_.index() < 0) {
      coalescedDevice_ = device;
    } else {
      TORCH_CHECK(
          coalescedDevice_.index() == device.index(), MULTI_DEVICE_ERROR_MSG);
    }
    if (coalescedComm_ == nullptr) {
      coalescedComm_ = ncclComm;
    } else {
      TORCH_CHECK(coalescedComm_ == ncclComm, MULTI_DEVICE_ERROR_MSG);
    }
  }

  // Used many times below, so we stash the unordered_map lookup
  auto ncclStream = ncclStreams_.at(key);
  // First let NCCL streams wait for input tensors allocation streams
  syncStream(device, ncclEvents_[key], ncclStream);

  // Work itself will create the CUDA events on all GPUs of tensors
  c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> work;
  if (coalescing_state_) {
    // When coalescing, we record events per op that lack timing/state
    // information becuase there is no 'work' associated with them, and then
    // later in endCoalescing we record a 'coalesced' Work which has
    // timing/state updates via watchdog thread, but lacks op metadata such as
    // input/output sizes and profilingTitle per-op in the group.
    auto trace_id = FlightRecorder::get()->record(
        local_id_,
        std::make_tuple(pg_uid_, pg_desc_),
        seqCollective_,
        seqP2P_,
        op_id_,
        profilingTitle,
        {tensor},
        {tensor},
        nullptr,
        nullptr,
        options_->timeout,
        pgStatus_,
        /*isP2P=*/true);
    // TODO(whc) if we want to make the per-p2p-op flightrecorder entries get
    // their timings/states updated by proxy when the Work obj representing the
    // coalesce group gets its update, we could accumulate these trace_ids
    // together and ask FlightRecorder to take the update from one Work and
    // apply it to multiple entries
    (void)trace_id;
  } else {
    // Store references to outputs to be used by WorkNCCL::result and
    // operator<<. Note that these outputs are only valid for recv(), as send()
    // does not modify the inputs but we still create these outputs for use
    // cases such as profiling.

    work = initWork(
        device,
        rank_,
        opType,
        true,
        profilingTitle,
        {tensor},
        {},
        /*record=*/false);
    // This bypasses something in Work() that crashes if {tensor} is given as
    // output, not sure what
    work->outputs_ = std::make_shared<std::vector<at::Tensor>>();
    work->outputs_->push_back(tensor);
    // TODO(whc) because we don't pass output {tensor} to initWork, we tell
    // initWork to not record, and then we manually call record passing all the
    // information it wants.
    work->trace_id_ = FlightRecorder::get()->record(
        local_id_,
        std::make_tuple(pg_uid_, pg_desc_),
        seqCollective_,
        seqP2P_,
        op_id_,
        profilingTitle,
        {tensor},
        {tensor},
        work->ncclStartEvent_.get(),
        work->ncclEndEvent_.get(),
        options_->timeout,
        pgStatus_,
        /*isP2P=*/true);
  }

  // Only check for NaN for send ops, for recv ops `tensor` can be a random
  // placeholder
  if (enableNanCheck_ && opType == OpType::SEND) {
    checkForNan(tensor, ncclStream);
  }

  if (!coalescing_state_) {
    // Start event should only be recorded before the ncclGroupStart()
    if (work->timingEnabled_) {
      work->ncclStartEvent_->record(ncclStream);
    }

    pre(ncclStream, work);
  }

  // Both send tensor and recv tensor are created on a worker stream and used
  // in different ncclStreams.  Hence, both must record the ncclStream to
  // prevent being freed before the collective finishes.
  //
  // See [Sync Streams].
  c10::cuda::CUDACachingAllocator::recordStream(
      tensor.storage().data_ptr(), ncclStream);

  // This part seems common to both p2p and coalesced-p2p usage?
  ncclComm_t comm_ = ncclComm->getNcclComm();

#ifndef NCCL_HAS_COMM_NONBLOCKING
  C10D_NCCL_CHECK(
      fn(tensor, comm_, ncclStream, p2pTargetRank),
      ncclComm->getNcclCommFailureReason());
#else
  // In non-blocking mode, we need to use ncclGroup semantics to ensure that the
  // kernel is enqueued for single-P2P ops.  Otherwise, the event record below
  // may not capture the kernel, leading to data corruption.
  ncclGroupStart();
  C10D_NCCL_CHECK_NONBLOCKING(
      fn(tensor, comm_, ncclStream, p2pTargetRank), std::nullopt);
  C10D_NCCL_CHECK_TIMEOUT_GROUPEND(
      ncclGroupEnd(), ncclComm, ncclComm->getNcclCommFailureReason());
#endif

  if (!coalescing_state_) {
    post(ncclStream);

    // End event should only be recorded after the ncclGroupEnd()
    work->ncclEndEvent_->record(ncclStream);
    work->ncclComm_ = ncclComm;
    work->blockingWait_ = blockingWait_;
    work->store_ = store_;
    assignTimeoutToWork(work, options_);
    // Record size info for debug. We only record the size on the first device
    // as multi-device per process is deprecated
    work->numelIn_ = work->numelOut_ = tensor.numel();

    // Future only needs to be created and marked completed with outputs for
    // recv(), but still create future for use cases such as profiling even for
    // send().
    {
      c10::cuda::CUDAMultiStreamGuard streamGuard(ncclStream);
      std::vector<at::Device> devices{device};
      work->future_ = c10::make_intrusive<at::ivalue::Future>(
          c10::ListType::create(c10::TensorType::get()), devices);
      work->future_->markCompleted(at::IValue(*work->outputs_));
    }

    // Add a callback that runs profiling end callbacks. wrapCallback() in CUDA
    // future blocks the stream this callback runs on the corresponding
    // ncclEndEvents_ ensuring appropriate synchronization.
    if (work->recordFunctionEndCallback_) {
      work->future_->addCallback(
          [work](at::ivalue::Future& /* unused */) {
            work->recordFunctionEndCallback_();
          },
          // uses_future = false allows us to skip synchronization in
          // ivalue::Future, but is only valid as long as the lambda doesn't use
          // the "Future" argument.
          /*uses_future=*/false);
    }
  }

  // Enqueue P2P op so that it can be cancelled by NCCL watchdog
  c10::cuda::CaptureStatus capture_status =
      c10::cuda::currentStreamCaptureStatusMayInitCtx();

