1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
|
#ifdef USE_C10D_NCCL
#include <exception>
#include <map>
#include <mutex>
#include <sstream>
#include <stdexcept>
#include <tuple>
#include <utility>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAGraph.h>
#include <c10/core/DeviceType.h>
#include <c10/cuda/CUDAAllocatorConfig.h>
#include <c10/cuda/CUDAGraphsC10Utils.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/util/CallOnce.h>
#include <c10/util/Exception.h>
#include <c10/util/Logging.h>
#include <c10/util/WaitCounter.h>
#include <c10/util/irange.h>
#include <c10/util/thread_name.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/distributed/c10d/FlightRecorder.hpp>
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/NanCheck.hpp>
#include <torch/csrc/distributed/c10d/ParamCommsUtils.hpp>
#include <torch/csrc/distributed/c10d/PrefixStore.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#include <torch/csrc/distributed/c10d/TraceUtils.h>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <torch/csrc/distributed/c10d/logger.hpp>
#include <torch/torch.h>
#include <optional>
namespace c10d {
constexpr const char* const kNCCLAbortedCommStoreKey = "NCCLABORTEDCOMM";
namespace {
#if defined(NCCL_MAJOR) && \
((NCCL_MAJOR > 2) || (NCCL_MAJOR == 2) && (NCCL_MINOR >= 10))
#define NCCL_HAS_AVG 1
#endif
// NCCL op mapping
const std::map<ReduceOp::RedOpType, ncclRedOp_t> ncclOp = {
{ReduceOp::MIN, ncclMin},
{ReduceOp::MAX, ncclMax},
{ReduceOp::SUM, ncclSum},
{ReduceOp::PRODUCT, ncclProd},
#ifdef NCCL_HAS_AVG
{ReduceOp::AVG, ncclAvg},
#endif
};
// NCCL type typing
std::map<at::ScalarType, ncclDataType_t> ncclDataType = {
{at::kChar, ncclInt8},
{at::kByte, ncclUint8},
{at::kFloat, ncclFloat},
{at::kDouble, ncclDouble},
{at::kInt, ncclInt32},
{at::kLong, ncclInt64},
{at::kHalf, ncclHalf},
{at::kBool, ncclUint8},
{at::kFloat8_e5m2, ncclUint8},
{at::kFloat8_e4m3fn, ncclUint8},
{at::kFloat8_e4m3fnuz, ncclUint8},
{at::kFloat8_e5m2fnuz, ncclUint8},
#if HAS_NCCL_BF16_DATATYPE
{at::kBFloat16, ncclBfloat16},
#endif
};
// Helper function that gets the data type and issues error if not supported
ncclDataType_t getNcclDataType(at::ScalarType type) {
auto it = ncclDataType.find(type);
TORCH_CHECK_WITH(
TypeError,
it != ncclDataType.end(),
"Input tensor data type is not supported for NCCL process group: ",
type);
return it->second;
}
bool complexViewAsRealAllowed(const ReduceOp& reduceOp) {
switch (reduceOp) {
// NOLINTNEXTLINE(bugprone-branch-clone)
case ReduceOp::SUM:
return true;
case ReduceOp::AVG:
return true;
case ReduceOp::PREMUL_SUM:
return true;
case ReduceOp::UNUSED:
return true;
default:
return false;
}
return false;
}
#ifdef ENABLE_NCCL_PREMUL_SUM_SUPPORT
template <typename T, ncclDataType_t dataType>
ncclRedOpRAII unpackPreMulSum(
const ReduceOp& reduceOp,
const ncclComm_t& comm) {
const auto* preMulSupplement =
reinterpret_cast<NCCLPreMulSumSupplement*>(reduceOp.supplement_.get());
ncclRedOp_t preMulSum{};
bool has_tensor = preMulSupplement->tensor_factor.defined();
auto residence = has_tensor ? ncclScalarDevice : ncclScalarHostImmediate;
const T* ptr_factor = has_tensor
? preMulSupplement->tensor_factor.const_data_ptr<T>()
: nullptr;
T scalar_factor = T(preMulSupplement->double_factor);
ncclRedOpCreatePreMulSum(
&preMulSum,
// https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/ops.html#ncclredopcreatepremulsum
// tells us that the scalar input is strictly a multiplier.
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
/*scalar=*/has_tensor ? const_cast<T*>(ptr_factor) : &scalar_factor,
dataType,
residence,
comm);
return ncclRedOpRAII(preMulSum, comm);
}
#endif
ncclRedOpRAII getNcclReduceOp(
const ReduceOp& reduceOp,
at::Tensor& input,
const ncclDataType_t& dataType,
const ncclComm_t& comm) {
try {
if (input.scalar_type() == at::kBool) {
if (reduceOp == ReduceOp::SUM) {
// For bool tensors, map sum to max, which both represent a bitwise or.
// This is to prevent overflow issues with sum, since we use uint8 to
// represent a bool (see ncclDataType mapping).
return ncclMax;
}
#ifdef NCCL_HAS_AVG
if (reduceOp == ReduceOp::AVG) {
C10_THROW_ERROR(
TypeError, "Cannot use ReduceOp.AVG with boolean inputs");
}
#endif
}
if (reduceOp == ReduceOp::PREMUL_SUM) {
#ifdef ENABLE_NCCL_PREMUL_SUM_SUPPORT
switch (dataType) {
case ncclHalf:
return unpackPreMulSum<at::Half, ncclHalf>(reduceOp, comm);
case ncclFloat:
return unpackPreMulSum<float, ncclFloat>(reduceOp, comm);
case ncclDouble:
return unpackPreMulSum<double, ncclDouble>(reduceOp, comm);
default:
C10_THROW_ERROR(
TypeError, "PreMulSum Data type must be half, float, or double");
return ncclRedOp_t{};
}
#else
C10_THROW_ERROR(ValueError, "PreMulSum requires NCCL>=2.11.1");
#endif
}
return ncclOp.at(reduceOp);
} catch (const std::out_of_range&) {
switch (reduceOp) {
case ReduceOp::AVG:
C10_THROW_ERROR(
ValueError,
c10::str(
"AVG requires NCCL 2.10+. The current version is ",
NCCL_MAJOR,
".",
NCCL_MINOR));
break;
case ReduceOp::BAND:
C10_THROW_ERROR(ValueError, "Cannot use ReduceOp.BAND with NCCL");
break;
case ReduceOp::BOR:
C10_THROW_ERROR(ValueError, "Cannot use ReduceOp.BOR with NCCL");
break;
case ReduceOp::BXOR:
C10_THROW_ERROR(ValueError, "Cannot use ReduceOp.BXOR with NCCL");
break;
default:
C10_THROW_ERROR(ValueError, "Unhandled ReduceOp");
break;
}
}
}
// Get a key string from device
inline std::string getKeyFromDevice(at::Device& device) {
return std::to_string(device.index());
}
inline at::DeviceIndex getIndexFromDeviceKey(const std::string& deviceKey) {
// initialize the device index to -1, which is an invalid value.
int index = -1;
try {
index = std::stoi(deviceKey);
} catch (const std::invalid_argument& e) {
LOG(ERROR) << c10::str(
"Invalid deviceKey: ", deviceKey, ",", e.what(), ".");
} catch (const std::out_of_range& e) {
LOG(ERROR) << "Out of range: " << e.what();
}
return static_cast<at::DeviceIndex>(index);
}
std::string getKeySendRecv(int myRank, int peer) {
int lowRank = myRank < peer ? myRank : peer;
int highRank = myRank < peer ? peer : myRank;
std::string sendRecvPair =
std::to_string(lowRank) + ":" + std::to_string(highRank);
return sendRecvPair;
}
// Get device from tensor
inline at::Device getDevice(at::Tensor& tensor) {
return tensor.device();
}
// [Sync Streams] Helper that lets the input ncclStreams to wait for the current
// stream. NCCL communications run on ncclStreams, but input tensors are
// allocated on different streams (i.e., current streams). Communications on
// ncclStreams cannot start before pending input tensor ops on current streams
// finish. Otherwise, ops on two streams might read/write same tensors
// concurrently.
//
// The synchronization above alone is not enough. We also need to make sure
// input tensors are not freed before their usages on ncclStreams finish. This
// can be achieved by calling c10::cuda::CUDACachingAllocator::recordStream,
// which remembers the usage stream (ncclStream), creates an event on the usage
// stream when GC attempts to free the input tensor, and delays GC until that
// event is done.
void syncStream(
at::Device& device,
at::cuda::CUDAEvent& ncclEvent,
at::cuda::CUDAStream& ncclStream) {
ncclEvent.record(at::cuda::getCurrentCUDAStream(device.index()));
ncclEvent.block(ncclStream);
}
// Given a ncclUniqueId, convert it to a string representation that can be put
// in the store.
std::string buildNcclUniqueIdStr(const ncclUniqueId& ncclID) {
const uint8_t* bytes = reinterpret_cast<const uint8_t*>(&ncclID);
std::ostringstream oss;
for (const auto i : c10::irange(NCCL_UNIQUE_ID_BYTES)) {
oss << std::hex << static_cast<int>(bytes[i]);
}
return oss.str();
}
std::string getNcclAbortedCommStoreKey(const std::string& ncclIdStr) {
return std::string(kNCCLAbortedCommStoreKey) + ":" + ncclIdStr;
}
// Returns exception's what() given an exception_ptr instance.
std::string getExceptionMsgFromExceptionPtr(
const std::exception_ptr& exceptionPtr) {
TORCH_CHECK(exceptionPtr != nullptr);
try {
std::rethrow_exception(exceptionPtr);
} catch (const std::exception& e) {
return e.what();
} catch (...) {
return "Unknown exception type";
}
}
inline void errorIfCapturingNonCapturableNCCL(c10::cuda::CaptureStatus status) {
// parentheses avoid some compiler warnings
static const uint64_t min_version =
(((uint64_t)2) << 32) + (((uint64_t)9) << 16) + ((uint64_t)6);
static const uint64_t cur_version = torch::cuda::nccl::version();
if (cur_version < min_version) {
TORCH_CHECK_WITH(
NotImplementedError,
status == c10::cuda::CaptureStatus::None,
"Capturing NCCL collectives is only allowed with NCCL >= 2.9.6");
}
}
} // namespace
// Map from each communicator to its device index.
// This map is used when register/deregister cache segments from cache
// allocator. See design notes below:
// - Each segment should be registered only to the communicator on the
// same device.
// - We cannot reuse devNCCLCommMap_ in each ProcessGroup because the key may be
// ranks rather than device in point-to-point case.
// - This map has also to be maintained as global variable since the register
// hooks are called outside the scope of any PG, thus we need traverse
// communicators in all PGs.
static std::unordered_map<std::shared_ptr<NCCLComm>, int> ncclCommDevIdxMap;
static std::mutex ncclCommDevIdxMapMutex;
static bool allocatorHooksAttached = false;
std::atomic<bool> ProcessGroupNCCL::shouldDump_(false);
static void cacheAllocatorRegisterHook(
const c10::cuda::CUDACachingAllocator::TraceEntry& te) {
// Register after SEGMENT_ALLOC
if (te.action_ !=
c10::cuda::CUDACachingAllocator::TraceEntry::Action::SEGMENT_ALLOC) {
return;
}
std::lock_guard<std::mutex> lock(ncclCommDevIdxMapMutex);
for (auto& it : ncclCommDevIdxMap) {
auto& ncclComm = it.first;
auto& devIdx = it.second;
if (te.device_ == devIdx) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
ncclComm->registerSegment(reinterpret_cast<void*>(te.addr_), te.size_);
}
}
}
static void cacheAllocatorDeregisterHook(
const c10::cuda::CUDACachingAllocator::TraceEntry& te) {
// deregister before SEGMENT_FREE
if (te.action_ !=
c10::cuda::CUDACachingAllocator::TraceEntry::Action::SEGMENT_FREE) {
return;
}
std::lock_guard<std::mutex> lock(ncclCommDevIdxMapMutex);
for (auto& it : ncclCommDevIdxMap) {
auto& ncclComm = it.first;
auto& devIdx = it.second;
if (te.device_ == devIdx) {
// NOLINTNEXTLINE(performance-no-int-to-ptr)
ncclComm->deregisterSegment(reinterpret_cast<void*>(te.addr_));
}
}
}
static std::
unordered_map<std::string, std::unordered_map<std::string, std::string>>
getNCCLCommDumpMap() {
#if defined(IS_NCCLX) && defined(NCCL_COMM_DUMP)
std::unordered_map<
std::string /* ncclUniqueID */,
std::unordered_map<std::string, std::string> /* dump from this comm */>
ncclDumpMap;
// dump_nccl_trace is only called from the default PG (local_id_=0), but we
// want to dump from all comms so we need to iterate over ncclCommDevIdxMap,
// which is static
std::vector<std::shared_ptr<NCCLComm>> allNCCLComms;
// within the critical section, we don't want to dump while holding the lock
// as dump might hang
ncclCommDevIdxMapMutex.lock();
for (auto& [ncclComm, _] : ncclCommDevIdxMap) {
allNCCLComms.push_back(ncclComm);
}
ncclCommDevIdxMapMutex.unlock();
for (auto& ncclComm : allNCCLComms) {
std::string ncclUniqueIDStr = buildNcclUniqueIdStr(ncclComm->getNcclId());
ncclDumpMap[ncclUniqueIDStr] = ncclComm->ncclCommDump();
}
return ncclDumpMap;
#else
return std::unordered_map<
std::string,
std::unordered_map<std::string, std::string>>();
#endif
}
std::string dump_nccl_trace(
bool includeCollectives,
bool includeStackTraces,
bool onlyActive) {
auto ncclDumpMap = getNCCLCommDumpMap();
return FlightRecorder::get()->dump(
ncclDumpMap, includeCollectives, includeStackTraces, onlyActive);
}
std::string dump_nccl_trace_json(bool includeCollectives, bool onlyActive) {
auto ncclDumpMap = getNCCLCommDumpMap();
return FlightRecorder::get()->dump_json(
ncclDumpMap, includeCollectives, onlyActive);
}
std::optional<std::function<void(std::function<void(const std::string&)>)>>&
get_cpp_trace_dumper() {
static std::optional<
std::function<void(std::function<void(const std::string&)>)>>
dumper(std::nullopt);
return dumper;
}
gil_checker_t& get_gil_checker() {
static gil_checker_t gil_checker = nullptr;
return gil_checker;
}
static std::future<bool> launchAsyncGilCheck() {
std::promise<bool> resultPromise;
std::future<bool> resultFuture = resultPromise.get_future();
TORCH_CHECK(get_gil_checker(), "Can't check GIL with null GIL checker");
std::thread workerThread([promise = std::move(resultPromise)]() mutable {
c10::setThreadName("pt_nccl_gil_chk");
try {
auto& gil_checker = get_gil_checker();
promise.set_value((*gil_checker)());
} catch (...) {
promise.set_exception(std::current_exception());
}
});
// Detach the thread to allow it to run independently
workerThread.detach();
return resultFuture;
}
const int64_t ProcessGroupNCCL::kWatchdogThreadSleepMillis = 100;
constexpr int64_t kSynchronizeBusyWaitMillis = 1;
thread_local uint64_t ProcessGroupNCCL::ncclActiveGroupCounter_ = 0;
std::ostream& operator<<(
std::ostream& output,
const ProcessGroupNCCL::WorkNCCL& workNCCL) {
std::string workInfo;
workInfo = c10::str(
"WorkNCCL(",
"SeqNum=",
workNCCL.seq_,
", OpType=",
opTypeToString(workNCCL.opType_),
", NumelIn=",
workNCCL.numelIn_,
", NumelOut=",
workNCCL.numelOut_,
", Timeout(ms)=",
workNCCL.opTimeout_.count(),
")");
return output << workInfo;
}
ProcessGroupNCCL::WorkNCCL::WorkNCCL(
std::string pgUID,
std::string pgDesc,
at::Device& device,
int rank,
OpType opType,
uint64_t seq,
bool isP2P,
const char* profilingTitle,
const std::optional<std::vector<at::Tensor>>& inputs,
bool desyncDebug,
bool enableTiming,
bool cudaEventCacheEnabled,
DebugLevel distDebugLevel)
: Work(rank, opType, profilingTitle, inputs),
pgUID_(std::move(pgUID)),
pgDesc_(std::move(pgDesc)),
device_(device),
workStartTime_(std::chrono::steady_clock::now()),
seq_(seq),
isP2P_(isP2P),
timingEnabled_(enableTiming),
distDebugLevel_(distDebugLevel) {
// Creates the CUDA event wrappers
// Note: The actual events are lazily created when first recorded to with
// DEFAULT_FLAGS = cudaEventDisableTiming.
if (cudaEventCacheEnabled) {
ncclStartEvent_ = enableTiming
? ProcessGroupNCCL::CUDAEventCache::get(device.index())
.create(enableTiming)
: nullptr;
ncclEndEvent_ = ProcessGroupNCCL::CUDAEventCache::get(device.index())
.create(enableTiming);
} else {
ncclStartEvent_ = enableTiming
? std::make_shared<at::cuda::CUDAEvent>(cudaEventDefault)
: nullptr;
ncclEndEvent_ = std::make_shared<at::cuda::CUDAEvent>(
enableTiming ? cudaEventDefault : cudaEventDisableTiming);
}
futureWorkResult_ =
c10::make_intrusive<at::ivalue::Future>(c10::AnyEnumType::get());
}
ProcessGroupNCCL::WorkNCCL::WorkNCCL(const WorkNCCL& w)
: Work(w.rank_, w.opType_),
std::enable_shared_from_this<WorkNCCL>(w),
pgUID_(w.pgUID_),
pgDesc_(w.pgDesc_),
device_(w.device_),
ncclStartEvent_(w.ncclStartEvent_),
ncclEndEvent_(w.ncclEndEvent_),
ncclComm_(w.ncclComm_),
blockingWait_(w.blockingWait_),
opTimeout_(w.opTimeout_),
ownedEphermeralTimeout_(w.ownedEphermeralTimeout_),
workStartTime_(w.workStartTime_),
seq_(w.seq_),
isP2P_(w.isP2P_),
startTraceUpdated_(w.startTraceUpdated_),
numelIn_(w.numelIn_),
numelOut_(w.numelOut_),
store_(w.store_),
futureWorkResult_(w.futureWorkResult_),
timingEnabled_(w.timingEnabled_),
trace_id_(w.trace_id_),
distDebugLevel_(w.distDebugLevel_) {
exception_ = w.exception_;
}
ProcessGroupNCCL::WorkNCCL::~WorkNCCL() = default;
bool ProcessGroupNCCL::WorkNCCL::isCompleted() {
if (!ncclComm_->isAborted()) {
checkAndSetException();
}
return exception() || finishedGPUExecutionInternal();
}
bool ProcessGroupNCCL::WorkNCCL::isStarted() {
if (!ncclComm_->isAborted()) {
checkAndSetException();
}
return exception() || startedGPUExecutionInternal();
}
bool ProcessGroupNCCL::WorkNCCL::isSuccess() const {
C10_THROW_ERROR(NotImplementedError, "WorkNCCL::isSuccess() is deprecated");
}
void ProcessGroupNCCL::WorkNCCL::checkAndSetException() {
if (exception()) {
// We already have an exception.
return;
}
auto exception_ptr = checkForNCCLErrors();
std::unique_lock<std::mutex> lock(mutex_);
exception_ = exception_ptr;
if (exception_) {
LOG(ERROR) << logPrefix() << "Collective " << *this
<< " raised the following async exception: "
<< getExceptionMsgFromExceptionPtr(exception_);
// Mark future result as ERROR
if (futureWorkResult_ && !futureWorkResult_->completed()) {
futureWorkResult_->markCompleted(
at::IValue(static_cast<uint8_t>(WorkResult::COMM_ERROR)));
}
}
}
const std::string& ProcessGroupNCCL::WorkNCCL::logPrefix() const {
static std::string prefix = c10::str("[Rank ", rank_, "] ");
return prefix;
}
void ProcessGroupNCCL::WorkNCCL::setException(
std::exception_ptr exception_ptr) {
std::unique_lock<std::mutex> lock(mutex_);
exception_ = std::move(exception_ptr);
}
// Helper that checks if the NCCL kernels are completed on the GPUs
bool ProcessGroupNCCL::WorkNCCL::finishedGPUExecution() {
checkAndSetException();
return finishedGPUExecutionInternal();
}
bool ProcessGroupNCCL::WorkNCCL::startedGPUExecutionInternal() const {
// if timing is disabled we won't have allocated start events
if (!timingEnabled_) {
return false;
}
// Checking the work's corresponding CUDA event's status
if (!ncclStartEvent_->query()) {
return false;
}
return true;
}
bool ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const {
// Checking the work's corresponding CUDA event's status
// It calls `cudaEventQuery` eventually. Although this seems to be a
// non-blocking call, but we did notice hangs in the past. It can
// hang if another thread is holding the CUDA global context lock. For
// example, when doing a `cudaDeviceSynchronize` or even
// `cudaStreamSynchronize`.
if (!ncclEndEvent_->query()) {
return false;
}
return true;
}
bool ProcessGroupNCCL::WorkNCCL::checkTimeout(
std::optional<std::chrono::milliseconds> timeout) {
STATIC_SCOPED_WAIT_COUNTER(
pytorch.wait_counter.ProcessGroupNCCL__checkTimeout);
auto currentTimepoint = std::chrono::steady_clock::now();
auto timeElapsed = std::chrono::duration_cast<std::chrono::milliseconds>(
currentTimepoint - workStartTime_);
auto workTimeout = timeout ? *timeout : opTimeout_;
if (timeElapsed < workTimeout) {
return false;
}
// Timed out
std::string exceptionMsg = c10::str(
logPrefix(),
"Watchdog caught collective operation timeout: ",
*this,
" ran for ",
timeElapsed.count(),
" milliseconds before timing out.");
LOG(ERROR) << exceptionMsg;
std::exception_ptr exception_ptr =
std::make_exception_ptr(C10_BUILD_ERROR(DistBackendError, exceptionMsg));
if (!exception()) {
// if there is already an error, we don't override it
setException(exception_ptr);
}
// Mark future result as TIMEOUT
if (futureWorkResult_ && !futureWorkResult_->completed()) {
futureWorkResult_->markCompleted(
at::IValue(static_cast<uint8_t>(WorkResult::TIMEOUT)));
}
return true;
}
// Print the traceback of the collective at call time
void ProcessGroupNCCL::WorkNCCL::printTraceback() const {
// First step we get the corresponding record entry from FR, based on work's
// trace_id_
std::optional<FlightRecorder::Entry> entry =
FlightRecorder::get()->getEntry(trace_id_);
if (entry.has_value()) {
auto entryVal = entry.value();
// Get stack trace from FR entry, in string format
// Note: `getTraceback` call below invokes `torch::symbolize`, which may
// need to acquire the GIL. In order for watchdog to be block-free, we make
// the call with std::async.
auto future = std::async(
std::launch::async, [&entryVal]() { return entryVal.getTraceback(); });
// Wait for the future to complete or timeout
auto status = future.wait_for(std::chrono::seconds(8));
if (status == std::future_status::ready) {
std::string tracebackStr = future.get();
LOG(ERROR) << "Stack trace of the failed collective: \n" << tracebackStr;
} // else, symbolizer probably timed out, we skip logging the stack trace.
} else {
LOG(ERROR)
<< "Stack trace of the failed collective not found, "
<< "potentially because FlightRecorder is disabled. "
<< "You can enable it by setting TORCH_NCCL_TRACE_BUFFER_SIZE to a non-zero value.";
}
}
void ProcessGroupNCCL::WorkNCCL::handleException(
ErrorHandlingMode errorHandling) {
if (exception_) {
auto exceptionMsg = c10::str(
"Some NCCL operations have failed or timed out. Due to the ",
"asynchronous nature of CUDA kernels, subsequent GPU operations ",
"might run on corrupted/incomplete data.");
LOG(ERROR) << logPrefix() << exceptionMsg;
C10_LOG_API_USAGE_ONCE("ProcessGroupNCCL.WorkNCCL.handleException");
auto logger = c10d::C10dLogger::getLogger();
if (logger) {
::c10d::C10dLoggingData data;
data.strings["work_nccl_exception"] =
getExceptionMsgFromExceptionPtr(exception_);
logger->log(data);
}
if (SHOULD_TEAR_DOWN(errorHandling)) {
auto tearDownMsg = c10::str(
"To avoid data inconsistency, we are taking the entire process down.");
LOG(ERROR) << logPrefix() << tearDownMsg;
std::rethrow_exception(exception_);
}
}
}
void ProcessGroupNCCL::WorkNCCL::synchronize() {
synchronizeStream();
if (c10d::allow_inflight_collective_as_graph_input()) {
c10d::unregister_work(
c10::intrusive_ptr<
ProcessGroupNCCL::WorkNCCL>::unsafe_reclaim_from_nonowning(this));
}
}
void ProcessGroupNCCL::WorkNCCL::synchronizeStream() {
auto currentStream = at::cuda::getCurrentCUDAStream(device_.index());
// Block the current stream on the NCCL stream
ncclEndEvent_->block(currentStream);
if (avoidRecordStreams_) {
stashed_for_allocator_safety_->clear();
}
}
// Same as calling synchronize() when blockingWait_ is false
bool ProcessGroupNCCL::WorkNCCL::wait(std::chrono::milliseconds timeout) {
RECORD_PARAM_COMMS(
std::make_tuple(static_cast<int64_t>(this->seq_), this->isP2P_), // seq
std::make_tuple(pgUID_, pgDesc_), // PG name tuple
rank_, // rank
"wait", // collective name
0, // inNelems
0, // outNelems
at::kByte, // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
-1,
-1,
static_cast<int>(1)); // number of device?
// synchronize() will block the current stream on the NCCL stream
synchronize();
// In case of blockingWait or a timeout value is specified by the user, we
// block the CPU thread until the work is completed or timed out.
if (blockingWait_ || timeout != kNoTimeout) {
while (!isCompleted()) {
bool timedOut = checkTimeout(
timeout == kNoTimeout ? std::nullopt : std::make_optional(timeout));
// Explicitly abort ncclComms here before throwing this timed out
// exception to users.
// If throwing timed out excepiton without aborting nccl communicators
// here, it was observed that CUDA GPU will have 100% utilization and
// can not run new events successfully.
if (timedOut) {
std::string exceptionMsg = c10::str(
logPrefix(), "Work ", (*this), " timed out in blocking wait.");
LOG(ERROR) << exceptionMsg;
break;
}
// Yield
std::this_thread::sleep_for(
std::chrono::milliseconds(kSynchronizeBusyWaitMillis));
}
} else if (isBarrierOp_ && !isCompleted()) {
// For barrier wait when timeout is unspecified, we block the CPU thread on
// current stream. This is to minimize the CPU barrier wait time in healthy
// path
auto currentStream = at::cuda::getCurrentCUDAStream(device_.index());
// CUDAStream wrapper will correctly use a DeviceGuard here
currentStream.synchronize();
}
// If exception is detected, throw it from the main CPU thread
if (exception()) {
// Abort NCCL communicators
abort();
// Throw exception (from main thread here)
handleException(TearDown);
}
// TODO(kwen2501): this should be moved to c10d tests, to qualify a NCCL
// upgrade. Once a NCCL version is qualified, this code should not be needed
// at runtime.
#ifdef PGNCCL_ENABLE_HASH
if (distDebugLevel_ >= DebugLevel::Detail) {
auto numel = getTensorsNumel(*outputs_);
auto hashValue = hashTensors(*outputs_);
PRINT_COLLECTIVE_HASH_SIGNATURE(
"output", opTypeToString(opType_), numel, hashValue);
}
#endif
// Always return true, because abort API is not implemented.
return true;
}
void ProcessGroupNCCL::WorkNCCL::abort() {
// Abort all communicators of this work
ncclComm_->abort();
ncclCommDevIdxMapMutex.lock();
ncclCommDevIdxMap.erase(ncclComm_);
ncclCommDevIdxMapMutex.unlock();
}
ProcessGroupNCCL::CUDAEventCache::CUDAEventCache() = default;
// CUDA event is used to record the start/end of one Work.
// Instead of let the CUDA event gets destroyed, we now reuse it after the Work
// has been erased from workMetaList_.
// This is to avoid the potential deadlock caused by CudaEventDestroy.
std::shared_ptr<at::cuda::CUDAEvent> ProcessGroupNCCL::CUDAEventCache::create(
bool timing) {
// register the deleter as a callback when the WorkNCCL object is destroyed.
auto deleter = [this, timing](at::cuda::CUDAEvent* event) {
std::lock_guard<std::mutex> lock(this->cacheMutex_);
// We put the event back to the cache deque once the WorkNCCL object is
// destroyed.
this->eventsArray_[timing ? 1 : 0].push_back(event);
};
at::cuda::CUDAEvent* event = nullptr;
{
std::lock_guard<std::mutex> lock(cacheMutex_);
auto& events = eventsArray_[timing ? 1 : 0];
// If we still have events in the cache, we reuse it. Otherwise, we create a
// new one.
if (!events.empty()) {
event = events.front();
events.pop_front();
} else {
event = new at::cuda::CUDAEvent(
timing ? cudaEventDefault : cudaEventDisableTiming);
}
}
return std::shared_ptr<at::cuda::CUDAEvent>(event, std::move(deleter));
}
ProcessGroupNCCL::CUDAEventCache& ProcessGroupNCCL::CUDAEventCache::get(
at::DeviceIndex device) {
// A per-thread singleton of device-to-CUDAEventCache map.
// Map is needed because events cannot be reused across devices.
// Per-thread ownership is needed to support multi-threaded case (instead of
// multi-process case).
static thread_local std::
map<at::DeviceIndex, ProcessGroupNCCL::CUDAEventCache>
cacheDeviceMap;
// Check if device has already been in the map, if not, add a new entry
auto it = cacheDeviceMap.find(device);
if (it == cacheDeviceMap.end()) {
// Use in-place contruction, which avoids move or copy of the cache
// (the mutex of the cache is not movable/copiable)
it = cacheDeviceMap.emplace_hint(
it,
std::piecewise_construct,
std::forward_as_tuple(device),
std::forward_as_tuple());
}
return it->second;
}
static std::atomic<size_t> process_group_id = 0;
constexpr const char* MULTI_DEVICE_ERROR_MSG =
"Expecting one tensor only but got multiple. You are probably using multiple "
"devices under one thread. The support for such usage has been deprecated. "
"For details, please refer to "
"https://pytorch.org/docs/stable/distributed.html#multi-gpu-collective-functions. "
"ProcessGroupNCCL continues supporting multi-process and multi-thread modes.";
ProcessGroupNCCL::ProcessGroupNCCL(
c10::intrusive_ptr<Store> store,
int rank,
int size,
c10::intrusive_ptr<Options> options)
: Backend(rank, size),
store_(std::move(store)),
options_(std::move(options)),
terminateProcessGroup_(false),
terminateHeartbeatMonitorThread_(false),
local_id_(process_group_id++),
intraNodeComm_(initIntraNodeComm()) {
TORCH_CHECK_WITH(
ValueError,
at::cuda::getNumGPUs() != 0,
"ProcessGroupNCCL is only supported with GPUs, no GPUs found!");
// getNcclVersion needs to get called before launching threads which can
// potentially call getenv. getNcclVersion internally calls setenv to set some
// environment variables from config file, which can race with getenv from
// other threads and cause segfaults.
const auto ncclVersion = getNcclVersion();
this->setGroupUid(options_->group_name);
this->localDeviceCount_ = static_cast<int>(at::cuda::getNumGPUs());
logPrefix_ = createLogPrefix();
blockingWait_ = getCvarBool(TORCH_NCCL_BLOCKING_WAIT, false);
asyncErrorHandling_ = static_cast<ErrorHandlingMode>(
getCvarInt(TORCH_NCCL_ASYNC_ERROR_HANDLING, 3 /*SkipCleanUp*/));
desyncDebug_ = getCvarBool(TORCH_NCCL_DESYNC_DEBUG, false) ||
(dist_debug_level_ >= DebugLevel::Detail);
rethrowCUDAErrors_ = getCvarBool(TORCH_NCCL_RETHROW_CUDA_ERRORS, true);
// TODO, we should either deprecate TORCH_NCCL_DUMP_ON_TIMEOUT
// or change its name to reflect that dump happens on exception including
// both timeout and other errors.
dumpOnTimeoutOrEx_ = getCvarBool(TORCH_NCCL_DUMP_ON_TIMEOUT, false) ||
(dist_debug_level_ >= DebugLevel::Detail);
// logging C++ stack isn't safe. Introduce a variable to control it.
logCppStackOnUncleanShutdown_ =
getCvarBool(TORCH_NCCL_LOG_CPP_STACK_ON_UNCLEAN_SHUTDOWN, true);
enableNanCheck_ = getCvarBool(TORCH_NCCL_NAN_CHECK, false);
heartbeat_ = 1ULL;
monitorThreadEnabled_.store(getCvarBool(TORCH_NCCL_ENABLE_MONITORING, true));
cudaEventCacheEnabled_.store(getCvarBool(TORCH_NCCL_CUDA_EVENT_CACHE, true));
heartbeatTimeoutInSec_ =
getCvarInt(TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC, 60 * 8 /*8 Mins*/);
waitTimeoutDumpInMilSec_ =
getCvarInt(TORCH_NCCL_WAIT_TIMEOUT_DUMP_MILSEC, 60 * 1000 /*60 Sec*/);
coordCheckIntervalMilSec_ = getCvarInt(TORCH_NCCL_COORD_CHECK_MILSEC, 1000);
traceBufferSize_ = getCvarInt(TORCH_NCCL_TRACE_BUFFER_SIZE, 2000);
enableCollecticeHashDebug_ = (dist_debug_level_ >= DebugLevel::Detail);
// store_ usually is wrapped with PrefixStore and the prefix is different
// across different ProcessGroupNCCL(PG) instances. We need to get the
// underlying non-PrefixStore for sharing global information shared across
// different PGs.
PrefixStore* prefixStore = dynamic_cast<PrefixStore*>(store_.get());
globalStore_ =
prefixStore ? prefixStore->getUnderlyingNonPrefixStore() : store_;
#ifdef ENABLE_NCCL_ERROR_CHECKING
enableTiming_.store(
getCvarBool(TORCH_NCCL_ENABLE_TIMING, false) || desyncDebug_);
#endif
avoidRecordStreams_ = getCvarBool(TORCH_NCCL_AVOID_RECORD_STREAMS, false);
#ifdef NCCL_HAS_COMM_REGISTER
useTensorRegisterAllocatorHook_ =
getCvarBool(TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK, false);
if (c10::cuda::CUDACachingAllocator::CUDAAllocatorConfig::
expandable_segments()) {
useTensorRegisterAllocatorHook_ = false;
LOG(INFO)
<< logPrefix()
<< "disables TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK because it is not compatible with CUDA allocator expandable segments mode.";
}
#endif
if (blockingWait_) {
LOG(INFO)
<< logPrefix()
<< "TORCH_NCCL_BLOCKING_WAIT is enabled, NO watchdog thread is created.";
} else {
if (desyncDebug_ && asyncErrorHandling_ == NoHandling) {
LOG(INFO)
<< logPrefix()
<< "TORCH_NCCL_DESYNC_DEBUG and TORCH_NCCL_ASYNC_ERROR_HANDLING "
<< "must both be enabled. "
<< "Enabling TORCH_NCCL_ASYNC_ERROR_HANDLING.";
asyncErrorHandling_ = SkipCleanUp;
}
}
#ifdef ENABLE_NCCL_ERROR_CHECKING
// in blockingWait mode, we don't need to enable the watchdog thread to check
// the timeout or nccl error because the main thread would throw an exception
// and it is the user's responsibility to handle the exception.
if (!blockingWait_) {
ncclCommWatchdogThread_ =
std::thread(&ProcessGroupNCCL::ncclCommWatchdog, this);
}
#endif
init();
const std::string OFF = "OFF";
std::string torch_distributed_debug =
getCvarString({"TORCH_DISTRIBUTED_DEBUG"}, OFF.c_str());
LOG(INFO) << logPrefix() << "ProcessGroupNCCL initialization options: "
<< "size: " << size << ", global rank: " << globalRank()
<< ", TIMEOUT(ms): " << options_->timeout.count()
<< ", USE_HIGH_PRIORITY_STREAM: "
<< options_->is_high_priority_stream
<< ", SPLIT_FROM: " << options_->split_from
<< ", SPLIT_COLOR: " << options_->split_color
<< ", PG Name: " << options_->group_name;
LOG(INFO) << logPrefix() << "ProcessGroupNCCL environments: "
<< "NCCL version: " << ncclVersion
<< ", TORCH_NCCL_ASYNC_ERROR_HANDLING: " << asyncErrorHandling_
<< ", TORCH_NCCL_DUMP_ON_TIMEOUT: " << dumpOnTimeoutOrEx_
<< ", TORCH_NCCL_WAIT_TIMEOUT_DUMP_MILSEC: "
<< waitTimeoutDumpInMilSec_
<< ", TORCH_NCCL_DESYNC_DEBUG: " << desyncDebug_
<< ", TORCH_NCCL_ENABLE_TIMING: " << enableTiming_.load()
<< ", TORCH_NCCL_BLOCKING_WAIT: " << blockingWait_
<< ", TORCH_DISTRIBUTED_DEBUG: " << torch_distributed_debug
#ifdef NCCL_HAS_COMM_REGISTER
<< ", TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK: "
<< useTensorRegisterAllocatorHook_
#endif
<< ", TORCH_NCCL_ENABLE_MONITORING: "
<< monitorThreadEnabled_.load()
<< ", TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC: " << heartbeatTimeoutInSec_
<< ", TORCH_NCCL_TRACE_BUFFER_SIZE: " << traceBufferSize_
<< ", TORCH_NCCL_COORD_CHECK_MILSEC: " << coordCheckIntervalMilSec_
<< ", TORCH_NCCL_NAN_CHECK: " << enableNanCheck_
<< ", TORCH_NCCL_CUDA_EVENT_CACHE: " << cudaEventCacheEnabled_
<< ", TORCH_NCCL_LOG_CPP_STACK_ON_UNCLEAN_SHUTDOWN: "
<< logCppStackOnUncleanShutdown_;
if (options_->global_ranks_in_group.empty()) {
this->globalRankStart = 0;
} else {
this->globalRankStart = options_->global_ranks_in_group[0];
}
if (options_->global_ranks_in_group.empty()) {
this->globalRankStride = 1;
} else if (options_->global_ranks_in_group.size() == 1) {
this->globalRankStride = 0;
} else {
bool ranksAreStrided = true;
auto startRank = options_->global_ranks_in_group[0];
auto stride =
options_->global_ranks_in_group[1] - options_->global_ranks_in_group[0];
for (std::vector<uint64_t>::size_type i = 0;
i < options_->global_ranks_in_group.size();
i++) {
if (options_->global_ranks_in_group[i] != startRank + i * stride) {
ranksAreStrided = false;
break;
}
}
if (ranksAreStrided) {
this->globalRankStride = options_->global_ranks_in_group[1] -
options_->global_ranks_in_group[0];
} else {
this->globalRankStride = -1;
}
}
// Attach hooks to cache allocator to trigger the hooks whenever a traced
// action is called. In the following hooks, we register a newly allocated
// segment when SEGMENT_ALLOC action occurs, and deregister a segment when
// SEGMENT_FREE action occurs.
// We attach hooks only once at the first PG creation.
// Attaching hooks fails if CUDACachingAllocator is not initialized, so
// Init for CUDA is called (and is a no-op if CUDA is already
// initialized).
if (useTensorRegisterAllocatorHook_ && !allocatorHooksAttached) {
at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
c10::cuda::CUDACachingAllocator::attachAllocatorTraceTracker(
&cacheAllocatorRegisterHook);
c10::cuda::CUDACachingAllocator::attachAllocatorTraceTracker(
&cacheAllocatorDeregisterHook);
allocatorHooksAttached = true;
}
// Enable Desync Debugger per user setting
if (desyncDebug_) {
desyncDebugger_.init(rank, size, store_);
}
}
void ProcessGroupNCCL::eagerConnectSingleDevice(at::Device device) {
const auto key = getKeyFromDevice(device);
LOG(INFO) << logPrefix() << "Eagerly connecting nccl backend with device "
<< device;
initNCCLComm(key, device, OpType::ALLREDUCE);
}
bool ProcessGroupNCCL::useNonblocking() {
#ifndef NCCL_HAS_COMM_NONBLOCKING
return false;
#endif
// Already parsed, return the cached value
if (useNonblocking_.has_value()) {
return useNonblocking_.value();
}
// Get environment variable.
auto nbEnv = c10::utils::check_env("TORCH_NCCL_USE_COMM_NONBLOCKING");
// 1st priority: Respect the user's setting
if (options_->config.blocking != NCCL_CONFIG_UNDEF_INT) {
useNonblocking_ = options_->config.blocking == 0;
}
// 2nd priority: Respect the environment variable
else if (nbEnv.has_value()) {
useNonblocking_ = nbEnv.value();
}
// 3rd priority: automatically use nonblocking if we are in eager init mode
else if (getBoundDeviceId()) {
useNonblocking_ = true;
}
// 4th priority: otherwise, nonblocking = false to preserve old behavior
else {
useNonblocking_ = false;
}
LOG(INFO) << logPrefix()
<< "Using non-blocking mode: " << useNonblocking_.value();
return useNonblocking_.value();
}
void ProcessGroupNCCL::performNocolorSplit(at::Device device) {
// If our backend doesn't support splitting, this is a no-op for
// ranks not in the new subgroup (and ranks that would be in it will
// just use a new communicator rather than split).