  // Notify graphs before we check the capture status preemptively
  at::cuda::CUDAGraph::inc_pending_event_queries();

  if (!coalescing_state_ && capture_status == c10::cuda::CaptureStatus::None) {
    workEnqueue(work);
    return work;
  } else {
    at::cuda::CUDAGraph::dec_pending_event_queries();
    return nullptr;
  }
}

template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collective(
    at::Tensor& input,
    at::Tensor& output,
    Fn fn,
    PreProcess pre,
    PostProcess post,
    OpType opType,
    const char* profilingTitle,
    bool avoidRecordStreams,
    bool nanCheck) {
  auto inputs = std::vector<at::Tensor>{input};
  auto outputs = std::vector<at::Tensor>{output};
  return collective(
      inputs,
      outputs,
      fn,
      pre,
      post,
      opType,
      profilingTitle,
      avoidRecordStreams,
      nanCheck);
}

template <typename Fn>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collective(
    at::Tensor& input,
    at::Tensor& output,
    Fn fn,
    OpType opType,
    const char* profilingTitle,
    bool avoidRecordStreams,
    bool nanCheck) {
  auto inputs = std::vector<at::Tensor>{input};
  auto outputs = std::vector<at::Tensor>{output};
  return collective(
      inputs,
      outputs,
      fn,
      [](at::cuda::CUDAStream&,
         c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
      [](at::cuda::CUDAStream&,
         c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
      opType,
      profilingTitle,
      avoidRecordStreams,
      nanCheck);
}

template <typename Fn>
c10::intrusive_ptr<Work> ProcessGroupNCCL::pointToPoint(
    at::Tensor& tensor,
    Fn fn,
    int peer,
    OpType opType,
    const char* profilingTitle) {
  return pointToPoint(
      tensor,
      fn,
      peer,
      opType,
      [](at::cuda::CUDAStream&,
         c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
      [](at::cuda::CUDAStream&) {},
      profilingTitle);
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce_sparse(
    std::vector<at::Tensor>& tensors,
    const AllreduceOptions& opts) {
  TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  auto tensor = tensors.back();
  TORCH_CHECK(
      !isFloat8Type(tensor.scalar_type()),
      "Float8 dtypes are not currenlty supported for NCCL reductions");
#ifdef IS_NCCLX
  tensor = tensor.coalesce();
  at::Tensor outputTensor =
      torch::zeros(tensor.sizes(), tensor.options().layout(torch::kStrided));
  auto work = collective(
      tensor,
      outputTensor,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        auto ncclDataType = getNcclDataType(input.scalar_type());
        auto ncclReduceOp =
            getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);

        size_t num_elements = output.numel();
        auto indices = input.indices();
        auto sizes = input.sizes();
        int colSize = sizes[1];
        auto rows = indices[0];
        size_t blockCount = rows.sizes()[0];
        auto recvIndices = indices[0] * colSize;

        // prevent output and recvIndices from being freed
        c10::cuda::CUDACachingAllocator::recordStream(
            output.storage().data_ptr(), stream);
        c10::cuda::CUDACachingAllocator::recordStream(
            recvIndices.storage().data_ptr(), stream);
        auto result = ncclAllReduceSparseBlock(
            input._values().data_ptr(), // sendbuff
            recvIndices.data_ptr<int64_t>(), // recv_indices
            blockCount, // block_count
            colSize, // block_length
            output.data_ptr(), // recvbuff
            output.numel(), // recv_count
            ncclDataType,
            ncclReduceOp,
            comm,
            stream.stream());
        return result;
      },
      [](at::cuda::CUDAStream& ncclStream,
         c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
      [&](at::cuda::CUDAStream& ncclStream,
          c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
        // Convert output tensors to sparse and back into tensors.
        at::cuda::CUDAStreamGuard guard(ncclStream);
        if (opts.sparseIndices.has_value()) {
          tensor = at::sparse_coo_tensor(
              opts.sparseIndices.value(), outputTensor, tensor.sizes());
        } else {
          tensor = outputTensor.to_sparse();
        }
      },
      OpType::_ALLREDUCE_SPARSE,
      "nccl:all_reduce_sparse");
  return work;
#else
  // If the nccl branch is not "exp" then we just error
  C10_THROW_ERROR(
      Error,
      "NCCL does not support all_reduce with sparse tensors. Please use dense tensors instead.");
#endif
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce_impl(
    at::Tensor& tensor,
    const char* profilingTitle,
    const AllreduceOptions& opts) {
  return collective(
      tensor,
      tensor,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        auto ncclDataType = getNcclDataType(input.scalar_type());
        auto ncclReduceOp =
            getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
        return ncclAllReduce(
            input.data_ptr(),
            output.data_ptr(),
            input.numel(),
            ncclDataType,
            ncclReduceOp,
            comm,
            stream.stream());
      },
      OpType::ALLREDUCE,
      profilingTitle);
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce(
    std::vector<at::Tensor>& tensors,
    const AllreduceOptions& opts) {
  TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  auto tensor = tensors.back();
  if (tensor.is_complex()) {
    TORCH_CHECK(
        complexViewAsRealAllowed(opts.reduceOp),
        "all_reduce does not support",
        opts.reduceOp,
        "on complex tensors");
    tensor = at::view_as_real(tensor);
  }
  check_gpu_single_tensor(tensor);

  if (intraNodeComm_ != nullptr && opts.reduceOp == ReduceOp::SUM) {
    using namespace intra_node_comm;
    auto algo = intraNodeComm_->selectAllReduceAlgo(tensor);
    if (algo != intra_node_comm::AllReduceAlgo::NONE) {
      intraNodeComm_->allReduce(tensor, algo);
      return c10::make_intrusive<IntraNodeCommWork>();
    }
  }
  TORCH_CHECK(
      !isFloat8Type(tensor.scalar_type()),
      "Float8 dtypes are not currenlty supported for NCCL reductions");
  // @lint-ignore CLANGTIDY
  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      tensors, // inputTensors
      tensors, // outputTensors
      rank_, // rank
      "allreduce", // collective name
      tensor.numel(), // inNelems
      tensor.numel(), // outNelems
      tensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  // avoidRecordStreams_ note: collective() will stash tensors.
  return allreduce_impl(tensor, "nccl:all_reduce", opts);
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce_coalesced(
    std::vector<at::Tensor>& tensors,
    const AllreduceCoalescedOptions& opts) {
  auto total_numel = check_gpu_tensors_same_device(tensors);
  TORCH_CHECK(
      !isFloat8Type(tensors.back().scalar_type()),
      "Float8 dtypes are not currenlty supported for NCCL reductions");