#ifdef NCCL_HAS_COMM_SPLIT
const auto key = getKeyFromDevice(device);
LOG(INFO) << logPrefix() << "Performing nocolor split on backend device "
<< device << ", key " << key << ", i am " << this;
bool useNb = useNonblocking();
options_->config.blocking = useNb ? 0 : 1;
auto comm = getNCCLComm(key);
if (comm == nullptr) {
LOG(ERROR) << logPrefix()
<< "No parent communicator exists for nocolor split";
}
NCCLComm::split(
comm.get(),
NCCL_SPLIT_NOCOLOR,
rank_,
options_->config,
options_->global_ranks_in_group);
#endif
}
bool ProcessGroupNCCL::isInitialized() {
if (devNCCLCommMap_.empty()) {
return false;
}
std::lock_guard<std::mutex> lock(mutex_);
bool initialized = true;
for (const auto& [_, comm] : devNCCLCommMap_) {
if (!comm->isInitialized()) {
initialized = false;
break;
}
}
return initialized;
}
void ProcessGroupNCCL::registerMemPool(c10::cuda::MemPool* pool) {
const auto key = std::to_string(pool->device());
auto device = at::Device(at::DeviceType::CUDA, pool->device());
LOG(INFO) << logPrefix()
<< "Performing NCCL user buffer registration for all buffers in "
<< "MemPool: " << pool->id() << ", device index: " << key
<< ", i am " << this;
auto ncclComm = getNCCLComm(key);
if (ncclComm == nullptr) {
// HACK: currently we are using this function for NVLS
// reductions, and that's why using OpType::ALLREDUCE.
// If we end up using this API for zero-copy P2P, we might
// need to refactor and account for different OpType.
ncclComm = initNCCLComm(key, device, OpType::ALLREDUCE);
}
TORCH_INTERNAL_ASSERT(ncclComm != nullptr);
auto ctx = c10::cuda::MemPoolContext(pool);
auto snapshot = c10::cuda::CUDACachingAllocator::snapshot();
for (const auto& segmentInfo : snapshot.segments) {
TORCH_INTERNAL_ASSERT(
segmentInfo.device == pool->device(),
"Mismatch between CUDA memory segment device and pool's device");
ncclComm->registerSegment(
reinterpret_cast<void*>(segmentInfo.address), segmentInfo.total_size);
}
}
void ProcessGroupNCCL::deregisterMemPool(c10::cuda::MemPool* pool) {
const auto key = std::to_string(pool->device());
auto device = at::Device(at::DeviceType::CUDA, pool->device());
LOG(INFO) << logPrefix()
<< "Performing NCCL user buffer deregistration for all buffers in "
<< "MemPool: " << pool->id() << ", device index: " << key
<< ", i am " << this;
auto ncclComm = getNCCLComm(key);
if (ncclComm == nullptr) {
// HACK: currently we are using this function for NVLS
// reductions, and that's why using OpType::ALLREDUCE.
// If we end up using this API for zero-copy P2P, we might
// need to refactor and account for different OpType.
ncclComm = initNCCLComm(key, device, OpType::ALLREDUCE);
}
TORCH_INTERNAL_ASSERT(ncclComm != nullptr);
auto ctx = c10::cuda::MemPoolContext(pool);
auto snapshot = c10::cuda::CUDACachingAllocator::snapshot();
for (const auto& segmentInfo : snapshot.segments) {
TORCH_INTERNAL_ASSERT(
segmentInfo.device == pool->device(),
"Mismatch between CUDA memory segment device and pool's device");
ncclComm->deregisterSegment(reinterpret_cast<void*>(segmentInfo.address));
}
}
c10::intrusive_ptr<intra_node_comm::IntraNodeComm> ProcessGroupNCCL::
initIntraNodeComm() {
using IntraNodeComm = intra_node_comm::IntraNodeComm;
if (!IntraNodeComm::isEnabled()) {
return nullptr;
}
auto prefixStore = c10::make_intrusive<PrefixStore>("IntraNodeComm", store_);
auto comm = c10::make_intrusive<IntraNodeComm>(prefixStore, rank_, size_);
if (comm->rendezvous()) {
return comm;
} else {
return nullptr;
}
}
void ProcessGroupNCCL::setSequenceNumberForGroup() {
} // NCCL just starts sequence numbers at 0.
uint64_t ProcessGroupNCCL::getSequenceNumberForGroup() {
return seqCollective_;
}
void ProcessGroupNCCL::registerOnCompletionHook(
std::function<void(std::shared_ptr<WorkInfo>)>&& hook) {
TORCH_WARN_ONCE(
"ProcessGroupNCCL OnCompletion hook will be deprecated in favor of Flight Recorder. "
"Please check out FlightRecorder.hpp for information that is recorded at work completion. "
"You can file an issue if you want additional information to be recorded. "
"You can also file an RFC if you want Flight Recorder to accept plugins that customize the recording.")
TORCH_CHECK_WITH(
DistBackendError,
onCompletionHook_ == nullptr,
"ProcessGroupNCCL OnCompletion hook already registered");
TORCH_CHECK_WITH(
ValueError,
enableTiming_.load(),
"ProcessGroupNCCL OnCompletion hook requires recording start and end "
"events which require setting TORCH_NCCL_ENABLE_TIMING environment variable. "
"This is only available for NCCL version >= 2.4.");
onCompletionHook_ = std::move(hook);
onCompletionHookThread_ = std::thread(&ProcessGroupNCCL::runHookLoop, this);
}
// must release GIL when calling this method
void ProcessGroupNCCL::waitForPendingWorks() {
// Reasoning about hook completion:
// 1. waitForPendingWorks should be called after user code has finished
// calling
// all collectives. This means, when we got here, all of the collectives
// are either in workMetaList_ or has been erased from workMetaList_.
// 2. The watchdog thread grabs both locks to move Work object from the
// workMetaList_ to the completedWorkList_, and the hook thread only erases
// a Work object after the hook is returned. Therefore, after user code
// calls a collective, its Work object is either in workMetaList_ or in
// completedWorkList_ before it finishes.
// 3. We have three threads and two locks.
// a. main thread (this function) grabs two locks atomically
// b. watchdog thread (watchdogHandler function) always grabs
// workMetaListMutex_
// first and then grabs completedWorkListMutex_.
// c. hook thread (runHookLoop function) only grabs
// completedWorkListMutex_. Therefore, locks are always acquired in the
// same order and hence no deadlocks.
while (true) {
{
std::lock(workMetaListMutex_, completedWorkListMutex_);
std::lock_guard<std::mutex> lockWork(workMetaListMutex_, std::adopt_lock);
std::lock_guard<std::mutex> lockHook(
completedWorkListMutex_, std::adopt_lock);
if (workMetaList_.empty() && completedWorkList_.empty()) {
return;
}
}
std::this_thread::sleep_for(
std::chrono::milliseconds(kWatchdogThreadSleepMillis));
}
}
void ProcessGroupNCCL::enableCollectivesTiming() {
enableTiming_.store(true);
}
bool ProcessGroupNCCL::waitForFutureOrTimeout(
std::future<bool>& fut,
const std::chrono::milliseconds& timeOutMilSec,
const std::string& futDescription,
bool throwException,
bool log) {
std::string errorMsg;
bool complete = false;
::c10d::C10dLoggingData data;
if (log) {
data.integers["pg_id"] = static_cast<int64_t>(local_id_);
data.integers["rank"] = rank_;
data.integers["global_rank"] = globalRank();
data.integers["world_size"] = getSize();
data.strings["flight_recorder_version"] = c10d::version_val_str;
}
TORCH_CHECK(fut.valid(), "Expected a valid future");
std::future_status status = fut.wait_for(timeOutMilSec);
if (status == std::future_status::ready) {
// Calling .get() will re-raise any exception from the future, and we don't
// care about the retval
try {
bool result = fut.get();
if (result) {
VLOG(2) << logPrefix()
<< "future successfully executed for: " << futDescription;
if (log) {
data.strings["status"] = "SUCCESS";
}
complete = true;
}
} catch (const std::exception& e) {
errorMsg = c10::str(
logPrefix(),
"Exception thrown when waiting for future ",
futDescription,
": ",
e.what());
if (log) {
data.strings["status"] = "EXCEPTION";
data.strings["exception"] = e.what();
}
LOG(ERROR) << errorMsg;
} catch (...) {
errorMsg = c10::str(
logPrefix(),
"Unknown exception thrown when waiting for future ",
futDescription);
if (log) {
data.strings["status"] = "EXCEPTION";
data.strings["exception"] = "Unknown exception";
}
LOG(ERROR) << errorMsg;
}
} else {
errorMsg = c10::str(
logPrefix(),
"Future for ",
futDescription,
" timed out after ",
timeOutMilSec.count(),
" ms");
data.strings["status"] = "TIMEOUT";
LOG(ERROR) << errorMsg;
}
if (log) {
auto logger = c10d::C10dLogger::getLogger();
if (logger) {
logger->log(data);
}
}
if (throwException && !errorMsg.empty()) {
C10_THROW_ERROR(DistBackendError, errorMsg);
}
return complete;
}
void ProcessGroupNCCL::abortCommsFromMap(
std::unordered_map<std::string, std::shared_ptr<NCCLComm>>& ncclCommsMap,
const std::optional<std::string>& abortReason) {
// The process may control multiple devices, loop through the communicators on
// each device
for (auto& it : ncclCommsMap) {
auto& devName = it.first;
auto& ncclComm = it.second;
VLOG(2) << logPrefix() << "ProcessGroupNCCL destroying ncclComm_ "
<< ncclComm->repr() << " on CUDA device: " << devName;
// abort() call now has GPU guard inside
ncclComm->abort(abortReason);
// Note that we don't remove the aborted communicators from the
// cache. The reason is that if we do remove the communicator
// from the cache, it is possible that a new collective operation
// calls `ncclCommInitRank` to create a new communicator whereas
// other ranks might have failed/timed out and didn't enter
// `ncclCommInitRank`. As a result, when there is a failure on
// a communicator the application receives an exception and its
// their responsibility to destroy the process group and recreate
// it to recover from errors.
VLOG(2) << logPrefix() << "ProcessGroupNCCL destroyed "
<< " communicator on CUDA device: " << devName;
}
}
// Abort all communicators on this rank
// Note: original name of this method is `abort`. It was renamed to
// `abortComms` to distinguish from the `abort` method below. The `abort`
// method calls `abortComms` but does more destruction than the latter.
bool ProcessGroupNCCL::abortComms(
const std::optional<std::string>& abortReason) {
// Remove record from global ncclCommDevIdxMapMutex before aboarting,
// so that a new cache segment would not register to already aborded
// communicators. Note that ncclCommDevIdxMap is a global container which may
// contain other PG's communicators, thus we need to only erase communicators
// for the current PG.
ncclCommDevIdxMapMutex.lock();
for (auto& it : devNCCLCommMap_) {
auto& ncclComm = it.second;
ncclCommDevIdxMap.erase(ncclComm);
}
ncclCommDevIdxMapMutex.unlock();
std::lock_guard<std::mutex> lock(mutex_);
abortCommsFromMap(devNCCLCommMap_, abortReason);
abortCommsFromMap(inInitializationCommMap_, abortReason);
return true;
}
// Abort this backend.
void ProcessGroupNCCL::abort() {
// This will log counter for how long the abort actually takes.
STATIC_SCOPED_WAIT_COUNTER(pytorch.ProcessGroupNCCL__abort);
// Don't join threads here since the purpose of this method is to abort all
// communicators and signal the threads to exit. Joining on the threads could
// potentially block and hence avoid it in this method.
terminateProcessGroup_.store(true);
workMetaListCV_.notify_one();
// lauch abort asynchrounously and wait for it to complete or timeout
LOG(INFO) << logPrefix()
<< "Launching ProcessGroupNCCL abort asynchrounously.";
std::future<bool> fut =
std::async(std::launch::async, [this]() { return this->abortComms(); });
waitForFutureOrTimeout(
fut, options_->timeout, "ProcessGroup abort", true, false);
LOG(INFO) << logPrefix() << "ProcessGroupNCCL aborts successfully.";
// We need to wait for abort to finish before we can safely shut down
// heartbeat monitoring thread.
terminateHeartbeatMonitorThread_.store(true);
monitorWakeUpCV_.notify_one();
}
// Difference between `abort()` and `shutdown()`:
// 1. `abort()` will signal communicators to terminate all NCCL kernels
// immediately.
// 2. `shutdown()` will wait for all NCCL kernels to finish before destroying
// communicators.
// Destroy (shutdown) this backend -- normal exit.
void ProcessGroupNCCL::shutdown() {
LOG(INFO) << logPrefix()
<< "Starting to destroy process group, flushing operations.";
// Flush all collectives
{
std::lock_guard<std::mutex> lock(mutex_);
for (auto& it : devNCCLCommMap_) {
auto& ncclComm = it.second;
ncclComm->finalize();
}
}
// Wait for all operations to complete. If NCCL comm is non-blocking and
// timeout is reach, this will throw an exception.
for (auto& it : devNCCLCommMap_) {
auto& ncclComm = it.second;
// Use long interval to avoid acquiring CPU too frequently
ncclComm->waitReady(true);
}
// Tell watchdog to (1) flush its queue and (2) do not use comm objects
// anymore because I am going to destroy them now
LOG(INFO) << logPrefix() << "Operations flushed, joining watchdog thread.";
terminateProcessGroup_.store(true);
workMetaListCV_.notify_one();
if (ncclCommWatchdogThread_.joinable()) {
ncclCommWatchdogThread_.join();
}
if (onCompletionHookThread_.joinable()) {
onCompletionHookThread_.join();
}
// Watchdog thread exiting, retire heartbeat monitoring thread now to avoid
// false alarm
terminateHeartbeatMonitorThread_.store(true);
monitorWakeUpCV_.notify_one();
// Destroy the communicator, reclaim resources
LOG(INFO) << logPrefix() << "Watchdog joined, destroying NCCL communicators.";
{
std::lock_guard<std::mutex> lock(mutex_);
for (auto& it : devNCCLCommMap_) {
auto& ncclComm = it.second;
ncclComm->destroy();
}
}
LOG(INFO) << logPrefix() << "Destroy complete.";
}
// NOLINTNEXTLINE(bugprone-exception-escape)
ProcessGroupNCCL::~ProcessGroupNCCL() {
LOG(INFO) << logPrefix() << "ProcessGroupNCCL destructor entered.";
if (terminateProcessGroup_.load())
// `shutdown()` or `abort` already called. Skip the favor of disposing
// communicators.
goto join_threads;
// If user haven't explicitly destroy/shutdown process group, destructor
// needs to do so
// First print warning on first rank of each node
if (rank_ % localDeviceCount_ == 0) {
TORCH_WARN_ONCE(
"WARNING: destroy_process_group() was not called before program exit, "
"which can leak resources. For more info, please see "
"https://pytorch.org/docs/stable/distributed.html#shutdown");
}
// Note 1: in distributed_c10d.py, a reference to PG is held by the global
// context. Therefore, we are here only when the global context is tearing
// down, which means the entire program is exiting. At this point, user will
// no longer care about the result of any collective, thus we can use abort
// instead of destroy to make the destruction non-blocking.
// TODO: Note 1 is not true in case of a C++ program using libtorch, which
// does not have the global context mentioned. In that case, calling `abort()`
// here could lead to corrupted result. We should consider not doing anything
// and just let things leak.
// Adversarial example:
/*
Work routine(Tensor& t) {
pg = ProcessGroupNCCL(…);
w = pg.allReduce(t);
return w;
}
*/
abort();
join_threads:
// Make sure we've told threads to stop; doesn't hurt if we'd done so before.
// Tell watchdog and onCompletionHook:
terminateProcessGroup_.store(true);
workMetaListCV_.notify_one();
// Tell heartbeat thread:
terminateHeartbeatMonitorThread_.store(true);
monitorWakeUpCV_.notify_one();
// Wait for all threads to finish before returning
if (ncclCommWatchdogThread_.joinable()) {
ncclCommWatchdogThread_.join();
LOG(INFO) << logPrefix() << "ProcessGroupNCCL watchdog thread joined.";
}
if (ncclHeartbeatMonitorThread_.joinable()) {
ncclHeartbeatMonitorThread_.join();
LOG(INFO) << logPrefix()
<< "ProcessGroupNCCL heart beat monitor thread joined.";
}
if (onCompletionHookThread_.joinable()) {
onCompletionHookThread_.join();
LOG(INFO) << logPrefix()
<< "ProcessGroupNCCL onCompletionHookThread thread joined.";
}
}
bool ProcessGroupNCCL::dumpDebuggingInfo(bool includeStackTrace /*=true*/) {
// Serialize all calls to this function to avoid corrupting data, but allow
// multiple calls in one runtime. User is responsible for preserving the
// output file from an earlier call before a later call overwrites it.
static std::mutex writeDebugInfoMutex;
std::lock_guard<std::mutex> lock(writeDebugInfoMutex);
LOG(ERROR)
<< logPrefix()
<< "ProcessGroupNCCL preparing to dump debug info. Include stack trace: "
<< includeStackTrace;
if (traceBufferSize_ > 0) {
// We dump nccl trace into local disk by default and users can register
// their customized writer by inheriting `DebugInfoWriter` via
// `registerDebugInfoWriter`.
auto ncclTrace = dump_nccl_trace(true, includeStackTrace, false);
DebugInfoWriter& writer = DebugInfoWriter::getWriter(globalRank());
LOG(INFO) << logPrefix() << "ProcessGroupNCCL dumping nccl trace to "
<< writer.getWriterTarget();
writer.write(ncclTrace);
return true;
}
return false;
}
void ProcessGroupNCCL::terminateProcess(const std::string& errMsg) {
// Logging with `FATAL`, after errMsg printed, it calls `std::abort()`
// to terminate the program execution.
LOG(FATAL) << logPrefix() << errMsg;
}
static long computeDeltaMS(
std::chrono::time_point<std::chrono::steady_clock> start,
std::chrono::time_point<std::chrono::steady_clock> end) {
return std::chrono::duration_cast<std::chrono::milliseconds>(end - start)
.count();
}
std::string ProcessGroupNCCL::getNCCLWatchdogTimeoutErrorMsg(
const std::string& extraMsg) {
return c10::str(
logPrefix(),
"Received a dump signal due to a collective timeout from ",
extraMsg,
" and we will try our best to dump the debug info. ",
"Last enqueued NCCL work: ",
pgStatus_->lastEnqueuedSeq,
", last completed NCCL work: ",
pgStatus_->lastCompletedSeq,
".",
"This is most likely caused by incorrect usages of collectives, e.g., wrong ",
"sizes used across ranks, the order of collectives is not same for all ranks ",
"or the scheduled collective, for some reason, didn't run. Additionally, ",
"this can be caused by GIL deadlock or other reasons such as network errors or ",
"bugs in the communications library (e.g. NCCL), etc. ");
}
std::string ProcessGroupNCCL::getNCCLWatchdogTimeoutExitMsg(
const std::string& exitReason) {
return c10::str(
logPrefix(),
"Terminating the process after attempting to dump debug info, due to ",
exitReason,
".");
}
void ProcessGroupNCCL::heartbeatMonitor() {
c10::setThreadName("pt_nccl_heartbt");
uint64_t heartBeatCounter = 0ULL;
std::string errorMsg;
std::string exitReason;
bool checkDumpSignal = (dumpOnTimeoutOrEx_ && local_id_ == 0);
int monitorPollInterval = checkDumpSignal ? coordCheckIntervalMilSec_
: heartbeatTimeoutInSec_ * 1000;
auto lastTimePollStore = std::chrono::steady_clock::now();
auto lastTimeHeartBeatCheck = std::chrono::steady_clock::now();
std::optional<DumpPipe> dumpPipe = std::nullopt;
if (local_id_ == 0) {
// DumpPipe is one per-trainer process, and its convenient to name them
// after 'global' ranks in the system, So we assume processgroup (uid)==0 is
// the global PG and has globally unique rank ids across trainers.
dumpPipe.emplace(rank_);
}
while (true) {
// This won't have any lock since this lock is only used here.