  // @lint-ignore CLANGTIDY
  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective and assume only one collective
                  // in coalesed range
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      tensors, // inputTensors
      tensors, // outputTensors
      rank_, // rank
      "allreduce_coalesced", // collective name
      total_numel, // inNelems
      total_numel, // outNelems
      tensors[0].scalar_type(), // dType
      // I'm not sure what in,outSplitSizes mean here.
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  // avoidRecordStreams_ note: collective() will stash tensors.
  return collectiveCoalesced(
      tensors,
      tensors,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        auto ncclDataType = getNcclDataType(input.scalar_type());
        auto ncclReduceOp =
            getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
        return ncclAllReduce(
            input.data_ptr(),
            output.data_ptr(),
            input.numel(),
            ncclDataType,
            ncclReduceOp,
            comm,
            stream.stream());
      },
      OpType::COALESCED,
      "nccl:allreduce_coalesced");
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::broadcast(
    std::vector<at::Tensor>& tensors,
    const BroadcastOptions& opts) {
  TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  auto tensor = tensors.back();
  if (tensor.is_complex()) {
    tensor = at::view_as_real(tensor);
  }
  check_gpu_single_tensor(tensor);

  // @lint-ignore CLANGTIDY
  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      tensors, // inputTensors
      tensors, // outputTensors
      opts.rootRank, // root rank
      "broadcast", // collective name
      tensor.numel(), // inNelems
      tensor.numel(), // outNelems
      tensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  // avoidRecordStreams_ note: collective() will stash tensors.
  bool avoidRecordStreams = avoidRecordStreams_ || (!opts.asyncOp);

  const auto root = opts.rootRank + opts.rootTensor;
  bool nanCheck = (root == rank_);

  return collective(
      tensor,
      tensor,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        return ncclBcast(
            input.data_ptr(),
            input.numel(),
            getNcclDataType(input.scalar_type()),
            root,
            comm,
            stream.stream());
      },
      OpType::BROADCAST,
      "nccl:broadcast",
      avoidRecordStreams,
      nanCheck);
}

// _broadcast_oop adds an out-of-place broadcast in PGNCCL
// Custom collectives may be implemented by coalescing broadcast operations
// One use-case is implementing a vector all_gather (all_gather_v)
// where unevenly sized inputs are gathered among participating ranks
// Since all_gather provides an out-of-place API, an all_gather_v
// semantic implemented inside pg_nccl.all_gather also needs to support
// out-of-place, for which an out-of-place broadcast is required to be added
c10::intrusive_ptr<Work> ProcessGroupNCCL::_broadcast_oop(
    at::Tensor& outputTensor,
    at::Tensor& inputTensor,
    const BroadcastOptions& opts) {
  if (outputTensor.numel() != inputTensor.numel()) {
    C10_THROW_ERROR(
        ValueError,
        "Tensor input and output of _broadcast_oop must have the same number of elements ");
  }
  const auto root = opts.rootRank + opts.rootTensor;
  bool nanCheck = (root == rank_);
  return collective(
      inputTensor,
      outputTensor,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        return ncclBroadcast(
            input.data_ptr(),
            output.data_ptr(),
            input.numel(),
            getNcclDataType(input.scalar_type()),
            root,
            comm,
            stream.stream());
      },
      OpType::BROADCAST,
      "nccl:_broadcast_oop",
      /*avoidRecordStreams=*/false,
      nanCheck);
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::reduce(
    std::vector<at::Tensor>& tensors,
    const ReduceOptions& opts) {
  TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  // @lint-ignore CLANGTIDY
  auto tensor = tensors.back();
  if (tensor.is_complex()) {
    TORCH_CHECK(
        complexViewAsRealAllowed(opts.reduceOp),
        "reduce does not support",
        opts.reduceOp,
        "on complex tensors");
    tensor = at::view_as_real(tensor);
  }
  check_gpu_single_tensor(tensor);
  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      tensors, // inputTensors
      tensors, // outputTensors
      opts.rootRank, // root rank
      "reduce", // collective name
      tensor.numel(), // inNelems
      tensor.numel(), // outNelems
      tensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  // avoidRecordStreams_ note: collective() will stash tensors.
  return collective(
      tensor,
      tensor,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        const auto root = opts.rootRank + opts.rootTensor;
        auto ncclDataType = getNcclDataType(input.scalar_type());
        auto ncclReduceOp =
            getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
        return ncclReduce(
            input.data_ptr(),
            output.data_ptr(),
            input.numel(),
            ncclDataType,
            ncclReduceOp,
            root,
            comm,
            stream.stream());
      },
      OpType::REDUCE,
      "nccl:reduce");
}

// _reduce_oop exposes an out-of-place reduce from PGNCCL
// Custom collectives may be implemented by coalescing reduce operations
// One use-case is implementing a vector reduce_scatter (reduce_scatter_v)
// where inputs are reduced and scattered unevenly among participating ranks
// Since reduce_scatter provides an out-of-place API, a reduce_scatter_v
// semantic implemented inside pg_nccl.reduce_scatter also needs to support
// out-of-place, for which an out-of-place reduce is required to be added
c10::intrusive_ptr<Work> ProcessGroupNCCL::_reduce_oop(
    at::Tensor& outputTensor,
    at::Tensor& inputTensor,
    const ReduceOptions& opts) {
  if (outputTensor.numel() != inputTensor.numel()) {
    C10_THROW_ERROR(
        ValueError,
        "Tensor input and output of _reduce_oop must have the same number of elements ");
  }
  return collective(
      inputTensor,
      outputTensor,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        const auto root = opts.rootRank + opts.rootTensor;
        const auto ncclDataType = getNcclDataType(input.scalar_type());
        const auto ncclReduceOp =
            getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
        return ncclReduce(
            input.data_ptr(),
            output.data_ptr(),
            input.numel(),
            ncclDataType,
            ncclReduceOp,
            (int)root,
            comm,
            stream.stream());
      },
      OpType::REDUCE,
      "nccl:_reduce_oop");
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::allgather(
    std::vector<std::vector<at::Tensor>>& outputTensors,
    std::vector<at::Tensor>& inputTensors,
    const AllgatherOptions& opts) {
  TORCH_CHECK(inputTensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  // @lint-ignore CLANGTIDY
  auto inputTensor = inputTensors.back();
  check_gpu_single_tensor(inputTensor);
  // @lint-ignore CLANGTIDY
  auto outputTensors_ = outputTensors.back();