// Please be aware that mutex `monitorMutex_` should not be used
// somewhere else to avoid the deadlock.
std::unique_lock<std::mutex> lock(monitorMutex_);
if (monitorWakeUpCV_.wait_for(
lock, std::chrono::milliseconds(monitorPollInterval), [&] {
return terminateHeartbeatMonitorThread_.load();
})) {
// For the normal complete or user interception, monitorWakeUpCV_
// will get notified, we early return and exit heartbeatMonitor.
return;
}
auto currentTime = std::chrono::steady_clock::now();
// We put extra functionality in the thread for the default PG (aka,
// local_id_=0) because the signal is same across different PGs. We only
// need to run once per process to avoid duplicate things performed in too
// many separate threads. For example, we check a global flag on the
// TCPStore periodically to see if any PG on any rank observed a timeout and
// signaled peers to dump debugging info, and we avoid hammering the
// TCPStore from all PGs on the same rank.
if (checkDumpSignal) {
// There are two scenarios where monitor thread will dump on timeout:
// 1. The current rank is the first to observe a timeout in watchdog.
// (shouldDump_ was set to true by the watchdog thread).
// 2. Other ranks detected the timeout and signal the current rank to
// dump. In addtion, monitor threads will dump if watchdog threads has no
// heartbeat or dumpPipe is not empty.
if (shouldDump_.load()) {
errorMsg = getNCCLWatchdogTimeoutErrorMsg("this local rank");
exitReason = "collective timeout or exception";
break;
}
// We poll store to see if some ranks have flagged a timeout when
// we haven't polled for `heartbeat_timeout` seconds and there haven't
// any work added or removed for `watchdog_timeout` seconds.
if (computeDeltaMS(lastWorkListUpdateTime_, currentTime) >=
kWatchdogThreadSleepMillis &&
computeDeltaMS(lastTimePollStore, currentTime) >=
coordCheckIntervalMilSec_) {
lastTimePollStore = currentTime;
// Wrap globalStore_->check() in a try-catch block to avoid crashing if
// the store is not available.
bool checkExceptionDump = false;
try {
checkExceptionDump =
globalStore_->check({std::string(EXCEPTION_DUMP)});
} catch (const std::exception& e) {
LOG(WARNING)
<< logPrefix()
<< "Failed to check the \"should dump\" flag on TCPStore, "
<< "(maybe TCPStore server has shut down too early), with error: "
<< e.what();
// We give up for now assuming TCPStore has been torn down.
return;
}
if (checkExceptionDump) {
int timeOutRank = -1;
if (!shouldDump_.load()) {
LOG(ERROR)
<< logPrefix()
<< "Observed flight recorder dump signal from another rank via TCPStore.";
}
shouldDump_.store(true);
try {
auto vec = globalStore_->get(std::string(EXCEPTION_DUMP));
TORCH_CHECK_WITH(
DistBackendError,
vec.size() == sizeof(int),
"Invalid size for the timeout rank ID");
std::memcpy(&timeOutRank, vec.data(), vec.size());
} catch (const std::exception& e) {
LOG(ERROR) << logPrefix()
<< "Failed to get timeout rank ID from TCPStore."
<< e.what();
}
errorMsg =
getNCCLWatchdogTimeoutErrorMsg(c10::str(" rank ", timeOutRank));
exitReason = "collective timeout or exception";
break;
}
}
}
if (computeDeltaMS(lastTimeHeartBeatCheck, currentTime) >=
heartbeatTimeoutInSec_ * 1000) {
// Check the heart beat of watchdog thread.
lastTimeHeartBeatCheck = currentTime;
auto heartbeat = heartbeat_.load();
if (heartbeat != heartBeatCounter) {
heartBeatCounter = heartbeat;
} else {
shouldDump_.store(true);
// Watchdog heartbeat timeout.
errorMsg = c10::str(
logPrefix(),
"ProcessGroupNCCL's watchdog got stuck for ",
heartbeatTimeoutInSec_,
" seconds without making progress in monitoring enqueued collectives. ",
"This typically indicates a NCCL/CUDA API (e.g., CudaEventDestroy) hang blocking the watchdog, ",
"and could be triggered by another thread holding the GIL inside a ",
"CUDA api (for example, CudaEventDestroy), or other deadlock-prone behaviors.",
"If you suspect the watchdog is not actually stuck and a longer timeout would help, ",
"you can either increase the timeout (TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC) to a larger value "
"or disable the heartbeat monitor (TORCH_NCCL_ENABLE_MONITORING=0)."
"If either of aforementioned helps, feel free to file an issue to PyTorch about the short timeout "
"or false positive abort; otherwise, please attempt to debug the hang. ");
exitReason = "ProcessGroupNCCL watchdog hang";
break;
}
}
// process a request to dump the trace. only PG uid 0 will respond to dump
// requests, but this is fine since all PG's feed into the same flight
// recorder and dump. After dump, the training should continue.
if (dumpPipe.has_value() && dumpPipe->shouldDump()) {
// best effort dump, not waiting for the dump here
std::future<bool> fut = std::async(
std::launch::async, [this]() { return this->dumpDebuggingInfo(); });
}
}
LOG(ERROR) << errorMsg;
// We perform some checks to help users debug the timeout/hang issue:
// 1. Dump the nccl trace (flight recorder) to help debug the issue
// (timeout after waitTimeoutDumpInMilSec_, which is one minute).
// 2. Check if there is a GIL deadlock (timeout after 300ms).
// 3. Try to dump the c++ stacktraces (blocking and would hang,
// users can turn this off by set
// TORCH_NCCL_LOG_CPP_STACK_ON_UNCLEAN_SHUTDOWN=0).
// Dump the nccl trace (flight recorder).
if (checkDumpSignal && shouldDump_.load()) {
// Store debug info to storage if no other thread does it. (By default to
// local disk)
bool dumpStackTrace = true;
for (int i = 0; i < 2; i++) {
std::future<bool> asyncDebugDump =
std::async(std::launch::async, [this, dumpStackTrace]() {
return this->dumpDebuggingInfo(dumpStackTrace);
});
// wait for the dump until timeout - log data
auto complete = waitForFutureOrTimeout(
asyncDebugDump,
std::chrono::milliseconds(waitTimeoutDumpInMilSec_),
"Flight recorder dump in heartbeatMonitor",
false,
true);
if (complete) {
LOG(INFO)
<< logPrefix()
<< "Finished flight recorder successfully. Output can be analyzed using the fr_trace script.";
break;
}
// If we failed to dump, try dumping without stack trace in the 2nd
// iteration.
dumpStackTrace = false;
}
// Indicate to watchdog thread that we have finished dumping.
promiseFlightRecorderDump_.set_value();
}
// GIL deadlock check.
if (get_gil_checker() != nullptr) {
auto fut = launchAsyncGilCheck();
auto kGilCheckTimeout = std::chrono::milliseconds(300);
auto futStatus = fut.wait_for(kGilCheckTimeout);
if (futStatus != std::future_status::ready) {
TORCH_CHECK(
futStatus != std::future_status::deferred,
"Expected the future to have been launched eagerly.");
LOG(ERROR)
<< logPrefix()
<< "Could not acquire GIL within 300 ms on exit, possible GIL induced hang";
}
} else {
VLOG(2)
<< logPrefix()
<< "GIL checker was not registered, perhaps this is a no-python build?";
}
// Dump the c++ stacktraces.
auto& cpp_dumper = get_cpp_trace_dumper();
if (logCppStackOnUncleanShutdown_ && cpp_dumper.has_value()) {
LOG(INFO) << logPrefix() << "Dumping c++ stacktraces:";
cpp_dumper.value()(
[&](const std::string& line) { LOG(INFO) << logPrefix() << line; });
LOG(INFO) << logPrefix() << "Finished c++ stacktraces dump.";
}
// There are two possible cases for the watchdog thread exit:
// Case one: desync report runs quickly, and it follows the step:
// collective timeout -> desync -> exception handling -> destructors
// -> set terminateHeartbeatMonitorThread_ -> notify monitorWakeUpCV_.
// So the code either early returns above or will skip the sleep below.
// Case two: desync might be slow or get stuck. Or we get stuck in
// destructors, we will sleep for some time before calling std::abort() to
// kill the whole process.
if ((terminateProcessGroup_.load() || desyncDebug_ || shouldDump_.load()) &&
!terminateHeartbeatMonitorThread_.load()) {
// Leave another two mins for desync report generation or process group
// destroy.
std::this_thread::sleep_for(std::chrono::seconds(heartbeatTimeoutInSec_));
LOG(INFO) << logPrefix() << "slept for " << heartbeatTimeoutInSec_
<< " waiting for desync report or process group destroy.";
}
// At this point, we either already sleep for another `heartbeatTimeoutInSec_`
// or the thread has finished. Because we don't want to block the monitor
// thread, so We mark the thread detach and the dump of debug info becomes
// "best effort". If the process exit normally, marking it detach also makes
// sense because we don't really care about dumping the debug info.
// We already log completion inside the thread, so it may not be necessary to
// check the return value here. We mainly use a future so we can exit early
// if done.
if (!terminateHeartbeatMonitorThread_.load()) {
// Create a error message reported from MonitorThread, so
// we throw exception and make the whole process to be killed.
// TODO(fduwjj): After having a hang debug wiki, we need to update the wiki
// url here.
if (monitorThreadEnabled_.load()) {
terminateProcess(getNCCLWatchdogTimeoutExitMsg(exitReason));
} else {
// Ideally we want to merge this one with the above one, but we are going
// to remove the kill switch for monitor thread soon, so we keep this one
// for now.
LOG(ERROR)
<< logPrefix()
<< "ProcessGroupNCCL monitor thread is disabled, but would have terminated the process"
<< "after attempting to dump debug info, due to " << exitReason
<< ".";
}
}
}
void ProcessGroupNCCL::ncclCommWatchdog() {
c10::setThreadName("pt_nccl_watchdg");
try {
VLOG(2) << logPrefix() << "Process group watchdog thread started!";
ncclHeartbeatMonitorThread_ =
std::thread(&ProcessGroupNCCL::heartbeatMonitor, this);
watchdogHandler();
VLOG(2) << logPrefix()
<< "Process group watchdog thread terminated normally";
} catch (std::exception& e) {
if (std::string(e.what()).find("driver shutting down") !=
std::string::npos) {
VLOG(2)
<< logPrefix()
<< "main process destroyed cuda before watchdog loop exited, terminating watchdog."
<< " (Watchdog caught exception: " << e.what();
} else {
// Append error message reported from watchdogHandler
const auto exitMsg = c10::str(
logPrefix(),
"Process group watchdog thread terminated with exception: ",
e.what());
LOG(ERROR) << exitMsg;
if (C10_LIKELY(rethrowCUDAErrors_) ||
!(std::string(e.what()).find("CUDA Error"))) {
// TODO(whc) clean up the rethrow - why is it stored in a class var and
// rethrown?
watchDogException_ =
std::make_exception_ptr(C10_BUILD_ERROR(DistBackendError, exitMsg));
std::rethrow_exception(watchDogException_);
}
}
} catch (...) {
const auto exitMsg = c10::str(
logPrefix(),
"Process group watchdog thread terminated with exception: unknown");
LOG(ERROR) << exitMsg;
watchDogException_ =
std::make_exception_ptr(C10_BUILD_ERROR(DistBackendError, exitMsg));
std::rethrow_exception(watchDogException_);
}
}
// Initialize and enable DesyncDebugger
void ProcessGroupNCCL::DesyncDebugger::init(
int rank,
int size,
c10::intrusive_ptr<Store> store) {
rank_ = rank;
size_ = size;
store_ = store;
enabled_ = true;
traceKeyStart_ = getTraceStartKey("NCCL", rank);
traceKeyEnd_ = getTraceEndKey("NCCL", rank);
}
// Run desync debug. This function is called by watchdog at time of timeout.
void ProcessGroupNCCL::DesyncDebugger::run() {
if (!enabled_)
return;
auto logPrefix = c10::str("Rank ", rank_);
try {
std::string desyncMsg = retrieveDesyncReport(store_, "NCCL", rank_, size_);
LOG(ERROR) << logPrefix << desyncMsg;
} catch (const std::exception& e) {
enabled_ = false;
LOG(ERROR) << logPrefix
<< " Failed to retrieve TORCH_NCCL_DESYNC_DEBUG report. "
<< " Please file an issue. Error: " << e.what();
} catch (...) {
enabled_ = false;
LOG(ERROR)
<< logPrefix
<< " Failed to rerieve TORCH_NCCL_DESYNC_DEBUG report with unknown error."
<< " Please file an issue.";
}
}
// Log work start to store.
void ProcessGroupNCCL::DesyncDebugger::logWorkStart(WorkNCCL& work) {
if (!enabled_)
return;
if (work.startTraceUpdated_)
return;
work.startTraceUpdated_ = true;
// If not successful, disable the debugger
enabled_ = c10d::traceUpdate(
store_, traceKeyStart_, work.seq_, opTypeToString(work.opType_));
}
// Log work end to store.
void ProcessGroupNCCL::DesyncDebugger::logWorkEnd(WorkNCCL& work) {
if (!enabled_)
return;
// In case the start of the work hasn't been logged
if (!work.startTraceUpdated_) {
logWorkStart(work);
}
// If not successful, disable the debugger
enabled_ = c10d::traceUpdate(
store_, traceKeyEnd_, work.seq_, opTypeToString(work.opType_));
}
// We want to have both PG ID and global unique ID (guid) for the logging
// prefix. PG ID records how many ProcessGroupNCCL objects were created on a
// specific rank and is a stable index across ranks, which lets users reason
// about, for example, the second PG we initialized on this rank is for FSDP,
// and corresponds with PG ID = 1 on other ranks as well. Unlike PG ID, guid (or
// group name) is a global unique ID across ranks. The guid is either a hash of
// all the ranks in the group or a counter of how many times
// `_process_group_name` is called, essentially it means how many times we
// have PGs users have created. Before using split_group, even if
// we are creating a new sub-PG, all ranks have to call the API at the same
// time, and this makes `group_name` a unique identifier for a group (PG).
std::string ProcessGroupNCCL::createLogPrefix() const {
if (!pg_desc_.empty() && pg_desc_ != "undefined") {
return c10::str(
"[PG ID ",
local_id_,
" PG GUID ",
pg_uid_,
"(",
pg_desc_,
") Rank ",
rank_,
"] ");
}
return c10::str(
"[PG ID ", local_id_, " PG GUID ", pg_uid_, " Rank ", rank_, "] ");
}
const std::string& ProcessGroupNCCL::logPrefix() const {
return logPrefix_;
}
const int& ProcessGroupNCCL::globalRank() const {
static int globalRank = rank_;
return globalRank;
}
const std::vector<uint64_t>& ProcessGroupNCCL::groupRanks() const {
if (options_->global_ranks_in_group.empty() && local_id_ == 0) {
static std::vector<uint64_t> globalRanks(size_);
std::iota(globalRanks.begin(), globalRanks.end(), 0);
return globalRanks;
}
return options_->global_ranks_in_group;
}
void ProcessGroupNCCL::addEphemeralTimeout(
const std::chrono::milliseconds& timeout) {
std::lock_guard<std::mutex> timeoutLock(mtxTimeoutExtension_);
ephemeralTimeoutActive_ += timeout;
}
bool ProcessGroupNCCL::verifyWorkTimeoutForTest(
const c10::intrusive_ptr<Work>& work,
const std::chrono::milliseconds& timeout) {
// Since collective returns a c10d::Work, we need to cast it to WorkNCCL.
if (auto workNCCL = c10::dynamic_intrusive_pointer_cast<WorkNCCL>(work)) {
// workNCCL is now a c10::intrusive_ptr<WorkNCCL>
return workNCCL->opTimeout_ == timeout;
}
C10_THROW_ERROR(
DistBackendError, "Non c10d::WorkNCCL object returned from collective");
}
// Broadcast flight-recorder dump signal
void ProcessGroupNCCL::broadcastDumpSignal() {
try {
auto rank = globalRank();
auto vec = std::vector<uint8_t>(
reinterpret_cast<uint8_t*>(&rank),
reinterpret_cast<uint8_t*>(&rank) + sizeof(rank));
globalStore_->set(std::string(EXCEPTION_DUMP), vec);
if (!shouldDump_.load()) {
LOG(INFO)
<< logPrefix()
<< "Broadcasting flight recorder dump signal to other processes via TCPStore.";
}
// signal the monitor thread on PG0 to start dumping
shouldDump_.store(true);
// Give time for dumping before throwing exception
auto start = std::chrono::steady_clock::now();
// Give 2 * waitTimeoutDumpInMilSec_ to dump the flight recorder.
// We try capturing with stack traces first, and if it fails, we try without
// stack traces.
auto status = promiseFlightRecorderDump_.get_future().wait_for(
std::chrono::milliseconds(2 * waitTimeoutDumpInMilSec_));
if (status == std::future_status::timeout) {
LOG(WARNING) << logPrefix() << "timed out after waiting for "
<< 2 * waitTimeoutDumpInMilSec_ << "ms"
<< " flight recorder dumps to finish.";
} else if (status == std::future_status::ready) {
auto end = std::chrono::steady_clock::now();
LOG(INFO) << logPrefix() << "slept for " << computeDeltaMS(start, end)
<< "ms"
<< " giving time for flight recorder dumps to finish.";
}
} catch (const std::exception& e) {
LOG(ERROR) << logPrefix() << "Failed to set dump signal in tcpstore. "
<< "Error: " << e.what();
}
}
void ProcessGroupNCCL::watchdogHandler() {
bool done = false;
lastWorkListUpdateTime_ = std::chrono::steady_clock::now();
auto lastStatusUpdateTime = std::chrono::steady_clock::now();
std::list<ProcessGroupNCCL::WorkNCCL> completedWorkList;
while (!done || !terminateProcessGroup_.load()) {
std::unique_lock<std::mutex> lock(workMetaListMutex_);
// We busy-poll the work vector every kWatchdogThreadSleepMillis
// milliseconds as long as the atomic is True.
workMetaListCV_.wait_for(
lock,
std::chrono::milliseconds(kWatchdogThreadSleepMillis),
[&]() -> bool { return terminateProcessGroup_.load(); });
// Bump up heart beat by one.
heartbeat_++;
// Some versions of GLOG support less-spammy version of LOG_EVERY_MS
// in which case we don't want to spam the logs.
#ifdef LOG_EVERY_MS
// Log the progress of this PG periodically
C10_LOG_EVERY_MS(INFO, kWorkStatusUpdatePeriodMs) << c10::str(
logPrefix(),
"NCCL Work update periodically: ",
"last enqueued NCCL work: ",
pgStatus_->lastEnqueuedSeq,
", last completed NCCL work: ",
pgStatus_->lastCompletedSeq,
".");
#endif
auto logger = ::c10d::C10dLogger::getLogger();
if (logger &&
computeDeltaMS(
lastStatusUpdateTime, std::chrono::steady_clock::now()) >=
kWorkStatusUpdatePeriodMs) {
::c10d::C10dLoggingData data;
// logging integers
data.integers["pg_id"] = local_id_;
data.integers["rank"] = rank_;
data.integers["global_rank"] = globalRank();
data.integers["last_enqueued_work"] = pgStatus_->lastEnqueuedSeq;
data.integers["last_started_work"] = pgStatus_->lastStartedSeq;
data.integers["last_completed_work"] = pgStatus_->lastCompletedSeq;
data.integers["last_enqueued_numel_in"] = pgStatus_->lastEnqueuedNumelIn;
data.integers["last_enqueued_numel_out"] =
pgStatus_->lastEnqueuedNumelOut;
data.integers["last_completed_numel_in"] =
pgStatus_->lastCompletedNumelIn;
data.integers["last_completed_numel_out"] =
pgStatus_->lastCompletedNumelOut;
data.integers["last_started_numel_in"] = pgStatus_->lastStartedNumelIn;
data.integers["last_started_numel_out"] = pgStatus_->lastStartedNumelOut;
// logging strings
data.strings["last_enqueued_work_name"] = pgStatus_->lastEnqueuedWorkName;
data.strings["last_started_work_name"] = pgStatus_->lastStartedWorkName;
data.strings["last_completed_work_name"] =
pgStatus_->lastCompletedWorkName;
data.strings["pg_name"] = pg_uid_;
data.strings["pg_desc"] = pg_desc_;
logger->log(data);
lastStatusUpdateTime = std::chrono::steady_clock::now();
}
for (auto it = workMetaList_.begin(); it != workMetaList_.end();
/* no increment */) {
auto& work = *it;
// When terminateProcessGroup_ is true, communicators have already been
// aborted, So cannot check exception based on them. But watchdog needs to
// finish the check for the works that have already been enqueued to
// workMetaList_
// check NCCL errors first
if (!terminateProcessGroup_.load()) {
work.checkAndSetException();
}
// Then check if work has timed out
// Skip if work has encountered an error
bool timedout = !work.exception() && work.checkTimeout();
// Report desync state in case of timeout (if TORCH_NCCL_DESYNC_DEBUG is
// turned on; otherwise, run() is no-op)
if (timedout) {
desyncDebugger_.run();
}
// If work hits an exception (either an error or timeout)
if (work.exception()) {
LOG(ERROR) << c10::str(
logPrefix(),
" failure detected by watchdog at work sequence id: ",
work.seq_,
" PG status: last enqueued work: ",
pgStatus_->lastEnqueuedSeq,
", last completed work: ",
pgStatus_->lastCompletedSeq);
// Print the traceback of the collective at call time
work.printTraceback();
// try to notify other ranks via global TCPStore to dump the flight
// recorder when a collective timeout or exception happens. Flight
// recorder behavior is independent of desync Debug.
if (dumpOnTimeoutOrEx_) {
broadcastDumpSignal();
}
if (SHOULD_CLEAN_UP(asyncErrorHandling_)) {
// Abort work and corresponding communicators
work.abort();
// PG level abort, which would abort all other communicators on this
// rank
abortComms();
}
// Throw exception
work.handleException(asyncErrorHandling_);
}
// Work status logging for desync debug
desyncDebugger_.logWorkStart(work);
// a work could be started but not completed, so we should not update
// lastStartedSeq and lastStartedOpName if the work state is checked
// multiple times after the start
if (pgStatus_->lastStartedSeq < static_cast<int64_t>(work.seq_) &&
work.isStarted()) {
pgStatus_->lastStartedSeq = static_cast<int64_t>(work.seq_);
pgStatus_->lastStartedWorkName = opTypeToString(work.opType_);
pgStatus_->lastStartedNumelIn = work.numelIn_;
pgStatus_->lastStartedNumelOut = work.numelOut_;
}
// Clean up completed work
if (work.isCompleted()) {
// Work status logging for desync debug
desyncDebugger_.logWorkEnd(work);
if (work.futureWorkResult_ && work.finishedGPUExecutionInternal() &&
!work.futureWorkResult_->completed()) {
work.futureWorkResult_->markCompleted(
at::IValue(static_cast<uint8_t>(WorkResult::SUCCESS)));
}
{
// Reset the timeout and first work if the work is completed.
std::lock_guard<std::mutex> timeoutLock(mtxTimeoutExtension_);
if (work.ownedEphermeralTimeout_.count() > 0) {
ephemeralTimeoutActive_ -= work.ownedEphermeralTimeout_;
ephemeralTimeoutInflight_ -= work.ownedEphermeralTimeout_;
}
}
pgStatus_->lastCompletedSeq = static_cast<int64_t>(work.seq_);
pgStatus_->lastCompletedWorkName = opTypeToString(work.opType_);
pgStatus_->lastCompletedNumelIn = work.numelIn_;
pgStatus_->lastCompletedNumelOut = work.numelOut_;
FlightRecorder::get()->retire_id(work.trace_id_, true);
if (onCompletionHook_) {
// Move Work object to completedWorkList_ to be consumed by the hook
// thread
{
const std::lock_guard<std::mutex> lock(completedWorkListMutex_);
completedWorkList_.splice(
completedWorkList_.end(), workMetaList_, it++);
}
completedWorkListCV_.notify_one();
} else {
it = workMetaList_.erase(it);
lastWorkListUpdateTime_ = std::chrono::steady_clock::now();
}
at::cuda::CUDAGraph::dec_pending_event_queries();
} else {
// Increment the iterator if the current WorkNCCL object is not
// completed.
++it;
}
// Increment heartbeat after each work processed,
// in case processing is slowed down (but not hung) by cuda api contention
heartbeat_++;
}
done = workMetaList_.empty();
}
}
void ProcessGroupNCCL::runHookLoop() {
c10::setThreadName("pt_nccl_runhook");
bool done = false;
while (!done || !terminateProcessGroup_.load()) {
std::unique_lock<std::mutex> lock(completedWorkListMutex_);
// We busy-poll the work vector every kWatchdogThreadSleepMillis
// milliseconds as long as the atomic is True.
completedWorkListCV_.wait_for(
lock,
std::chrono::milliseconds(kWatchdogThreadSleepMillis),
[&]() -> bool {
return !completedWorkList_.empty() || terminateProcessGroup_.load();
});
try {
for (auto it = completedWorkList_.begin(); it != completedWorkList_.end();
/* no increment */) {
const WorkNCCL& work = *it;
// Hook might grab GIL, unlock first to prevent deadlock
lock.unlock();
auto timeStarted =
std::chrono::system_clock::now() +
std::chrono::duration_cast<std::chrono::system_clock::duration>(
work.workStartTime_ - std::chrono::steady_clock::now());
onCompletionHook_(std::make_shared<WorkInfo>(
work.retrieveOpType(), // OpType
work.getSequencenumber(), // seq
timeStarted, // timeStarted
std::chrono::system_clock::now(), // timeFinished
std::chrono::duration<float, std::milli>(
work.getDuration()) // activeDuration
));
lock.lock();
it = completedWorkList_.erase(it);
}
} catch (std::exception& e) {
if (std::string(e.what()).find("driver shutting down") !=
std::string::npos) {
LOG(INFO)
<< logPrefix()
<< "main process destroyed cuda before runHookLoop exited, terminating runHookLoop."
<< " (runHookLoop caught exception: " << e.what();
} else {
// PythonOnCompletionHook has already extracted Python exception message
// and wrapped it with a cpp one. So we no longer need to acquire GIL
// here.
const auto errorStr = c10::str(
"Caught exception on rank ",
rank_,
" while running onCompletion hook for ProcessGroupNCCL: ",
e.what(),
". Aborting all communicators.");
// No need to call abort() on WorkNCCL here as that collective has
// already finished successfully at this point. We just need to abort
// the process Abort all NCCL Communicators on this ProcessGroupNCCL
// instance.
abortComms(errorStr);
}
}
// Lock is still acquired at this point
done = completedWorkList_.empty();
}
}
std::exception_ptr ProcessGroupNCCL::WorkNCCL::checkForNCCLErrors() {
return checkForNCCLErrorsInternal(ncclComm_);
}
std::exception_ptr ProcessGroupNCCL::checkForNCCLErrors(
std::shared_ptr<NCCLComm>& ncclComm) {
return checkForNCCLErrorsInternal(ncclComm);
}
std::exception_ptr ProcessGroupNCCL::checkForNCCLErrorsInternal(
std::shared_ptr<NCCLComm>& ncclComm) {
// Prioritize commFailureReason over checkForNcclError() result if
// commFailureReason is set.
auto commFailureReason = ncclComm->getNcclCommFailureReason();
if (commFailureReason != std::nullopt) {
return std::make_exception_ptr(C10_BUILD_ERROR(
DistBackendError,
c10::str(
"NCCL communicator encountered error set by ProcessGroupNCCL: ",
*commFailureReason)));
}
ncclResult_t ncclAsyncErr = ncclComm->checkForNcclError();
// When nonblocking mode is enabled by TORCH_NCCL_USE_COMM_NONBLOCKING,
// ncclInProgress could be returned when there are pending NCCL calls.
// In this case, no exception should be thrown
#ifdef NCCL_HAS_COMM_NONBLOCKING
// ncclInProgress is defined only if NCCL_HAS_COMM_NONBLOCKING is defined
if (ncclAsyncErr != ncclSuccess && ncclAsyncErr != ncclInProgress) {
#else
if (ncclAsyncErr != ncclSuccess) {
#endif
return std::make_exception_ptr(C10_BUILD_ERROR(
DistBackendError,
"NCCL error: " + ncclGetErrorWithVersion(ncclAsyncErr) + "\n" +
getNcclErrorDetailStr(ncclAsyncErr)));
}
return nullptr;
}
void ProcessGroupNCCL::broadcastUniqueNCCLID(
ncclUniqueId* ncclID,
bool isSingleP2POp,
const std::string& p2pKey,
int p2pRank) {
// For collective operations:
// For every NCCL communicator that we create we need to broadcast
// a unique ID from rank 0 to all other ranks. This broadcast is
// done by rank 0 setting a key in the store and all other ranks
// retrieving the contents of that key. A single process group
// may create multiple NCCL communicators, so we use a sequence
// number to differentiate between them.
// For single point-to-point operations:
// The sequence number will only be increased on 2 out of all the
// processes in a Process Group. So all following collective
// operations will see different sequence numbers which will cause
// runtime errors. To avoid that, use the src:target pair instead
// of sequence number for p2p communications.
std::string storeKey;
if (!isSingleP2POp) {
storeKey = std::to_string(ncclCommCounter_++);
} else {
storeKey = p2pKey;
}
if (rank_ == 0 || (isSingleP2POp && p2pRank == 0)) {
auto vec = std::vector<uint8_t>(
reinterpret_cast<uint8_t*>(ncclID),
reinterpret_cast<uint8_t*>(ncclID) + NCCL_UNIQUE_ID_BYTES);
store_->set(storeKey, vec);
} else {
try {
auto vec = store_->get(storeKey);
TORCH_CHECK_WITH(
DistBackendError,
vec.size() == NCCL_UNIQUE_ID_BYTES,
"Invalid size for ncclUniqueId");
std::memcpy(ncclID, vec.data(), vec.size());
} catch (const std::exception& e) {
std::string exceptionMsg = c10::str(
"[",
rank_,
"] is setting up NCCL communicator and "
"retrieving ncclUniqueId from [0] via c10d key-value store by key '",
storeKey,
"', but store->get('",
storeKey,
"') got error: ");
C10_THROW_ERROR(
DistBackendError,
exceptionMsg + e.what() +
". This may indicate a possible application crash on rank 0 or a network set up issue.");
} catch (...) {
C10_THROW_ERROR(
DistBackendError,
c10::str(
"Unknown exception while [",
rank_,
"] is setting up NCCL communicator and "
"retrieving ncclUniqueId from [0] via c10d key-value store by key '",
storeKey,
"'",
". This may indicate a possible application crash on rank 0 or a network set up issue."));
}
}
}
void ProcessGroupNCCL::destroyNCCLComms(const std::string& devNCCLCommMapKey) {
std::lock_guard<std::mutex> lock(mutex_);
if (devNCCLCommMap_.find(devNCCLCommMapKey) == devNCCLCommMap_.end()) {
TORCH_INTERNAL_ASSERT(
false,
"Expected to find key ",
devNCCLCommMapKey,
" in NCCL communicator map.");
}
std::shared_ptr<NCCLComm>& ncclComm = devNCCLCommMap_[devNCCLCommMapKey];
// ncclCommDestroy(comm->getNcclComm()) results in segfault when PG is being
// destroyed, so using ncclCommAbort here.
ncclComm->abort();
// Remove communicators from the cache.
devNCCLCommMap_.erase(devNCCLCommMapKey);
// Clear used device indices.
usedDeviceIdxs_.clear();
ncclCommDevIdxMapMutex.lock();
ncclCommDevIdxMap.erase(ncclComm);
ncclCommDevIdxMapMutex.unlock();
}
std::shared_ptr<NCCLComm> ProcessGroupNCCL::initNCCLComm(
const std::string& deviceKey,
at::Device& device,
OpType opType,
int p2pRank,
bool isSendRecvSelf) {
// Sanity check
if (deviceKey.empty()) {
C10_THROW_ERROR(
DistBackendError,
"Not able to create/get the NCCL Communicator since "
"the GPU devices are not known");
}
if (bound_device_id_) {
if (*bound_device_id_ != device) {
LOG(ERROR) << logPrefix() << "Tensor found on device " << device
<< " but backend constrained to " << *bound_device_id_;
C10_THROW_ERROR(
DistBackendError,
"Attempt to perform collective on tensor not on device passed to init_process_group");
}
}
usedDeviceIdxs_.insert(device.index());
// NCCL communicator not cached, create a new entry
std::shared_ptr<NCCLComm> ncclComm;
// Create the unique NCCL ID and broadcast it
ncclUniqueId ncclID;
// reset log prefix to include group_desc
logPrefix_ = createLogPrefix();
#ifdef NCCL_COMM_DESCRIPTION
// Pass process group name and description to NCCL communicator
std::string commDesc = pg_desc_ + ':' + pg_uid_;
options_->config.commDesc = strdup(commDesc.c_str());
#endif
// For batch_isend_irecv, ncclGroupStart() would be called upfront
bool batchP2P = ncclActiveGroupCounter_ > 0;
bool singleP2POp = isP2POp(opType, batchP2P);
// Get the device index
auto deviceIndex = device.index();
at::cuda::OptionalCUDAGuard gpuGuard(device);
// [Group Start/End Note] This is used to ensure that nccl communicator will
// be created before communication primitives are called. Let's look at this
// example: Using the batch_isend_irecv to send a tensor to a target process.
// On the sender side, the corresponding underlying NCCL calls will look like
// ncclGroupStart() // This is in batch_isend_irecv
// ncclCommInitRank() // Inside NCCLComm::create
// ncclSend()
// ncclGroupEnd() // This is in batch_isend_irecv
// With this pattern, the nccl communicator will be created in the last
// ncclGroupEnd which means when ncclSend is processed, the passed
// communicator argument is NULL which will lead to runtime error. So we need
// to "close" all active nccl groups to ensure nccl communicator is actually
// created before encountering any communication calls. This is why we need
// the following for loop.
for (const auto i : c10::irange(ncclActiveGroupCounter_)) {
(void)i;
// comms have not been initiated yet, so can only check in blocking-way
C10D_NCCL_CHECK(ncclGroupEnd(), std::nullopt);
}
// GPU world size and GPU rank
int numRanks = -1, rank = -1;
if (!singleP2POp) {
// Collective, all-to-all, or batch P2P
numRanks = getSize();
rank = getRank();
} else if (isSendRecvSelf) {
// Same process send and recv.
numRanks = 1;
rank = 0;
} else {
// For single point-to-point operation, there are only 2 processes
// involved so the GPU rank is either 0 or 1.
numRanks = 2;
rank = p2pRank;
}
#ifdef NCCL_HAS_COMM_NONBLOCKING
bool useNb = useNonblocking();
options_->config.blocking = useNb ? 0 : 1;
#endif
#ifdef NCCL_HAS_COMM_SPLIT
// Use split to create a new communicator only if:
// 1. The parent comm is known; AND
// 2. The new comm is not for a point-to-point operation.
// ncclCommSplit() is a collective call, so it does not work for P2P
// operations.
if (options_->split_from && !singleP2POp) {
// Find a valid, healthy communicator to split from if possible.
std::lock_guard<std::mutex> lock(options_->split_from->mutex_);
auto& other_comms = options_->split_from->devNCCLCommMap_;
auto dit = other_comms.find(getKeyFromDevice(device));
if (dit != other_comms.end()) {
auto& parentComm = dit->second;
if (parentComm != nullptr && !parentComm->isAborted()) {
LOG(INFO) << logPrefix() << "Splitting NCCL communicator from "
<< parentComm->repr();
ncclComm = NCCLComm::split(
parentComm.get(),
options_->split_color,
rank,
options_->config,
options_->global_ranks_in_group);
}
}
}
#endif
// To simplify conditional nesting, just create the ncclComms[i]
// entry if it hasn't been yet rather than untangling the
// conditions that might have resulted in a split above.
if (!ncclComm) {
if (getCvarBool(TORCH_NCCL_BCAST_UNIQUEID, true) && !isSendRecvSelf) {
// For point-to-point communication, lower rank of the two will get unique
// id.
if (rank_ == 0 || (singleP2POp && p2pRank == 0)) {
C10D_NCCL_CHECK(ncclGetUniqueId(&ncclID), std::nullopt);
}
// Broadcast so that each process can have a unique NCCL ID
auto timeStarted = std::chrono::steady_clock::now();
broadcastUniqueNCCLID(&ncclID, singleP2POp, deviceKey, p2pRank);
auto timerDeltaMs =
std::chrono::duration_cast<std::chrono::duration<double>>(
std::chrono::steady_clock::now() - timeStarted)
.count() *
1000;
LOG(INFO) << logPrefix()
<< "ProcessGroupNCCL broadcast unique ID through store took "
<< timerDeltaMs << " ms";
}
#ifdef NCCL_HAS_COMM_NONBLOCKING
ncclComm =
NCCLComm::create(numRanks, rank, ncclID, deviceIndex, options_->config);
#else
ncclComm = NCCLComm::create(numRanks, rank, ncclID, deviceIndex);
#endif
}
// Creates the NCCL streams
bool force_high = getCvarBool(TORCH_NCCL_HIGH_PRIORITY, false);
auto streamVal = at::cuda::getStreamFromPool(
options_->is_high_priority_stream || force_high);
{
std::lock_guard<std::mutex> lock(mutex_);
inInitializationCommMap_.emplace(deviceKey, ncclComm);
}
FlightRecorder::get()->record_pg_ranks(
std::make_tuple(pg_uid_, pg_desc_), groupRanks());
RECORD_PARAM_COMMS(
std::make_tuple(0, false), // seq
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
rank, // rank
"init", // collective name
0, // inNelems
0, // outNelems
at::kByte, // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
size_); // worldSize
VLOG(2) << logPrefix() << "ProcessGroupNCCL created ncclComm_ "
<< ncclComm->repr()
<< " on CUDA device: " << static_cast<int>(deviceIndex);
// At this point NCCL should have been initialized, hence we can accurately
// get the env value even if NCCL sets it by reading from nccl.conf file
LOG(INFO) << logPrefix()
<< "NCCL_DEBUG: " << getCvarString({"NCCL_DEBUG"}, "N/A");
// See [Group Start/End Note]
for (const auto i : c10::irange(ncclActiveGroupCounter_)) {
(void)i;
C10D_NCCL_CHECK(ncclGroupStart(), std::nullopt);
}
ncclStreams_.emplace(deviceKey, streamVal);
// Note: these events are created with the (default) cudaEventDisableTiming
// flag This flag provides the best performance when used with
// cudaStreamWaitEvent() and cudaEventQuery(). Since we here don't measure the
// performance using cudaEvent, this should be set.
// TODO(kwen2501): is ncclEvents_ used anywhere else?
ncclEvents_.emplace(deviceKey, at::cuda::CUDAEvent(cudaEventDisableTiming));
// Move the NCCL resource to cache
auto it = inInitializationCommMap_.find(deviceKey);
// A previous thread could've already removed devicesKey from
// inInitializationCommMap_ and added it to devNCCLCommMap_
if (it != inInitializationCommMap_.end()) {
devNCCLCommMap_.emplace(deviceKey, std::move(it->second));
inInitializationCommMap_.erase(deviceKey);
// Now ncclComms are fully initialized.
// Register all active CUDA memory segments in cache allocator to
// the new NCCL communicators
if (useTensorRegisterAllocatorHook_) {
auto snapshot = c10::cuda::CUDACachingAllocator::snapshot();
// Register the segment to a new NCCL communicator if on the same device
for (const auto& segmentInfo : snapshot.segments) {
TORCH_INTERNAL_ASSERT(
segmentInfo.device == device.index(),
"Mismatch between CUDA memory segment device and current device");
ncclComm->registerSegment(
reinterpret_cast<void*>(segmentInfo.address),
segmentInfo.total_size);
}
}
// Record the mapping between ncclComm and device index so that later
// register hook can register a newly allocated segment to communicators
// on the same device.