  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      inputTensors, // inputTensors
      outputTensors, // outputTensors
      rank_, // rank
      "all_gather", // collective name
      inputTensor.numel(), // inNelems
      inputTensor.numel() * // outNelems
          this->getSize(),
      inputTensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSize
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  bool same_size = check_same_size(outputTensors_);
  if (same_size) {
    // Flatten a vector of tensors into a single, stacked tensor.
    at::Tensor outputFlattened = newLikeFlat(outputTensors_);

    return collective(
        inputTensor,
        outputFlattened,
        [&](at::Tensor& input,
            at::Tensor& output,
            ncclComm_t comm,
            at::cuda::CUDAStream& stream) {
          if (!avoidRecordStreams_) {
            c10::cuda::CUDACachingAllocator::recordStream(
                output.storage().data_ptr(), stream);
          }
          return ncclAllGather(
              input.data_ptr(),
              output.data_ptr(),
              input.numel(),
              getNcclDataType(input.scalar_type()),
              comm,
              stream.stream());
        },
        [](at::cuda::CUDAStream& ncclStream,
           c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
          // avoidRecordStreams_ note: We actually don't need to stash anything
          // here.
          //  - inputTensors is stashed onto work->stashed_for_allocator_safety_
          //    in collective().
          //  - outputFlattened is stashed onto work->outputs_ in collective().
          //  - User-facing outputTensors should be held by the user until after
          //    waiting on work_, or the call makes no sense.
          // So all participating tensors are accounted for, and won't be
          // released back to their allocation streams until after work_ is
          // waited on.
        },
        [&](at::cuda::CUDAStream& ncclStream,
            c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
          // Copy the flattened output tensors to the outputs.
          at::cuda::CUDAStreamGuard guard(ncclStream);
          for (const auto j : c10::irange(outputTensors_.size())) {
            // See [Sync Streams].
            if (!avoidRecordStreams_) {
              c10::cuda::CUDACachingAllocator::recordStream(
                  outputTensors_[j].storage().data_ptr(), ncclStream);
            }
            outputTensors_[j].copy_(outputFlattened[j], true);
          }
        },
        OpType::ALLGATHER,
        "nccl:all_gather");
  } else {
    const auto num_reduces = outputTensors_.size();
    startCoalescing();
    for (const int i : c10::irange(num_reduces)) {
      auto& output = outputTensors_[i];
      auto& input = (i == rank_) ? inputTensor : output;
      auto broadcastOpts = BroadcastOptions{
          static_cast<int64_t>(i), static_cast<int64_t>(0), opts.timeout};
      _broadcast_oop(output, input, broadcastOpts);
    }
    auto work = endCoalescing(OpType::ALLGATHER);
    return work;
  }
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::allgather_coalesced(
    std::vector<std::vector<at::Tensor>>& /* unused */,
    std::vector<at::Tensor>& /* unused */,
    const AllgatherOptions& /* unused */) {
  C10_THROW_ERROR(
      NotImplementedError,
      "ProcessGroupNCCL does not support allgather_coalesced");
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::allgather_into_tensor_coalesced(
    std::vector<at::Tensor>& outputs,
    std::vector<at::Tensor>& inputs,
    const AllgatherOptions& opts) {
  // @lint-ignore CLANGTIDY
  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective and assume only one collective
                  // in coalesed range
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      inputs, // inputTensors
      outputs, // outputTensors
      rank_, // rank
      "allgather_into_tensor_coalesced", // collective name
      getTensorsNumel(inputs), // inNelems
      getTensorsNumel(outputs), // outNelems
      inputs[0].scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  return collectiveCoalesced(
      inputs,
      outputs,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        return ncclAllGather(
            input.data_ptr(),
            output.data_ptr(),
            input.numel(),
            getNcclDataType(input.scalar_type()),
            comm,
            stream.stream());
      },
      OpType::COALESCED,
      "nccl:all_gather_into_tensor_coalesced");
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::reduce_scatter(
    std::vector<at::Tensor>& outputTensors,
    std::vector<std::vector<at::Tensor>>& inputTensors,
    const ReduceScatterOptions& opts) {
  TORCH_CHECK(outputTensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  // @lint-ignore CLANGTIDY
  auto outputTensor = outputTensors.back();
  check_gpu_single_tensor(outputTensor);
  // @lint-ignore CLANGTIDY
  auto inputTensors_ = inputTensors.back();
  TORCH_CHECK(
      !isFloat8Type(outputTensor.scalar_type()),
      "Float8 dtypes are not currenlty supported for NCCL reductions");

  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      inputTensors, // inputTensors
      outputTensors, // outputTensors
      rank_, // rank
      "reduce_scatter", // collective name
      outputTensor.numel() * this->getSize(), // inNelems
      outputTensor.numel(), // outNelems
      outputTensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  bool same_size = check_same_size(inputTensors_);
  if (same_size) {
    // Flatten a vector of tensors into a single, stacked tensor.
    at::Tensor inputFlattened = newLikeFlat(inputTensors_);

    return collective(
        inputFlattened,
        outputTensor,
        [&](at::Tensor& input,
            at::Tensor& output,
            ncclComm_t comm,
            at::cuda::CUDAStream& stream) {
          if (!avoidRecordStreams_) {
            c10::cuda::CUDACachingAllocator::recordStream(
                output.storage().data_ptr(), stream);
          }
          const auto ncclDataType = getNcclDataType(input.scalar_type());
          const auto ncclReduceOp =
              getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
          return ncclReduceScatter(
              input.data_ptr(),
              output.data_ptr(),
              output.numel(),
              ncclDataType,
              ncclReduceOp,
              comm,
              stream.stream());
        },
        [&](at::cuda::CUDAStream& ncclStream,
            c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
          if (avoidRecordStreams_) {
            // We only need to stash inputTensors.
            //  - inputFlattened is stashed onto
            //  work->stashed_for_allocator_safety_
            //    in collective().
            //  - User-facing outputTensors is stashed onto work->outputs_ in
            //  collective(),
            //    and should also be held by the user until after waiting on
            //    work_.
            auto& v = work->stashed_for_allocator_safety_;
            v->insert(v->end(), inputTensors_.begin(), inputTensors_.end());
          }