// NOTE: we need remove the communicator from this map when it is
// destroyed, otherwise may register onto an invalid communicator.
ncclCommDevIdxMapMutex.lock();
ncclCommDevIdxMap.emplace(ncclComm, device.index());
ncclCommDevIdxMapMutex.unlock();
}
it = devNCCLCommMap_.find(deviceKey);
TORCH_INTERNAL_ASSERT(
it != devNCCLCommMap_.end(), "Communicators not populated in cache!");
return it->second;
}
std::shared_ptr<NCCLComm> ProcessGroupNCCL::getNCCLComm(
const std::string& deviceKey) {
std::lock_guard<std::mutex> lock(mutex_);
if (devNCCLCommMap_.find(deviceKey) != devNCCLCommMap_.end()) {
// Reuse the cached communicator if there is one.
return devNCCLCommMap_[deviceKey];
}
return nullptr;
}
uint64_t ProcessGroupNCCL::getCommSplitCounter() const {
uint64_t ret = 0;
for (const auto& i : devNCCLCommMap_) {
auto& ncclComm = i.second;
ret += ncclComm->getCommSplitCounter();
}
return ret;
}
namespace {
// Check validity of tensor
void check_gpu_single_tensor(
const at::Tensor& tensor,
const bool p2p = false // whether operation is a P2P operation
) {
if (!tensor.is_cuda() || tensor.is_sparse()) {
C10_THROW_ERROR(ValueError, "Tensors must be CUDA and dense");
}
// Skip the following requirements for P2P operations
if (!tensor.is_contiguous(tensor.suggest_memory_format())) {
if (p2p) {
TORCH_WARN_ONCE(
"Detected non-contiguous tensor in P2P operations. It is user "
"responsibility to guarantee that source and destination tensors have "
"the same contiguity format.");
} else {
C10_THROW_ERROR(ValueError, "Tensors must be contiguous");
}
}
}
// Checks that all `tensors' have the same type and shape and reside on the same
// GPU.
// TODO: test_c10d_nccl.py should consider adding tests for the error conditions
// here, ie, that deliberately pass invalid tensors and check the right
// exception is thrown. The "Expected list of tensors on the same device"
// condition may be a challenge because the test would need to pass tensors on
// different devices in the same process.
int64_t check_gpu_tensors_same_device(const std::vector<at::Tensor>& tensors) {
if (tensors.empty()) {
C10_THROW_ERROR(ValueError, "Tensor list must be nonempty");
}
const auto& first = tensors.front();
int64_t total_numel = 0;
for (const auto& t : tensors) {
if (!t.is_cuda() || t.is_sparse()) {
C10_THROW_ERROR(ValueError, "Tensors must be CUDA and dense");
}
if (t.scalar_type() != first.scalar_type()) {
C10_THROW_ERROR(TypeError, "Tensors must have identical type");
}
if (!t.is_non_overlapping_and_dense()) {
C10_THROW_ERROR(ValueError, "Tensors must be non-overlapping and dense");
}
// If we're in this function, the user called a _coalesced collective
// on a set of tensors with potentially different sizes and strides.
// Therefore, we don't check for matching sizes and strides,
// but we do double-check tensors are on the same device.
TORCH_CHECK_WITH(
ValueError,
t.get_device() == tensors[0].get_device(),
"Expected list of tensors on the same device");
total_numel += t.numel();
}
return total_numel;
}
bool check_same_size(const std::vector<at::Tensor>& input_tensors) {
for (const auto& input_tensor : input_tensors) {
if (!input_tensors[0].is_same_size(input_tensor)) {
return false;
}
}
return true;
}
} // namespace
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> ProcessGroupNCCL::initWork(
at::Device& device,
int rank,
OpType opType,
bool isP2P,
const char* profilingTitle,
const std::vector<at::Tensor>& inputs,
const std::vector<at::Tensor>& outputs, // TODO(kwen2501): necessary?
bool record) {
auto r = c10::make_intrusive<ProcessGroupNCCL::WorkNCCL>(
pg_uid_,
pg_desc_,
device,
rank,
opType,
isP2P ? seqP2P_ : seqCollective_,
isP2P,
profilingTitle,
profilingTitle != nullptr ? std::optional<std::vector<at::Tensor>>(inputs)
: std::nullopt,
desyncDebug_,
enableTiming_.load(),
cudaEventCacheEnabled_.load(),
dist_debug_level_);
if (record) {
bool isP2P = isP2POp(opType);
// Ideally record every work that we enqueue, rather than every work we
// create.
// - at the time of this PR we do not currently enqueue every created work
// - but it is unsafe to steal refs to start/end cuda events from Works that
// may go out of scope before flight recorder has retired them,
// so we must ensure that any work that is initialized via initWork will
// be enqueued
// - initially, moved record() into workEnqueue(), but found that makes it
// hard to get access to profilingTitle,
// inputs, and outputs for metadata recording, and we don't want to attach
// these objects to the Work becuase it has implications for keeping those
// tensors alive longer and adds overhead when copying Work objects
// between threads
r->trace_id_ = FlightRecorder::get()->record(
local_id_,
std::make_tuple(pg_uid_, pg_desc_),
seqCollective_,
seqP2P_,
op_id_,
profilingTitle ? profilingTitle : "",
inputs,
outputs,
r->ncclStartEvent_.get(),
r->ncclEndEvent_.get(),
options_->timeout,
pgStatus_,
isP2P);
}
return r;
}
// TODO(kwen2501): deprecate
std::vector<at::Tensor> ProcessGroupNCCL::WorkNCCL::result() {
return *outputs_;
}
c10::intrusive_ptr<c10::ivalue::Future> ProcessGroupNCCL::WorkNCCL::
getFuture() {
return future_;
}
c10::intrusive_ptr<c10::ivalue::Future> ProcessGroupNCCL::WorkNCCL::
getFutureResult() {
return futureWorkResult_;
}
float ProcessGroupNCCL::WorkNCCL::getDuration() const {
TORCH_CHECK(timingEnabled_, "getDuration only works if timing was enabled");
TORCH_CHECK(
ncclStartEvent_,
"getDuration only works if ncclStartEvents_ is populated, true if timing enabled");
TORCH_CHECK(
ncclEndEvent_,
"getDuration only works if ncclEndEvents_ is populated, which should always be true");
return ncclStartEvent_->elapsed_time(*ncclEndEvent_);
}
uint64_t ProcessGroupNCCL::WorkNCCL::getSequencenumber() const {
return seq_;
}
void ProcessGroupNCCL::assignTimeoutToWork(
const c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work,
const c10::intrusive_ptr<ProcessGroupNCCL::Options>& option) {
std::chrono::milliseconds timeout = option->timeout;
std::lock_guard<std::mutex> timeoutLock(mtxTimeoutExtension_);
if (ephemeralTimeoutActive_.count() > 0) {
timeout += ephemeralTimeoutActive_;
}
work->opTimeout_ = timeout;
work->ownedEphermeralTimeout_ =
ephemeralTimeoutActive_ - ephemeralTimeoutInflight_;
ephemeralTimeoutInflight_ = ephemeralTimeoutActive_;
}
void ProcessGroupNCCL::workEnqueue(
const c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
// in blockingWait_ mode, we don't need watchdog thread, so no need to enqueue
// the work
if (!terminateProcessGroup_.load() && !blockingWait_) {
std::lock_guard<std::mutex> lock(workMetaListMutex_);
// Avoid view tensors to be processed in cleanup thread.
// View tensors' destruction invokes autograd_meta, which
// needs to be destructed in user thread. Otherwise will
// get deadlock. Here we enqueue work without outputs_.
workMetaList_.emplace_back(*work);
// update the PG status related to the last enqueued work
pgStatus_->lastEnqueuedSeq = work->seq_;
pgStatus_->lastEnqueuedWorkName = opTypeToString(work->opType_);
pgStatus_->lastEnqueuedNumelIn = work->numelIn_;
pgStatus_->lastEnqueuedNumelOut = work->numelOut_;
lastWorkListUpdateTime_ = std::chrono::steady_clock::now();
}
}
ProcessGroupNCCL::Options::Options(bool is_high_priority_stream)
: Backend::Options(NCCL_BACKEND_NAME, kProcessGroupNCCLDefaultTimeout),
is_high_priority_stream(is_high_priority_stream) {}
static constexpr int CoalActive = 0x01, CoalColl = 0x02, CoalP2P = 0x04;
void ProcessGroupNCCL::startCoalescing() {
// Other collective ops bump seq_ before creating a work. Thus, if coalesced
// ops bump seq_ only after initing a work they will collide with (reuse) the
// seq_ of the last non-coalesced collective. Previously, seq_ was bumped
// inside endCoalescing, but before initWork. Since we now record individual
// ops from a coalesce group into the flight recorder, we want to have the
// same seq_ for those ops and its 'endCoalescing' op. Hence we bump during
// start, which has one minor downside- we burn a seq_ if someone ever does a
// 'start' and 'end' coalescing region without doing an operation inbetween.
coalescedDevice_.set_index(-1);
coalescedComm_ = nullptr;
coalescing_state_ |= CoalActive;
groupStart();
}
// `optype` is for specifying a composite optype, such as ALLGATHER and
// REDUCE_SCATTER
c10::intrusive_ptr<Work> ProcessGroupNCCL::endCoalescing(OpType optype) {
if (coalescedComm_ == nullptr) {
// There is no actual work being coalesced, return here
groupEnd();
coalescing_state_ = 0;
return nullptr;
}
TORCH_CHECK(
coalescedDevice_.index() >= 0,
"Somthing went wrong. Did you call end_coalescing before start_coalescing?");
// `coalescedComm_` should have same set of comms across collectives
auto comm = coalescedComm_;
// `coalescedDevice_` should have same set of devices across collectives
auto device = coalescedDevice_;
// `getKeyFromDevice` is how we get keys for both collectives and batch P2P
const auto key = getKeyFromDevice(device);
auto ncclStream = ncclStreams_.at(key);
// Create Work object
c10::cuda::CaptureStatus capture_status =
c10::cuda::currentStreamCaptureStatusMayInitCtx();
bool enqueue =
(coalescing_state_) && capture_status == c10::cuda::CaptureStatus::None;
auto work = initWork(
device,
rank_,
optype,
coalescing_state_ & CoalP2P,
"nccl:coalesced",
{},
{},
enqueue);
work->ncclComm_ = comm;
work->blockingWait_ = blockingWait_;
work->avoidRecordStreams_ = avoidRecordStreams_;
work->store_ = store_;
assignTimeoutToWork(work, options_);
// Record start before ncclGroupEnd
if (work->timingEnabled_) {
work->ncclStartEvent_->record(ncclStream);
}
if (useNonblocking()) {
groupEndNonblocking(comm);
} else {
groupEnd();
}
// Record end after ncclGroupEnd
// TODO(eqy): is this still necessary if avoidRecordStreams_ is set?
work->ncclEndEvent_->record(ncclStream);
if (avoidRecordStreams_) {
// other functions expect an initialized ptr if avoidRecordStreams_ is set
work->stashed_for_allocator_safety_ =
std::make_shared<std::vector<at::Tensor>>();
}
// Notify graphs before we check the capture status preemptively
at::cuda::CUDAGraph::inc_pending_event_queries();
if (enqueue) {
workEnqueue(work);
} else {
at::cuda::CUDAGraph::dec_pending_event_queries();
}
coalescing_state_ = 0;
coalescedComm_ = nullptr;
return work;
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::endCoalescing() {
// Default OpType to COALESCED if not specified
return endCoalescing(OpType::COALESCED);
}
template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collective(
std::vector<at::Tensor>& inputs,
std::vector<at::Tensor>& outputs,
Fn fn,
PreProcess pre,
PostProcess post,
OpType opType,
const char* profilingTitle,
bool avoidRecordStreams,
bool nanCheck) {
// Environment setting by the user may add onto collective call's option
avoidRecordStreams |= avoidRecordStreams_;
nanCheck &= enableNanCheck_;
auto device = getDevice(inputs[0]);
// Guard must be created before `currentStreamCaptureStatusMayInitCtx`;
// otherwise, extra CUDA context could be created on device 0.
at::cuda::OptionalCUDAGuard gpuGuard(device);
c10::cuda::CaptureStatus capture_status =
c10::cuda::currentStreamCaptureStatusMayInitCtx();
errorIfCapturingNonCapturableNCCL(capture_status);
// Bump collective counter
if (!coalescing_state_) {
seqCollective_++;
}
op_id_++;
const auto key = getKeyFromDevice(device);
std::shared_ptr<NCCLComm> ncclComm = getNCCLComm(key);
if (ncclComm == nullptr) {
ncclComm = initNCCLComm(key, device, opType);
}
if (coalescing_state_ & CoalActive) {
if ((coalescing_state_ & CoalColl) == 0) {
// First op in coalesced operations
seqCollective_++;
}
coalescing_state_ |= CoalColl;
if (coalescedDevice_.index() < 0) {
coalescedDevice_ = device;
} else {
TORCH_CHECK(
coalescedDevice_.index() == device.index(), MULTI_DEVICE_ERROR_MSG);
}
if (coalescedComm_ == nullptr) {
coalescedComm_ = ncclComm;
} else {
TORCH_CHECK(coalescedComm_ == ncclComm, MULTI_DEVICE_ERROR_MSG);
}
}
// Used many times below, so we stash the unordered_map lookup
auto ncclStream = ncclStreams_.at(key);
// First let NCCL streams wait for input tensors allocation streams
syncStream(device, ncclEvents_[key], ncclStream);
bool enqueue =
!coalescing_state_ && capture_status == c10::cuda::CaptureStatus::None;
auto work = initWork(
device, rank_, opType, false, profilingTitle, inputs, outputs, enqueue);
// Store references to outputs to be used by WorkNCCL::result and operator<<.
work->outputs_ = std::make_shared<std::vector<at::Tensor>>(outputs);
if (avoidRecordStreams) {
work->stashed_for_allocator_safety_ =
std::make_shared<std::vector<at::Tensor>>(inputs);
}
if (nanCheck) {
for (const auto& input : inputs) {
checkForNan(input, ncclStream);
}
}
// Start event should only be recorded before the ncclGroupStart()
if (work->timingEnabled_) {
work->ncclStartEvent_->record(ncclStream);
}
pre(ncclStream, work);
ncclComm_t comm = ncclComm->getNcclComm();
// Both `inputs' and `outputs' are created on a worker stream and used in
// different ncclStreams. Hence, both must record the ncclStream to
// prevent being freed before the collective finishes.
//
// We only record `inputs' here, and leave recording `outputs' to `fn' for
// operations where `inputs' and `outputs' are not the same.
//
// See [Sync Streams].
if (!avoidRecordStreams) {
for (const auto& input : inputs) {
if (!input.is_sparse()) {
c10::cuda::CUDACachingAllocator::recordStream(
input.storage().data_ptr(), ncclStream);
} else {
// for sparse input case record streams on both index and value
// tensors
c10::cuda::CUDACachingAllocator::recordStream(
input.values().storage().data_ptr(), ncclStream);
c10::cuda::CUDACachingAllocator::recordStream(
input.indices().storage().data_ptr(), ncclStream);
}
}
}
// Not all collectives have the same signature, e.g, all-reduce take in a Tensor
// as the input and output while all-to-all take in a vector of Tensors as input
// and output. Because we define the signature of the fn to take only single
// tensor as input and output, we need to do a hack to get the first element in
// the vector and pass it to fn.
// TODO: we should clean up this in future (by either entirely removing lambda's
// or removing input and output from lambda's signature).
#ifndef NCCL_HAS_COMM_NONBLOCKING
C10D_NCCL_CHECK(
fn(inputs[0], outputs[0], comm, ncclStream),
ncclComm->getNcclCommFailureReason());
#else
C10D_NCCL_CHECK_TIMEOUT(
fn(inputs[0], outputs[0], comm, ncclStream),
comm,
ncclComm->getNcclCommFailureReason());
#endif
post(ncclStream, work);
// End event should only be recorded after the ncclGroupEnd()
if (!coalescing_state_) {
work->ncclEndEvent_->record(ncclStream);
}
work->ncclComm_ = ncclComm;
{
c10::cuda::CUDAMultiStreamGuard streamGuard(ncclStream);
std::vector<at::Device> devices{device};
work->future_ = c10::make_intrusive<at::ivalue::Future>(
c10::ListType::create(c10::TensorType::get()), devices);
// Add a callback that runs profiling end callbacks. wrapCallback() in CUDA
// future blocks the stream this callback runs on the corresponding
// ncclEndEvents_ ensuring appropriate synchronization.
if (work->recordFunctionEndCallback_) {
work->future_->addCallback(
[work](at::ivalue::Future& /* unused */) {
work->recordFunctionEndCallback_();
},
// uses_future = false allows us to skip synchronization in
// ivalue::Future, but is only valid as long as the lambda doesn't use
// the "Future" argument.
/*uses_future=*/false);
}
work->future_->markCompleted(at::IValue(*work->outputs_));
}
// Set appropriate work parameters.
work->blockingWait_ = blockingWait_;
work->avoidRecordStreams_ = avoidRecordStreams;
work->store_ = store_;
assignTimeoutToWork(work, options_);
// Record size info for debug. We only record the size on the first device as
// multi-device per process is deprecated
work->numelIn_ = 0;
work->numelOut_ = 0;
for (const auto& input : inputs) {
work->numelIn_ += input.numel();
}
for (const auto& output : outputs) {
work->numelOut_ += output.numel();
}
// Notify graphs before we check the capture status preemptively
at::cuda::CUDAGraph::inc_pending_event_queries();
if (enqueue) {
workEnqueue(work);
} else {
at::cuda::CUDAGraph::dec_pending_event_queries();
}
return work;
}
template <typename Fn>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collectiveCoalesced(
std::vector<at::Tensor>& inputs,
std::vector<at::Tensor>& outputs,
Fn fn,
OpType opType,
const char* profilingTitle,
bool avoidRecordStreams) {
// Environment setting by the user may add onto collective call's option
avoidRecordStreams |= avoidRecordStreams_;
// Currently, the API permits one scenario where inputs.size() and
// outputs.size() are > 0.
// 1. If the call was a _coalesced call, all inputs must be on the same
// device.
// The group of nccl calls applies the collective separately to each input,
// but the group as a whole should be efficient, and might even execute as
// a single fused kernel.
auto device = getDevice(inputs[0]);
// Guard must be created before `currentStreamCaptureStatusMayInitCtx`;
// otherwise, extra CUDA context could be created on device 0.
at::cuda::OptionalCUDAGuard gpuGuard(device);
c10::cuda::CaptureStatus capture_status =
c10::cuda::currentStreamCaptureStatusMayInitCtx();
errorIfCapturingNonCapturableNCCL(capture_status);
// Bump collective counter
seqCollective_++;
// For coalescingManager collectives, there is no individual c++ call per
// collective so there is no flight record and we increment seqCollective_ and
// op_id_ together. Compare this to startCoalescing/endCoalescing flow where
// we increment either seqP2P_ or seqCollective_ once per group and increment
// op_id_ once per indvidual operation within the group
op_id_++;
const auto key = getKeyFromDevice(device);
std::shared_ptr<NCCLComm> ncclComm = getNCCLComm(key);
if (ncclComm == nullptr) {
ncclComm = initNCCLComm(key, device, opType);
}
if (coalescing_state_ & CoalActive) {
coalescing_state_ |= CoalColl;
if (coalescedDevice_.index() < 0) {
coalescedDevice_ = device;
} else {
TORCH_CHECK(
coalescedDevice_.index() == device.index(), MULTI_DEVICE_ERROR_MSG);
}
if (coalescedComm_ == nullptr) {
coalescedComm_ = ncclComm;
} else {
TORCH_CHECK(coalescedComm_ == ncclComm, MULTI_DEVICE_ERROR_MSG);
}
}
// Used many times below, so we stash the unordered_map lookup
auto ncclStream = ncclStreams_.at(key);
// First let NCCL streams wait for input tensors allocation streams
syncStream(device, ncclEvents_[key], ncclStream);
auto work = initWork(
device,
rank_,
opType,
false,
profilingTitle,
inputs,
outputs,
/*record=*/true);
// Store references to outputs to be used by WorkNCCL::result and operator<<.
work->outputs_ = std::make_shared<std::vector<at::Tensor>>(outputs);
if (avoidRecordStreams) {
work->stashed_for_allocator_safety_ =
std::make_shared<std::vector<at::Tensor>>(inputs);
}
// Start event should only be recorded before the ncclGroupStart() (which
// happens inside AutoNcclGroup guard below)
if (work->timingEnabled_) {
work->ncclStartEvent_->record(ncclStream);
}
ncclComm_t comm = ncclComm->getNcclComm();
// TODO(kwen2501): this should be moved to c10d tests, to qualify a NCCL
// upgrade. Once a NCCL version is qualified, this code should not be needed at
// runtime.