          // Copy the input tensors to the flattened inputs.
          at::cuda::CUDAStreamGuard guard(ncclStream);
          for (const auto j : c10::irange(inputTensors_.size())) {
            // See [Sync Streams].
            if (!avoidRecordStreams_) {
              c10::cuda::CUDACachingAllocator::recordStream(
                  inputTensors_[j].storage().data_ptr(), ncclStream);
            }
            inputFlattened[j].copy_(inputTensors_[j], true);
          }
        },
        [&](at::cuda::CUDAStream&,
            c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
        OpType::REDUCE_SCATTER,
        "nccl:reduce_scatter");
  } else {
    const auto num_reduces = inputTensors_.size();
    startCoalescing();
    for (const int i : c10::irange(num_reduces)) {
      auto& input = inputTensors_[i];
      auto& output = (i == rank_) ? outputTensor : input;
      auto reduceOpts = ReduceOptions{
          opts.reduceOp,
          static_cast<int64_t>(i),
          static_cast<int64_t>(0),
          opts.timeout};
      _reduce_oop(output, input, reduceOpts);
    }
    auto work = endCoalescing(OpType::REDUCE_SCATTER);
    return work;
  }
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::_reduce_scatter_base(
    at::Tensor& outputTensor,
    at::Tensor& inputTensor,
    const ReduceScatterOptions& opts) {
  if (inputTensor.dtype() != outputTensor.dtype()) {
    C10_THROW_ERROR(
        TypeError, "input tensor must be the same type as the output tensor.");
  }

  if (inputTensor.numel() != outputTensor.numel() * size_) {
    C10_THROW_ERROR(
        ValueError,
        "input tensor must be the same size as output size times world size");
  }

  // @lint-ignore CLANGTIDY
  const auto& tensor = outputTensor;
  TORCH_CHECK(
      !isFloat8Type(tensor.scalar_type()),
      "Float8 dtypes are not currenlty supported for NCCL reductions");
  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      inputTensor, // inputTensor
      outputTensor, // outputTensor
      rank_, // rank
      "_reduce_scatter_base", // collective name
      inputTensor.numel(), // inNelems
      tensor.numel(), // outNelems
      tensor.scalar_type(), // dtype
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  // avoidRecordStreams_ note: collective() will stash inputs and outputs.
  // Note 2: for asyncOp = false, we don't want to record streams because we
  // know that the NCCL stream will join back to the "current" stream right
  // after this op. So we might just as well keep the stream ownership of the
  // input/output tensors unchanged. The benefit would be that the
  // allocation/free of the tensors would look deterministic to the "current"
  // stream so that the caching allocator can reuse memory pool for this stream
  // in a clever way. This setting is added for libraries like FSDP which uses
  // `reduce_scatter_tensor`.
  bool avoidRecordStreams = avoidRecordStreams_ || (!opts.asyncOp);

  return collective(
      inputTensor,
      outputTensor,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        if (!avoidRecordStreams) {
          c10::cuda::CUDACachingAllocator::recordStream(
              output.storage().data_ptr(), stream);
        }
        auto ncclDataType = getNcclDataType(input.scalar_type());
        auto ncclReduceOp =
            getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
        return ncclReduceScatter(
            input.data_ptr(),
            output.data_ptr(),
            output.numel(),
            ncclDataType,
            ncclReduceOp,
            comm,
            stream.stream());
      },
      OpType::_REDUCE_SCATTER_BASE,
      "nccl:_reduce_scatter_base",
      avoidRecordStreams);
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::reduce_scatter_tensor_coalesced(
    std::vector<at::Tensor>& outputs,
    std::vector<at::Tensor>& inputs,
    const ReduceScatterOptions& opts) {
  TORCH_CHECK(
      !isFloat8Type(inputs.back().scalar_type()),
      "Float8 dtypes are not currenlty supported for NCCL reductions");

  // @lint-ignore CLANGTIDY
  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective and assume only one collective
                  // in coalesed range
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      inputs, // inputTensors
      outputs, // outputTensors
      rank_, // rank
      "reduce_scatter_tensor_coalesced", // collective name
      getTensorsNumel(inputs), // inNelems
      getTensorsNumel(outputs), // outNelems
      inputs[0].scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  return collectiveCoalesced(
      inputs,
      outputs,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        if (!avoidRecordStreams_) {
          c10::cuda::CUDACachingAllocator::recordStream(
              output.storage().data_ptr(), stream);
        }
        auto ncclDataType = getNcclDataType(input.scalar_type());
        auto ncclReduceOp =
            getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
        return ncclReduceScatter(
            input.data_ptr(),
            output.data_ptr(),
            output.numel(),
            ncclDataType,
            ncclReduceOp,
            comm,
            stream.stream());
      },
      OpType::COALESCED,
      "nccl:reduce_scatter_tensor_coalesced");
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::barrier(const BarrierOptions& opts) {
  RECORD_PARAM_COMMS(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      rank_, // rank
      "barrier", // collective name
      0, // inNelems
      0, // outNelems
      at::kByte, // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  // Device to use for barrier
  int barDevIdx = -1;

  // Select device to use for barrier
  // 1st choice: Use user defined GPU device ids if provided
  if (!opts.device_ids.empty()) {
    // Use the first device id because PG NCCL is single-device now
    barDevIdx = opts.device_ids[0];
  } else if (getBoundDeviceId()) {
    // 2nd choice: Use the bound GPU device id if available.
    // Bounded device id can be passed to `init_process_group`.
    barDevIdx = (*getBoundDeviceId()).index();
  } else if (!usedDeviceIdxs_.empty()) {
    // 3rd choice: infer the device id from the used device ids.
    barDevIdx = *usedDeviceIdxs_.begin();
  } else {
    // This means there is not yet a NCCL collective being called
    // Here we have to use the best guesses and will use a single GPU to call
    // allreduce to achieve barrier.
    // In case the multiple processes fall into the same node, we use rank to
    // ensure that each process is on a different GPU
    // Note: it is better to use global rank because the group-local rank can be
    // offset wrt the device id if intra-node GPUs are sharded into multiple
    // dimensions.
    barDevIdx = static_cast<int16_t>(globalRank() % localDeviceCount_);
    LOG(WARNING)
        << logPrefix()
        << c10::str(
               " using GPU ",
               barDevIdx,
               " to perform barrier as devices used by this process are currently unknown. ",
               "This can potentially cause a hang if this rank to GPU mapping is incorrect. ",
               "Specify device_ids in barrier() to force use of a particular device, ",
               "or call init_process_group() with a device_id.");
  }

  TORCH_CHECK_WITH(
      ValueError,
      barDevIdx >= 0,
      "Failed to infer a GPU device id to perform barrier. ");
  auto barDevice = at::Device(
      at::DeviceType::CUDA, static_cast<c10::DeviceIndex>(barDevIdx));

  // Create a dummy tensor on the device
  // Note: we use zeros() instead of empty() to prevent barrier from triggering
  // alarm when NaN checker is enabled.
  at::Tensor barrierTensor =
      at::zeros({1}, at::TensorOptions().device(barDevice).dtype(at::kFloat));

  // All reduce to achieve the barrier
  auto work = allreduce_impl(barrierTensor, "nccl:all_reduce_barrier");

  // Work will take over barrierTensors
  auto ncclWork = dynamic_cast<ProcessGroupNCCL::WorkNCCL*>(work.get());
  TORCH_CHECK(ncclWork);
  ncclWork->isBarrierOp_ = true;
  return work;
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::alltoall_base(
    at::Tensor& outputTensor,
    at::Tensor& inputTensor,
    std::vector<int64_t>& outputSplitSizes,
    std::vector<int64_t>& inputSplitSizes,
    const AllToAllOptions& /* unused */) {
  check_gpu_single_tensor(outputTensor);
  check_gpu_single_tensor(inputTensor);
  if (outputSplitSizes.empty() && inputSplitSizes.empty()) {
    RECORD_PARAM_COMMS_DATA(
        std::make_tuple(
            static_cast<int64_t>(seqCollective_) + 1,
            false), // seq + 1 to match collective
        std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
        inputTensor, // inputTensor
        outputTensor, // outputTensor
        rank_, // rank
        "all_to_all", // collective name
        inputTensor.numel(), // inNelems
        outputTensor.numel(), // outNelems
        inputTensor.scalar_type(), // dType
        std::vector<int64_t>(), // inSplitSizes
        std::vector<int64_t>(), // outSplitSizes
        globalRankStart, // globalRankStart
        globalRankStride, // globalRankStride
        this->getSize()); // worldSize

    // avoidRecordStreams_ note: collective() will stash inputTensors and
    // outputTensors.
    return collective(
        inputTensor,
        outputTensor,
        [&](at::Tensor& input,
            at::Tensor& output,
            ncclComm_t comm,
            at::cuda::CUDAStream& stream) {
          // See [Sync Streams].
          if (!avoidRecordStreams_) {
            c10::cuda::CUDACachingAllocator::recordStream(
                output.storage().data_ptr(), stream);
          }
          torch::cuda::nccl::all2all_single_equal_split(
              input, output, this->getSize(), comm, stream);
          return ncclSuccess;
        },
        OpType::ALLTOALL_BASE,
        "nccl:all_to_all");
  } else {
    c10d::checkSplitSizes(inputSplitSizes, inputTensor, size_);
    c10d::checkSplitSizes(outputSplitSizes, outputTensor, size_);

    RECORD_PARAM_COMMS_DATA(
        std::make_tuple(
            static_cast<int64_t>(seqCollective_) + 1,
            false), // seq + 1 to match collective
        std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
        inputTensor, // inputTensor
        outputTensor, // outputTensor
        rank_, // rank
        "all_to_allv", // collective name
        inputTensor.numel(), // inNelems
        outputTensor.numel(), // outNelems
        inputTensor.scalar_type(), // dType
        inputSplitSizes, // inSplitSizes
        outputSplitSizes, // outSplitSizes
        globalRankStart, // globalRankStart
        globalRankStride, // globalRankStride
        this->getSize()); // worldSize

    // avoidRecordStreams_ note: collective() will stash inputTensors and
    // outputTensors.
    return collective(
        inputTensor,
        outputTensor,
        [&](at::Tensor& input,
            at::Tensor& output,
            ncclComm_t comm,
            at::cuda::CUDAStream& stream) {
          std::vector<size_t> send_lengths(size_);
          std::vector<size_t> recv_lengths(size_);
          std::vector<size_t> send_offsets(size_);
          std::vector<size_t> recv_offsets(size_);
          c10d::computeLengthsAndOffsets(
              inputSplitSizes, input, &send_lengths, &send_offsets);
          c10d::computeLengthsAndOffsets(
              outputSplitSizes, output, &recv_lengths, &recv_offsets);
          // See [Sync Streams].
          if (!avoidRecordStreams_) {
            c10::cuda::CUDACachingAllocator::recordStream(
                output.storage().data_ptr(), stream);
          }
          torch::cuda::nccl::all2all_single_unequal_split(
              input.data_ptr(),
              send_lengths.data(),
              send_offsets.data(),
              output.data_ptr(),
              recv_lengths.data(),
              recv_offsets.data(),
              input.element_size(),
              input.scalar_type(),
              comm,
              stream);
          return ncclSuccess;
        },
        OpType::ALLTOALL_BASE,
        "nccl:all_to_all");
  }
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::alltoall(
    std::vector<at::Tensor>& outputTensors,
    std::vector<at::Tensor>& inputTensors,
    const AllToAllOptions& /* unused */) {
  std::vector<int64_t> inSplitSizes;
  std::vector<int64_t> outSplitSizes;
  int64_t total_numel = 0;

  auto device = outputTensors[0].device();
  for (const auto r : c10::irange(outputTensors.size())) {
    check_gpu_single_tensor(outputTensors[r]);
    check_gpu_single_tensor(inputTensors[r]);
    TORCH_CHECK(
        device == outputTensors[r].device() &&
            device == inputTensors[r].device(),
        "Tensors must be on the same device")
    inSplitSizes.push_back(inputTensors[r].numel());
    outSplitSizes.push_back(outputTensors[r].numel());
    total_numel += inputTensors[r].numel();
  }