#ifdef PGNCCL_ENABLE_HASH
if (enableCollecticeHashDebug_.load()) {
auto numel = getTensorsNumel(inputs);
auto hashValue = hashTensors(inputs);
PRINT_COLLECTIVE_HASH_SIGNATURE(
"input", opTypeToString(opType), numel, hashValue);
}
#endif
{
torch::cuda::nccl::AutoNcclGroup nccl_group_guard(comm, useNonblocking());
for (const auto i : c10::irange(inputs.size())) {
// Both `inputs' and `outputs' are created on a worker stream and used in
// different ncclStreams. Hence, both must record the ncclStream to
// prevent being freed before the collective finishes.
//
// We only record `inputs' here, and leave recording `outputs' to `fn' for
// operations where `inputs' and `outputs' are not the same.
//
// See [Sync Streams].
if (!avoidRecordStreams) {
if (!inputs[i].is_sparse()) {
c10::cuda::CUDACachingAllocator::recordStream(
inputs[i].storage().data_ptr(), ncclStream);
} else {
// for sparse input case record streams on both index and value
// tensors
c10::cuda::CUDACachingAllocator::recordStream(
inputs[i].values().storage().data_ptr(), ncclStream);
c10::cuda::CUDACachingAllocator::recordStream(
inputs[i].indices().storage().data_ptr(), ncclStream);
}
}
#ifndef NCCL_HAS_COMM_NONBLOCKING
C10D_NCCL_CHECK(
fn(inputs[i], outputs[i], comm, ncclStream),
ncclComm->getNcclCommFailureReason());
#else
C10D_NCCL_CHECK_TIMEOUT(
fn(inputs[i], outputs[i], comm, ncclStream),
comm,
ncclComm->getNcclCommFailureReason());
#endif
}
}
work->ncclEndEvent_->record(ncclStream);
work->ncclComm_ = ncclComm;
{
c10::cuda::CUDAMultiStreamGuard streamGuard(ncclStream);
std::vector<at::Device> devices{device};
work->future_ = c10::make_intrusive<at::ivalue::Future>(
c10::ListType::create(c10::TensorType::get()), devices);
// Add a callback that runs profiling end callbacks. wrapCallback() in CUDA
// future blocks the stream this callback runs on the corresponding
// ncclEndEvents_ ensuring appropriate synchronization.
if (work->recordFunctionEndCallback_) {
work->future_->addCallback(
[work](at::ivalue::Future& /* unused */) {
work->recordFunctionEndCallback_();
},
// uses_future = false allows us to skip synchronization in
// ivalue::Future, but is only valid as long as the lambda doesn't use
// the "Future" argument.
/*uses_future=*/false);
}
work->future_->markCompleted(at::IValue(*work->outputs_));
}
// Set appropriate work parameters.
work->blockingWait_ = blockingWait_;
work->avoidRecordStreams_ = avoidRecordStreams;
work->store_ = store_;
assignTimeoutToWork(work, options_);
// Record size info for debug. We only record the size on the first device as
// multi-device per process is deprecated
work->numelIn_ = inputs[0].numel();
work->numelOut_ = outputs[0].numel();
/* Note [cuda graph capture and workEnqueue]
Normal behavior of the C10D watchdog is to query cuda events on work objects
periodically, but when cuda graph recording is active these event queries
would crash or mess up the recording.
To ensure we do not enqueue a work object to the watchdog when cuda graph
capture is active, we use a one-way sync. We increment a flag pre-emptively,
indicating our intent to enqueue a work object. Then we check capture_status
to see if (a) capturing is already in progress (we cannot enqueue in this
case), (b) capturing hasn't started yet, so we can trust that no capture will
start (since a pre-condition of starting a capture is to check the event query
count is 0).
If we are not able to enqueue the work due to capture-in-progress, we finally
decrement the counter.
For this reason we cannot easily move the increment inside workEnqueue unless
we also change the semantic of workEnqueue to 'maybeWorkEnqueue'.
TODO:
- Is our design for flight recorder safe in this context? are we recording
any FR events during cudagraph capture? if so, they won't be safe to poll for
completion status.
*/
at::cuda::CUDAGraph::inc_pending_event_queries();
if (capture_status == c10::cuda::CaptureStatus::None) {
workEnqueue(work);
} else {
at::cuda::CUDAGraph::dec_pending_event_queries();
}
// TODO(whc) if the work isn't enqueued, I don't feel great about returning
// it, since interactions with it by usercode won't behave normally - they
// won't observe work completion, for instance. Will this lead to silent
// problems during capture?
return work;
}
template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> ProcessGroupNCCL::pointToPoint(
at::Tensor& tensor,
Fn fn,
int peer,
OpType opType,
PreProcess pre,
PostProcess post,
const char* profilingTitle) {
// avoidRecordStreams_ note:
// send, recv, and irecv should be ok with avoidRecordStreams,
// However, for isend, I don't think the API requires the user
// to wait() on the returned handle, so ProcessGroupNCCL can't know
// when it's safe to release the input back to the allocator,
// and the present call has no way to know it's not an isend.
// Therefore, we warn and fall back to the typical recordStream logic:
if (avoidRecordStreams_) {
TORCH_WARN_ONCE(
"TORCH_NCCL_AVOID_RECORD_STREAMS=1 has no effect for point-to-point "
"collectives.");
}
auto device = getDevice(tensor);
at::cuda::OptionalCUDAGuard gpuGuard(device);
std::string key;
int p2pRank = 0, p2pTargetRank = 0;
bool isSendRecvSelf = false;
// For batch_isend_irecv, ncclGroupStart() would be called upfront
bool batchP2P = ncclActiveGroupCounter_ > 0;
if (batchP2P) {
// For batch P2P, we need to treat it like a collective when selecting
// communicator, because other ranks can call into this batch other than my
// rank and my peer
key = getKeyFromDevice(device);
p2pRank = rank_;
p2pTargetRank = peer;
} else {
// For single P2P, preserve the old two-rank behavior (to avoid perf diff)
key = getKeySendRecv(rank_, peer);
p2pRank = rank_ <= peer ? 0 : 1;
isSendRecvSelf = rank_ == peer;
p2pTargetRank = isSendRecvSelf ? 0 : 1 - p2pRank;
if (!coalescing_state_) {
// Bump P2P sequence number.
seqP2P_++;
}
}
// Bump the logical operation counter regardless of whether this op is
// coalesced or individual
op_id_++;
std::shared_ptr<NCCLComm> ncclComm = getNCCLComm(key);
if (ncclComm == nullptr) {
ncclComm = initNCCLComm(key, device, opType, p2pRank, isSendRecvSelf);
}
if (coalescing_state_ & CoalActive) {
// Bump seqP2P_ once per coalesced group, not once per individual op.
if ((coalescing_state_ & CoalP2P) == 0) {
seqP2P_++;
}
coalescing_state_ |= CoalP2P;
if (coalescedDevice_.index() < 0) {
coalescedDevice_ = device;
} else {
TORCH_CHECK(
coalescedDevice_.index() == device.index(), MULTI_DEVICE_ERROR_MSG);
}
if (coalescedComm_ == nullptr) {
coalescedComm_ = ncclComm;
} else {
TORCH_CHECK(coalescedComm_ == ncclComm, MULTI_DEVICE_ERROR_MSG);
}
}
// Used many times below, so we stash the unordered_map lookup
auto ncclStream = ncclStreams_.at(key);
// First let NCCL streams wait for input tensors allocation streams
syncStream(device, ncclEvents_[key], ncclStream);
// Work itself will create the CUDA events on all GPUs of tensors
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> work;
if (coalescing_state_) {
// When coalescing, we record events per op that lack timing/state
// information becuase there is no 'work' associated with them, and then
// later in endCoalescing we record a 'coalesced' Work which has
// timing/state updates via watchdog thread, but lacks op metadata such as
// input/output sizes and profilingTitle per-op in the group.
auto trace_id = FlightRecorder::get()->record(
local_id_,
std::make_tuple(pg_uid_, pg_desc_),
seqCollective_,
seqP2P_,
op_id_,
profilingTitle,
{tensor},
{tensor},
nullptr,
nullptr,
options_->timeout,
pgStatus_,
/*isP2P=*/true);
// TODO(whc) if we want to make the per-p2p-op flightrecorder entries get
// their timings/states updated by proxy when the Work obj representing the
// coalesce group gets its update, we could accumulate these trace_ids
// together and ask FlightRecorder to take the update from one Work and
// apply it to multiple entries
(void)trace_id;
} else {
// Store references to outputs to be used by WorkNCCL::result and
// operator<<. Note that these outputs are only valid for recv(), as send()
// does not modify the inputs but we still create these outputs for use
// cases such as profiling.
work = initWork(
device,
rank_,
opType,
true,
profilingTitle,
{tensor},
{},
/*record=*/false);
// This bypasses something in Work() that crashes if {tensor} is given as
// output, not sure what
work->outputs_ = std::make_shared<std::vector<at::Tensor>>();
work->outputs_->push_back(tensor);
// TODO(whc) because we don't pass output {tensor} to initWork, we tell
// initWork to not record, and then we manually call record passing all the
// information it wants.
work->trace_id_ = FlightRecorder::get()->record(
local_id_,
std::make_tuple(pg_uid_, pg_desc_),
seqCollective_,
seqP2P_,
op_id_,
profilingTitle,
{tensor},
{tensor},
work->ncclStartEvent_.get(),
work->ncclEndEvent_.get(),
options_->timeout,
pgStatus_,
/*isP2P=*/true);
}
// Only check for NaN for send ops, for recv ops `tensor` can be a random
// placeholder
if (enableNanCheck_ && opType == OpType::SEND) {
checkForNan(tensor, ncclStream);
}
if (!coalescing_state_) {
// Start event should only be recorded before the ncclGroupStart()
if (work->timingEnabled_) {
work->ncclStartEvent_->record(ncclStream);
}
pre(ncclStream, work);
}
// Both send tensor and recv tensor are created on a worker stream and used
// in different ncclStreams. Hence, both must record the ncclStream to
// prevent being freed before the collective finishes.
//
// See [Sync Streams].
c10::cuda::CUDACachingAllocator::recordStream(
tensor.storage().data_ptr(), ncclStream);
// This part seems common to both p2p and coalesced-p2p usage?
ncclComm_t comm_ = ncclComm->getNcclComm();
#ifndef NCCL_HAS_COMM_NONBLOCKING
C10D_NCCL_CHECK(
fn(tensor, comm_, ncclStream, p2pTargetRank),
ncclComm->getNcclCommFailureReason());
#else
// In non-blocking mode, we need to use ncclGroup semantics to ensure that the
// kernel is enqueued for single-P2P ops. Otherwise, the event record below
// may not capture the kernel, leading to data corruption.
ncclGroupStart();
C10D_NCCL_CHECK_NONBLOCKING(
fn(tensor, comm_, ncclStream, p2pTargetRank), std::nullopt);
C10D_NCCL_CHECK_TIMEOUT_GROUPEND(
ncclGroupEnd(), ncclComm, ncclComm->getNcclCommFailureReason());
#endif
if (!coalescing_state_) {
post(ncclStream);
// End event should only be recorded after the ncclGroupEnd()
work->ncclEndEvent_->record(ncclStream);
work->ncclComm_ = ncclComm;
work->blockingWait_ = blockingWait_;
work->store_ = store_;
assignTimeoutToWork(work, options_);
// Record size info for debug. We only record the size on the first device
// as multi-device per process is deprecated
work->numelIn_ = work->numelOut_ = tensor.numel();
// Future only needs to be created and marked completed with outputs for
// recv(), but still create future for use cases such as profiling even for
// send().
{
c10::cuda::CUDAMultiStreamGuard streamGuard(ncclStream);
std::vector<at::Device> devices{device};
work->future_ = c10::make_intrusive<at::ivalue::Future>(
c10::ListType::create(c10::TensorType::get()), devices);
work->future_->markCompleted(at::IValue(*work->outputs_));
}
// Add a callback that runs profiling end callbacks. wrapCallback() in CUDA
// future blocks the stream this callback runs on the corresponding
// ncclEndEvents_ ensuring appropriate synchronization.
if (work->recordFunctionEndCallback_) {
work->future_->addCallback(
[work](at::ivalue::Future& /* unused */) {
work->recordFunctionEndCallback_();
},
// uses_future = false allows us to skip synchronization in
// ivalue::Future, but is only valid as long as the lambda doesn't use
// the "Future" argument.
/*uses_future=*/false);
}
}
// Enqueue P2P op so that it can be cancelled by NCCL watchdog
c10::cuda::CaptureStatus capture_status =
c10::cuda::currentStreamCaptureStatusMayInitCtx();
// Notify graphs before we check the capture status preemptively
at::cuda::CUDAGraph::inc_pending_event_queries();
if (!coalescing_state_ && capture_status == c10::cuda::CaptureStatus::None) {
workEnqueue(work);
return work;
} else {
at::cuda::CUDAGraph::dec_pending_event_queries();
return nullptr;
}
}
template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collective(
at::Tensor& input,
at::Tensor& output,
Fn fn,
PreProcess pre,
PostProcess post,
OpType opType,
const char* profilingTitle,
bool avoidRecordStreams,
bool nanCheck) {
auto inputs = std::vector<at::Tensor>{input};
auto outputs = std::vector<at::Tensor>{output};
return collective(
inputs,
outputs,
fn,
pre,
post,
opType,
profilingTitle,
avoidRecordStreams,
nanCheck);
}
template <typename Fn>
c10::intrusive_ptr<Work> ProcessGroupNCCL::collective(
at::Tensor& input,
at::Tensor& output,
Fn fn,
OpType opType,
const char* profilingTitle,
bool avoidRecordStreams,
bool nanCheck) {
auto inputs = std::vector<at::Tensor>{input};
auto outputs = std::vector<at::Tensor>{output};
return collective(
inputs,
outputs,
fn,
[](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
[](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
opType,
profilingTitle,
avoidRecordStreams,
nanCheck);
}
template <typename Fn>
c10::intrusive_ptr<Work> ProcessGroupNCCL::pointToPoint(
at::Tensor& tensor,
Fn fn,
int peer,
OpType opType,
const char* profilingTitle) {
return pointToPoint(
tensor,
fn,
peer,
opType,
[](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
[](at::cuda::CUDAStream&) {},
profilingTitle);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce_sparse(
std::vector<at::Tensor>& tensors,
const AllreduceOptions& opts) {
TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
auto tensor = tensors.back();
TORCH_CHECK(
!isFloat8Type(tensor.scalar_type()),
"Float8 dtypes are not currenlty supported for NCCL reductions");
#ifdef IS_NCCLX
tensor = tensor.coalesce();
at::Tensor outputTensor =
torch::zeros(tensor.sizes(), tensor.options().layout(torch::kStrided));
auto work = collective(
tensor,
outputTensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
auto ncclDataType = getNcclDataType(input.scalar_type());
auto ncclReduceOp =
getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
size_t num_elements = output.numel();
auto indices = input.indices();
auto sizes = input.sizes();
int colSize = sizes[1];
auto rows = indices[0];
size_t blockCount = rows.sizes()[0];
auto recvIndices = indices[0] * colSize;
// prevent output and recvIndices from being freed
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
c10::cuda::CUDACachingAllocator::recordStream(
recvIndices.storage().data_ptr(), stream);
auto result = ncclAllReduceSparseBlock(
input._values().data_ptr(), // sendbuff
recvIndices.data_ptr<int64_t>(), // recv_indices
blockCount, // block_count
colSize, // block_length
output.data_ptr(), // recvbuff
output.numel(), // recv_count
ncclDataType,
ncclReduceOp,
comm,
stream.stream());
return result;
},
[](at::cuda::CUDAStream& ncclStream,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
[&](at::cuda::CUDAStream& ncclStream,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
// Convert output tensors to sparse and back into tensors.
at::cuda::CUDAStreamGuard guard(ncclStream);
if (opts.sparseIndices.has_value()) {
tensor = at::sparse_coo_tensor(
opts.sparseIndices.value(), outputTensor, tensor.sizes());
} else {
tensor = outputTensor.to_sparse();
}
},
OpType::_ALLREDUCE_SPARSE,
"nccl:all_reduce_sparse");
return work;
#else
// If the nccl branch is not "exp" then we just error
C10_THROW_ERROR(
Error,
"NCCL does not support all_reduce with sparse tensors. Please use dense tensors instead.");
#endif
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce_impl(
at::Tensor& tensor,
const char* profilingTitle,
const AllreduceOptions& opts) {
return collective(
tensor,
tensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
auto ncclDataType = getNcclDataType(input.scalar_type());
auto ncclReduceOp =
getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
return ncclAllReduce(
input.data_ptr(),
output.data_ptr(),
input.numel(),
ncclDataType,
ncclReduceOp,
comm,
stream.stream());
},
OpType::ALLREDUCE,
profilingTitle);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce(
std::vector<at::Tensor>& tensors,
const AllreduceOptions& opts) {
TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
auto tensor = tensors.back();
if (tensor.is_complex()) {
TORCH_CHECK(
complexViewAsRealAllowed(opts.reduceOp),
"all_reduce does not support",
opts.reduceOp,
"on complex tensors");
tensor = at::view_as_real(tensor);
}
check_gpu_single_tensor(tensor);
if (intraNodeComm_ != nullptr && opts.reduceOp == ReduceOp::SUM) {
using namespace intra_node_comm;
auto algo = intraNodeComm_->selectAllReduceAlgo(tensor);
if (algo != intra_node_comm::AllReduceAlgo::NONE) {
intraNodeComm_->allReduce(tensor, algo);
return c10::make_intrusive<IntraNodeCommWork>();
}
}
TORCH_CHECK(
!isFloat8Type(tensor.scalar_type()),
"Float8 dtypes are not currenlty supported for NCCL reductions");
// @lint-ignore CLANGTIDY
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
tensors, // inputTensors
tensors, // outputTensors
rank_, // rank
"allreduce", // collective name
tensor.numel(), // inNelems
tensor.numel(), // outNelems
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash tensors.
return allreduce_impl(tensor, "nccl:all_reduce", opts);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allreduce_coalesced(
std::vector<at::Tensor>& tensors,
const AllreduceCoalescedOptions& opts) {
auto total_numel = check_gpu_tensors_same_device(tensors);
TORCH_CHECK(
!isFloat8Type(tensors.back().scalar_type()),
"Float8 dtypes are not currenlty supported for NCCL reductions");
// @lint-ignore CLANGTIDY
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective and assume only one collective
// in coalesed range
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
tensors, // inputTensors
tensors, // outputTensors
rank_, // rank
"allreduce_coalesced", // collective name
total_numel, // inNelems
total_numel, // outNelems
tensors[0].scalar_type(), // dType
// I'm not sure what in,outSplitSizes mean here.