  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      inputTensors, // inputTensors
      outputTensors, // outputTensors
      rank_, // rank
      "all_to_all", // collective name
      total_numel, // inNelems
      total_numel, // outNelems
      inputTensors.front().scalar_type(), // dType
      inSplitSizes, // inSplitSizes
      outSplitSizes, // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  return collective(
      inputTensors,
      outputTensors,
      [&](at::Tensor& /* unused */,
          at::Tensor& /* unused */,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        torch::cuda::nccl::all2all(outputTensors, inputTensors, comm, stream);
        return ncclSuccess;
      },
      [&](at::cuda::CUDAStream&,
          c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
        if (avoidRecordStreams_) {
          // inputTensor0 and outputTensor0 are stashed redundantly by
          // collective(), but that's ok.
          auto& v = work->stashed_for_allocator_safety_;
          v->insert(v->end(), inputTensors.begin(), inputTensors.end());
          v->insert(v->end(), outputTensors.begin(), outputTensors.end());
        }
      },
      [](at::cuda::CUDAStream&,
         c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
      OpType::ALLTOALL,
      "nccl:all_to_all");
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::send(
    std::vector<at::Tensor>& tensors,
    int dstRank,
    int /* unused */) {
  TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  // @lint-ignore CLANGTIDY
  auto tensor = tensors.back();
  check_gpu_single_tensor(tensor, true);

  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqP2P_) + (coalescing_state_ & CoalP2P ? 0 : 1),
          true), // the 1st p2p in coalesced range sets coalescing_state_ and
                 // bumps seqP2P_
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      tensors, // inputTensors
      tensors, // outputTensors
      dstRank, // dst rank
      "send", // collective name
      tensor.numel(), // inNelems
      tensor.numel(), // outNelems
      tensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  auto ret = pointToPoint(
      tensor,
      [&](at::Tensor& input,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream,
          int dst) {
        auto ncclDataType = getNcclDataType(input.scalar_type());
        return ncclSend(
            input.data_ptr(),
            input.numel(),
            ncclDataType,
            dst,
            comm,
            stream.stream());
      },
      dstRank,
      OpType::SEND,
      c10::str("nccl:send ", rank_, "->", dstRank).c_str());
  return ret;
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::recv(
    std::vector<at::Tensor>& tensors,
    int srcRank,
    int /* unused */) {
  TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  // @lint-ignore CLANGTIDY
  auto tensor = tensors.back();
  check_gpu_single_tensor(tensor, true);

  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqP2P_) + (coalescing_state_ & CoalP2P ? 0 : 1),
          true), // the 1st p2p in coalesced range sets coalescing_state_ and
                 // bumps seqP2P_
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      tensors, // inputTensors
      tensors, // outputTensors
      srcRank, // src rank
      "recv", // collective name
      tensor.numel(), // inNelems
      tensor.numel(), // outNelems
      tensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSizes
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  auto ret = pointToPoint(
      tensor,
      [&](at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream,
          int src) {
        auto ncclDataType = getNcclDataType(output.scalar_type());
        return ncclRecv(
            output.data_ptr(),
            output.numel(),
            ncclDataType,
            src,
            comm,
            stream.stream());
      },
      srcRank,
      OpType::RECV,
      c10::str("nccl:recv ", rank_, "<-", srcRank).c_str());
  return ret;
}

void ProcessGroupNCCL::groupStart() {
  C10D_NCCL_CHECK(ncclGroupStart(), std::nullopt);
  ++ncclActiveGroupCounter_;
}

void ProcessGroupNCCL::groupEnd() {
  C10D_NCCL_CHECK(ncclGroupEnd(), std::nullopt);
  --ncclActiveGroupCounter_;
}

void ProcessGroupNCCL::groupEndNonblocking(
    const std::shared_ptr<NCCLComm>& comm) {
#ifndef NCCL_HAS_COMM_NONBLOCKING
  C10D_NCCL_CHECK(ncclGroupEnd(), std::nullopt);
#else
  if (!useNonblocking()) {
    C10D_NCCL_CHECK(ncclGroupEnd(), std::nullopt);
  } else {
    C10D_NCCL_CHECK_TIMEOUT_GROUPEND(ncclGroupEnd(), comm, std::nullopt);
  }
#endif
  --ncclActiveGroupCounter_;
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::gather(
    std::vector<std::vector<at::Tensor>>& outputTensors,
    std::vector<at::Tensor>& inputTensors,
    const GatherOptions& opts) {
  static auto invalidArgument = [](const std::string& msg) {
    C10_THROW_ERROR(ValueError, "ProcessGroupNCCL::gather: " + msg);
  };

  assertRootRank(invalidArgument, opts.rootRank, size_);

  TORCH_CHECK(inputTensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  // @lint-ignore CLANGTIDY
  auto inputTensor = inputTensors.back();

  std::vector<at::Tensor> outputs;

  if (getRank() == opts.rootRank) {
    if (outputTensors.size() != 1) {
      std::stringstream ss;
      ss << "requires a single-element output list containing a list with "
         << getSize() << " tensors.";
      invalidArgument(ss.str());
    } else if (outputTensors[0].size() != static_cast<size_t>(getSize())) {
      std::stringstream ss;
      ss << "Incorrect output list size " << outputTensors[0].size()
         << ". Output list size should be " << getSize()
         << ", same as size of the process group.";
      invalidArgument(ss.str());
    }

    const auto& options = inputTensor.options();
    const auto& sizes = inputTensor.sizes();
    assertTypeAndSizesMatch(invalidArgument, outputTensors[0], options, sizes);
    outputs = outputTensors[0];
  } else {
    // if not in the root rank, initialize outputs as empty list
    if (!outputTensors.empty()) {
      invalidArgument("requires empty output on non-root");
    }
    outputs = {};
    // append a empty tensor to the list, we don't use it but the
    // `collective` template function requires it to invoke its function
    outputs.emplace_back();
  }

  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      inputTensors, // inputTensors
      outputTensors, // outputTensors
      opts.rootRank, // root rank
      "gather", // collective name
      inputTensor.numel(), // inNelems
      inputTensor.numel() * this->getSize(), // outNelems
      inputTensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSize
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  // avoidRecordStreams_ note: collective() will stash inputTensors and
  // outputs, which == outputTensors[0] on the root rank where it matters.

  auto inputs = std::vector<at::Tensor>{inputTensor};
  return collective(
      inputs,
      outputs, // just to fit the collective interface
      [&](at::Tensor& /* unused */,
          at::Tensor& /* unused */,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        const auto root = opts.rootRank;
        if (getRank() == root) {
          if (!avoidRecordStreams_) {
            for (auto const& output : outputs) {
              c10::cuda::CUDACachingAllocator::recordStream(
                  output.storage().data_ptr(), stream);
            }
          }
        }
        torch::cuda::nccl::gather(
            inputTensor, outputs, comm, stream, static_cast<int32_t>(root));
        return ncclSuccess;
      },
      [](at::cuda::CUDAStream&,
         c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
      [](at::cuda::CUDAStream&,
         c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
      OpType::GATHER,
      "nccl:gather");
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::scatter(
    std::vector<at::Tensor>& outputTensors,
    std::vector<std::vector<at::Tensor>>& inputTensors,
    const ScatterOptions& opts) {
  static auto invalidArgument = [](const std::string& msg) {
    C10_THROW_ERROR(ValueError, "ProcessGroupNCCL::scatter: " + msg);
  };

  assertRootRank(invalidArgument, opts.rootRank, size_);

  TORCH_CHECK(outputTensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
  auto outputTensor = outputTensors.back();

  std::vector<at::Tensor> inputs;

  if (getRank() == opts.rootRank) {
    if (inputTensors.size() != 1) {
      std::stringstream ss;
      ss << "requires a single-element input list containing a list with "
         << getSize() << " tensors.";
      invalidArgument(ss.str());
    } else if (inputTensors[0].size() != static_cast<size_t>(getSize())) {
      std::stringstream ss;
      ss << "Incorrect input list size " << inputTensors[0].size()
         << ". Input list size should be " << getSize()
         << ", same as size of the process group.";
      invalidArgument(ss.str());
    }

    const auto& options = outputTensor.options();
    const auto& sizes = outputTensor.sizes();
    assertTypeAndSizesMatch(invalidArgument, inputTensors[0], options, sizes);
    inputs = inputTensors[0];
  } else {
    // if not in the root rank, initialize inputTensors as empty place holder
    // with an empty list
    if (!inputTensors.empty()) {
      invalidArgument("requires empty input on non-root");
    }
    inputs = {};
    // append a empty tensor to the list, we don't use it but the
    // `collective` template function requires it to invoke its function
    inputs.emplace_back();
  }

  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      inputTensors, // inputTensors
      outputTensors, // outputTensors
      opts.rootRank, // root rank
      "scatter", // collective name
      outputTensor.numel() * this->getSize(), // inNelems
      outputTensor.numel(), // outNelems
      outputTensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSize
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  // avoidRecordStreams_ note: collective() will stash outputTensors and
  // inputs, which == inputTensors[0] on the root rank where it matters.
  bool avoidRecordStreams = avoidRecordStreams_ || (!opts.asyncOp);

  const auto root = opts.rootRank;
  bool nanCheck = (rank_ == root);

  auto outputs = std::vector<at::Tensor>{outputTensor};
  return collective(
      outputs,
      inputs, // just to fit the collective interface
      [&](at::Tensor& /* unused */,
          at::Tensor& /* unused */,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        if (getRank() == root) {
          if (!avoidRecordStreams) {
            for (auto const& input : inputs) {
              c10::cuda::CUDACachingAllocator::recordStream(
                  input.storage().data_ptr(), stream);
            }
          }
        }
        torch::cuda::nccl::scatter(
            inputs, outputTensor, comm, stream, static_cast<int32_t>(root));
        return ncclSuccess;
      },
      [](at::cuda::CUDAStream&,
         c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
      [](at::cuda::CUDAStream&,
         c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
      OpType::SCATTER,
      "nccl:scatter",
      avoidRecordStreams,
      nanCheck);
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::recvAnysource(
    std::vector<at::Tensor>& /* unused */,
    int /* unused */) {
  C10_THROW_ERROR(
      NotImplementedError, "ProcessGroupNCCL does not support recvAnysource");
}

c10::intrusive_ptr<Work> ProcessGroupNCCL::_allgather_base(
    at::Tensor& output_tensor,
    at::Tensor& input_tensor,
    const AllgatherOptions& opts) {
  check_gpu_single_tensor(input_tensor);
  check_gpu_single_tensor(output_tensor);

  if (input_tensor.dtype() != output_tensor.dtype()) {
    C10_THROW_ERROR(
        TypeError, "output tensor must have the same type as input tensor");
  }

  if (input_tensor.numel() * size_ != output_tensor.numel()) {
    C10_THROW_ERROR(
        ValueError,
        "output tensor size must be equal to world_size times input tensor size");
  }

  RECORD_PARAM_COMMS_DATA(
      std::make_tuple(
          static_cast<int64_t>(seqCollective_) + 1,
          false), // seq + 1 to match collective
      std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
      input_tensor, // inputTensors
      output_tensor, // outputTensors
      rank_, // rank
      "_allgather_base", // collective name
      input_tensor.numel(), // inNelems
      output_tensor.numel(), // outNelems
      output_tensor.scalar_type(), // dType
      std::vector<int64_t>(), // inSplitSizes
      std::vector<int64_t>(), // outSplitSize
      globalRankStart, // globalRankStart
      globalRankStride, // globalRankStride
      this->getSize()); // worldSize

  // avoidRecordStreams_ note: collective() will stash inputs and outputs.
  // Note 2: for asyncOp = false, we don't want to record streams because we
  // know that the NCCL stream will join back to the "current" stream right
  // after this op. So we might just as well keep the stream ownership of the
  // input/output tensors unchanged. The benefit would be that the
  // allocation/free of the tensors would look deterministic to the "current"
  // stream so that the caching allocator can reuse memory pool for this stream
  // in a clever way. This setting is added for libraries like FSDP which uses
  // `all_gather_into_tensor`.
  bool avoidRecordStreams = avoidRecordStreams_ || (!opts.asyncOp);

  return collective(
      input_tensor,
      output_tensor,
      [&](at::Tensor& input,
          at::Tensor& output,
          ncclComm_t comm,
          at::cuda::CUDAStream& stream) {
        if (!avoidRecordStreams) {
          c10::cuda::CUDACachingAllocator::recordStream(
              output.storage().data_ptr(), stream);
        }
        return ncclAllGather(
            input.data_ptr(),
            output.data_ptr(),
            input.numel(),
            getNcclDataType(input.scalar_type()),
            comm,
            stream.stream());
      },
      OpType::_ALLGATHER_BASE,
      "nccl:_all_gather_base",
      avoidRecordStreams);
}

} // namespace c10d

#endif // USE_C10D_NCCL