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash tensors.
return collectiveCoalesced(
tensors,
tensors,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
auto ncclDataType = getNcclDataType(input.scalar_type());
auto ncclReduceOp =
getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
return ncclAllReduce(
input.data_ptr(),
output.data_ptr(),
input.numel(),
ncclDataType,
ncclReduceOp,
comm,
stream.stream());
},
OpType::COALESCED,
"nccl:allreduce_coalesced");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::broadcast(
std::vector<at::Tensor>& tensors,
const BroadcastOptions& opts) {
TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
auto tensor = tensors.back();
if (tensor.is_complex()) {
tensor = at::view_as_real(tensor);
}
check_gpu_single_tensor(tensor);
// @lint-ignore CLANGTIDY
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
tensors, // inputTensors
tensors, // outputTensors
opts.rootRank, // root rank
"broadcast", // collective name
tensor.numel(), // inNelems
tensor.numel(), // outNelems
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash tensors.
bool avoidRecordStreams = avoidRecordStreams_ || (!opts.asyncOp);
const auto root = opts.rootRank + opts.rootTensor;
bool nanCheck = (root == rank_);
return collective(
tensor,
tensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
return ncclBcast(
input.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
root,
comm,
stream.stream());
},
OpType::BROADCAST,
"nccl:broadcast",
avoidRecordStreams,
nanCheck);
}
// _broadcast_oop adds an out-of-place broadcast in PGNCCL
// Custom collectives may be implemented by coalescing broadcast operations
// One use-case is implementing a vector all_gather (all_gather_v)
// where unevenly sized inputs are gathered among participating ranks
// Since all_gather provides an out-of-place API, an all_gather_v
// semantic implemented inside pg_nccl.all_gather also needs to support
// out-of-place, for which an out-of-place broadcast is required to be added
c10::intrusive_ptr<Work> ProcessGroupNCCL::_broadcast_oop(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
const BroadcastOptions& opts) {
if (outputTensor.numel() != inputTensor.numel()) {
C10_THROW_ERROR(
ValueError,
"Tensor input and output of _broadcast_oop must have the same number of elements ");
}
const auto root = opts.rootRank + opts.rootTensor;
bool nanCheck = (root == rank_);
return collective(
inputTensor,
outputTensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
return ncclBroadcast(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
root,
comm,
stream.stream());
},
OpType::BROADCAST,
"nccl:_broadcast_oop",
/*avoidRecordStreams=*/false,
nanCheck);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::reduce(
std::vector<at::Tensor>& tensors,
const ReduceOptions& opts) {
TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
// @lint-ignore CLANGTIDY
auto tensor = tensors.back();
if (tensor.is_complex()) {
TORCH_CHECK(
complexViewAsRealAllowed(opts.reduceOp),
"reduce does not support",
opts.reduceOp,
"on complex tensors");
tensor = at::view_as_real(tensor);
}
check_gpu_single_tensor(tensor);
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
tensors, // inputTensors
tensors, // outputTensors
opts.rootRank, // root rank
"reduce", // collective name
tensor.numel(), // inNelems
tensor.numel(), // outNelems
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash tensors.
return collective(
tensor,
tensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank + opts.rootTensor;
auto ncclDataType = getNcclDataType(input.scalar_type());
auto ncclReduceOp =
getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
return ncclReduce(
input.data_ptr(),
output.data_ptr(),
input.numel(),
ncclDataType,
ncclReduceOp,
root,
comm,
stream.stream());
},
OpType::REDUCE,
"nccl:reduce");
}
// _reduce_oop exposes an out-of-place reduce from PGNCCL
// Custom collectives may be implemented by coalescing reduce operations
// One use-case is implementing a vector reduce_scatter (reduce_scatter_v)
// where inputs are reduced and scattered unevenly among participating ranks
// Since reduce_scatter provides an out-of-place API, a reduce_scatter_v
// semantic implemented inside pg_nccl.reduce_scatter also needs to support
// out-of-place, for which an out-of-place reduce is required to be added
c10::intrusive_ptr<Work> ProcessGroupNCCL::_reduce_oop(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
const ReduceOptions& opts) {
if (outputTensor.numel() != inputTensor.numel()) {
C10_THROW_ERROR(
ValueError,
"Tensor input and output of _reduce_oop must have the same number of elements ");
}
return collective(
inputTensor,
outputTensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank + opts.rootTensor;
const auto ncclDataType = getNcclDataType(input.scalar_type());
const auto ncclReduceOp =
getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
return ncclReduce(
input.data_ptr(),
output.data_ptr(),
input.numel(),
ncclDataType,
ncclReduceOp,
(int)root,
comm,
stream.stream());
},
OpType::REDUCE,
"nccl:_reduce_oop");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allgather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllgatherOptions& opts) {
TORCH_CHECK(inputTensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
// @lint-ignore CLANGTIDY
auto inputTensor = inputTensors.back();
check_gpu_single_tensor(inputTensor);
// @lint-ignore CLANGTIDY
auto outputTensors_ = outputTensors.back();
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputTensors, // inputTensors
outputTensors, // outputTensors
rank_, // rank
"all_gather", // collective name
inputTensor.numel(), // inNelems
inputTensor.numel() * // outNelems
this->getSize(),
inputTensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSize
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
bool same_size = check_same_size(outputTensors_);
if (same_size) {
// Flatten a vector of tensors into a single, stacked tensor.
at::Tensor outputFlattened = newLikeFlat(outputTensors_);
return collective(
inputTensor,
outputFlattened,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
if (!avoidRecordStreams_) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
}
return ncclAllGather(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
comm,
stream.stream());
},
[](at::cuda::CUDAStream& ncclStream,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
// avoidRecordStreams_ note: We actually don't need to stash anything
// here.
// - inputTensors is stashed onto work->stashed_for_allocator_safety_
// in collective().
// - outputFlattened is stashed onto work->outputs_ in collective().
// - User-facing outputTensors should be held by the user until after
// waiting on work_, or the call makes no sense.
// So all participating tensors are accounted for, and won't be
// released back to their allocation streams until after work_ is
// waited on.
},
[&](at::cuda::CUDAStream& ncclStream,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
// Copy the flattened output tensors to the outputs.
at::cuda::CUDAStreamGuard guard(ncclStream);
for (const auto j : c10::irange(outputTensors_.size())) {
// See [Sync Streams].
if (!avoidRecordStreams_) {
c10::cuda::CUDACachingAllocator::recordStream(
outputTensors_[j].storage().data_ptr(), ncclStream);
}
outputTensors_[j].copy_(outputFlattened[j], true);
}
},
OpType::ALLGATHER,
"nccl:all_gather");
} else {
const auto num_reduces = outputTensors_.size();
startCoalescing();
for (const int i : c10::irange(num_reduces)) {
auto& output = outputTensors_[i];
auto& input = (i == rank_) ? inputTensor : output;
auto broadcastOpts = BroadcastOptions{
static_cast<int64_t>(i), static_cast<int64_t>(0), opts.timeout};
_broadcast_oop(output, input, broadcastOpts);
}
auto work = endCoalescing(OpType::ALLGATHER);
return work;
}
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allgather_coalesced(
std::vector<std::vector<at::Tensor>>& /* unused */,
std::vector<at::Tensor>& /* unused */,
const AllgatherOptions& /* unused */) {
C10_THROW_ERROR(
NotImplementedError,
"ProcessGroupNCCL does not support allgather_coalesced");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::allgather_into_tensor_coalesced(
std::vector<at::Tensor>& outputs,
std::vector<at::Tensor>& inputs,
const AllgatherOptions& opts) {
// @lint-ignore CLANGTIDY
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective and assume only one collective
// in coalesed range
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputs, // inputTensors
outputs, // outputTensors
rank_, // rank
"allgather_into_tensor_coalesced", // collective name
getTensorsNumel(inputs), // inNelems
getTensorsNumel(outputs), // outNelems
inputs[0].scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
return collectiveCoalesced(
inputs,
outputs,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
return ncclAllGather(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
comm,
stream.stream());
},
OpType::COALESCED,
"nccl:all_gather_into_tensor_coalesced");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::reduce_scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ReduceScatterOptions& opts) {
TORCH_CHECK(outputTensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
// @lint-ignore CLANGTIDY
auto outputTensor = outputTensors.back();
check_gpu_single_tensor(outputTensor);
// @lint-ignore CLANGTIDY
auto inputTensors_ = inputTensors.back();
TORCH_CHECK(
!isFloat8Type(outputTensor.scalar_type()),
"Float8 dtypes are not currenlty supported for NCCL reductions");
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputTensors, // inputTensors
outputTensors, // outputTensors
rank_, // rank
"reduce_scatter", // collective name
outputTensor.numel() * this->getSize(), // inNelems
outputTensor.numel(), // outNelems
outputTensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
bool same_size = check_same_size(inputTensors_);
if (same_size) {
// Flatten a vector of tensors into a single, stacked tensor.
at::Tensor inputFlattened = newLikeFlat(inputTensors_);
return collective(
inputFlattened,
outputTensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
if (!avoidRecordStreams_) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
}
const auto ncclDataType = getNcclDataType(input.scalar_type());
const auto ncclReduceOp =
getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
return ncclReduceScatter(
input.data_ptr(),
output.data_ptr(),
output.numel(),
ncclDataType,
ncclReduceOp,
comm,
stream.stream());
},
[&](at::cuda::CUDAStream& ncclStream,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
if (avoidRecordStreams_) {
// We only need to stash inputTensors.
// - inputFlattened is stashed onto
// work->stashed_for_allocator_safety_
// in collective().
// - User-facing outputTensors is stashed onto work->outputs_ in
// collective(),
// and should also be held by the user until after waiting on
// work_.
auto& v = work->stashed_for_allocator_safety_;
v->insert(v->end(), inputTensors_.begin(), inputTensors_.end());
}
// Copy the input tensors to the flattened inputs.
at::cuda::CUDAStreamGuard guard(ncclStream);
for (const auto j : c10::irange(inputTensors_.size())) {
// See [Sync Streams].
if (!avoidRecordStreams_) {
c10::cuda::CUDACachingAllocator::recordStream(
inputTensors_[j].storage().data_ptr(), ncclStream);
}
inputFlattened[j].copy_(inputTensors_[j], true);
}
},
[&](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
OpType::REDUCE_SCATTER,
"nccl:reduce_scatter");
} else {
const auto num_reduces = inputTensors_.size();
startCoalescing();
for (const int i : c10::irange(num_reduces)) {
auto& input = inputTensors_[i];
auto& output = (i == rank_) ? outputTensor : input;
auto reduceOpts = ReduceOptions{
opts.reduceOp,
static_cast<int64_t>(i),
static_cast<int64_t>(0),
opts.timeout};
_reduce_oop(output, input, reduceOpts);
}
auto work = endCoalescing(OpType::REDUCE_SCATTER);
return work;
}
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::_reduce_scatter_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
const ReduceScatterOptions& opts) {
if (inputTensor.dtype() != outputTensor.dtype()) {
C10_THROW_ERROR(
TypeError, "input tensor must be the same type as the output tensor.");
}
if (inputTensor.numel() != outputTensor.numel() * size_) {
C10_THROW_ERROR(
ValueError,
"input tensor must be the same size as output size times world size");
}
// @lint-ignore CLANGTIDY
const auto& tensor = outputTensor;
TORCH_CHECK(
!isFloat8Type(tensor.scalar_type()),
"Float8 dtypes are not currenlty supported for NCCL reductions");
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputTensor, // inputTensor
outputTensor, // outputTensor
rank_, // rank
"_reduce_scatter_base", // collective name
inputTensor.numel(), // inNelems
tensor.numel(), // outNelems
tensor.scalar_type(), // dtype
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash inputs and outputs.
// Note 2: for asyncOp = false, we don't want to record streams because we
// know that the NCCL stream will join back to the "current" stream right
// after this op. So we might just as well keep the stream ownership of the
// input/output tensors unchanged. The benefit would be that the
// allocation/free of the tensors would look deterministic to the "current"
// stream so that the caching allocator can reuse memory pool for this stream
// in a clever way. This setting is added for libraries like FSDP which uses
// `reduce_scatter_tensor`.
bool avoidRecordStreams = avoidRecordStreams_ || (!opts.asyncOp);
return collective(
inputTensor,
outputTensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
if (!avoidRecordStreams) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
}
auto ncclDataType = getNcclDataType(input.scalar_type());
auto ncclReduceOp =
getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
return ncclReduceScatter(
input.data_ptr(),
output.data_ptr(),
output.numel(),
ncclDataType,
ncclReduceOp,
comm,
stream.stream());
},
OpType::_REDUCE_SCATTER_BASE,
"nccl:_reduce_scatter_base",
avoidRecordStreams);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::reduce_scatter_tensor_coalesced(
std::vector<at::Tensor>& outputs,
std::vector<at::Tensor>& inputs,
const ReduceScatterOptions& opts) {
TORCH_CHECK(
!isFloat8Type(inputs.back().scalar_type()),
"Float8 dtypes are not currenlty supported for NCCL reductions");
// @lint-ignore CLANGTIDY
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective and assume only one collective
// in coalesed range
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputs, // inputTensors
outputs, // outputTensors
rank_, // rank
"reduce_scatter_tensor_coalesced", // collective name
getTensorsNumel(inputs), // inNelems
getTensorsNumel(outputs), // outNelems
inputs[0].scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
return collectiveCoalesced(
inputs,
outputs,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
if (!avoidRecordStreams_) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
}
auto ncclDataType = getNcclDataType(input.scalar_type());
auto ncclReduceOp =
getNcclReduceOp(opts.reduceOp, input, ncclDataType, comm);
return ncclReduceScatter(
input.data_ptr(),
output.data_ptr(),
output.numel(),
ncclDataType,
ncclReduceOp,
comm,
stream.stream());
},
OpType::COALESCED,
"nccl:reduce_scatter_tensor_coalesced");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::barrier(const BarrierOptions& opts) {
RECORD_PARAM_COMMS(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
rank_, // rank
"barrier", // collective name
0, // inNelems
0, // outNelems
at::kByte, // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// Device to use for barrier
int barDevIdx = -1;
// Select device to use for barrier
// 1st choice: Use user defined GPU device ids if provided
if (!opts.device_ids.empty()) {
// Use the first device id because PG NCCL is single-device now
barDevIdx = opts.device_ids[0];
} else if (getBoundDeviceId()) {
// 2nd choice: Use the bound GPU device id if available.
// Bounded device id can be passed to `init_process_group`.
barDevIdx = (*getBoundDeviceId()).index();
} else if (!usedDeviceIdxs_.empty()) {
// 3rd choice: infer the device id from the used device ids.
barDevIdx = *usedDeviceIdxs_.begin();
} else {
// This means there is not yet a NCCL collective being called
// Here we have to use the best guesses and will use a single GPU to call
// allreduce to achieve barrier.
// In case the multiple processes fall into the same node, we use rank to
// ensure that each process is on a different GPU
// Note: it is better to use global rank because the group-local rank can be
// offset wrt the device id if intra-node GPUs are sharded into multiple
// dimensions.
barDevIdx = static_cast<int16_t>(globalRank() % localDeviceCount_);
LOG(WARNING)
<< logPrefix()
<< c10::str(
" using GPU ",
barDevIdx,
" to perform barrier as devices used by this process are currently unknown. ",
"This can potentially cause a hang if this rank to GPU mapping is incorrect. ",
"Specify device_ids in barrier() to force use of a particular device, ",
"or call init_process_group() with a device_id.");
}
TORCH_CHECK_WITH(
ValueError,
barDevIdx >= 0,
"Failed to infer a GPU device id to perform barrier. ");
auto barDevice = at::Device(
at::DeviceType::CUDA, static_cast<c10::DeviceIndex>(barDevIdx));
// Create a dummy tensor on the device
// Note: we use zeros() instead of empty() to prevent barrier from triggering
// alarm when NaN checker is enabled.
at::Tensor barrierTensor =
at::zeros({1}, at::TensorOptions().device(barDevice).dtype(at::kFloat));
// All reduce to achieve the barrier
auto work = allreduce_impl(barrierTensor, "nccl:all_reduce_barrier");
// Work will take over barrierTensors
auto ncclWork = dynamic_cast<ProcessGroupNCCL::WorkNCCL*>(work.get());
TORCH_CHECK(ncclWork);
ncclWork->isBarrierOp_ = true;
return work;
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::alltoall_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
std::vector<int64_t>& outputSplitSizes,
std::vector<int64_t>& inputSplitSizes,
const AllToAllOptions& /* unused */) {
check_gpu_single_tensor(outputTensor);
check_gpu_single_tensor(inputTensor);
if (outputSplitSizes.empty() && inputSplitSizes.empty()) {
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputTensor, // inputTensor
outputTensor, // outputTensor
rank_, // rank
"all_to_all", // collective name
inputTensor.numel(), // inNelems
outputTensor.numel(), // outNelems
inputTensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash inputTensors and
// outputTensors.
return collective(
inputTensor,
outputTensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
// See [Sync Streams].
if (!avoidRecordStreams_) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
}
torch::cuda::nccl::all2all_single_equal_split(
input, output, this->getSize(), comm, stream);
return ncclSuccess;
},
OpType::ALLTOALL_BASE,
"nccl:all_to_all");
} else {
c10d::checkSplitSizes(inputSplitSizes, inputTensor, size_);
c10d::checkSplitSizes(outputSplitSizes, outputTensor, size_);
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputTensor, // inputTensor
outputTensor, // outputTensor
rank_, // rank
"all_to_allv", // collective name
inputTensor.numel(), // inNelems
outputTensor.numel(), // outNelems
inputTensor.scalar_type(), // dType
inputSplitSizes, // inSplitSizes
outputSplitSizes, // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash inputTensors and
// outputTensors.
return collective(
inputTensor,
outputTensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
std::vector<size_t> send_lengths(size_);
std::vector<size_t> recv_lengths(size_);
std::vector<size_t> send_offsets(size_);
std::vector<size_t> recv_offsets(size_);
c10d::computeLengthsAndOffsets(
inputSplitSizes, input, &send_lengths, &send_offsets);
c10d::computeLengthsAndOffsets(
outputSplitSizes, output, &recv_lengths, &recv_offsets);
// See [Sync Streams].
if (!avoidRecordStreams_) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
}
torch::cuda::nccl::all2all_single_unequal_split(
input.data_ptr(),
send_lengths.data(),
send_offsets.data(),
output.data_ptr(),
recv_lengths.data(),
recv_offsets.data(),
input.element_size(),
input.scalar_type(),
comm,
stream);
return ncclSuccess;
},
OpType::ALLTOALL_BASE,
"nccl:all_to_all");
}
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::alltoall(
std::vector<at::Tensor>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllToAllOptions& /* unused */) {
std::vector<int64_t> inSplitSizes;
std::vector<int64_t> outSplitSizes;
int64_t total_numel = 0;
auto device = outputTensors[0].device();
for (const auto r : c10::irange(outputTensors.size())) {
check_gpu_single_tensor(outputTensors[r]);
check_gpu_single_tensor(inputTensors[r]);
TORCH_CHECK(
device == outputTensors[r].device() &&
device == inputTensors[r].device(),
"Tensors must be on the same device")
inSplitSizes.push_back(inputTensors[r].numel());
outSplitSizes.push_back(outputTensors[r].numel());
total_numel += inputTensors[r].numel();
}
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputTensors, // inputTensors
outputTensors, // outputTensors
rank_, // rank
"all_to_all", // collective name
total_numel, // inNelems
total_numel, // outNelems
inputTensors.front().scalar_type(), // dType
inSplitSizes, // inSplitSizes
outSplitSizes, // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
return collective(
inputTensors,
outputTensors,
[&](at::Tensor& /* unused */,
at::Tensor& /* unused */,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
torch::cuda::nccl::all2all(outputTensors, inputTensors, comm, stream);
return ncclSuccess;
},
[&](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {
if (avoidRecordStreams_) {
// inputTensor0 and outputTensor0 are stashed redundantly by
// collective(), but that's ok.
auto& v = work->stashed_for_allocator_safety_;
v->insert(v->end(), inputTensors.begin(), inputTensors.end());
v->insert(v->end(), outputTensors.begin(), outputTensors.end());
}
},
[](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
OpType::ALLTOALL,
"nccl:all_to_all");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::send(
std::vector<at::Tensor>& tensors,
int dstRank,
int /* unused */) {
TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
// @lint-ignore CLANGTIDY
auto tensor = tensors.back();
check_gpu_single_tensor(tensor, true);
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqP2P_) + (coalescing_state_ & CoalP2P ? 0 : 1),
true), // the 1st p2p in coalesced range sets coalescing_state_ and
// bumps seqP2P_
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
tensors, // inputTensors
tensors, // outputTensors
dstRank, // dst rank
"send", // collective name
tensor.numel(), // inNelems
tensor.numel(), // outNelems
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
auto ret = pointToPoint(
tensor,
[&](at::Tensor& input,
ncclComm_t comm,
at::cuda::CUDAStream& stream,
int dst) {
auto ncclDataType = getNcclDataType(input.scalar_type());
return ncclSend(
input.data_ptr(),
input.numel(),
ncclDataType,
dst,
comm,
stream.stream());
},
dstRank,
OpType::SEND,
c10::str("nccl:send ", rank_, "->", dstRank).c_str());
return ret;
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::recv(
std::vector<at::Tensor>& tensors,
int srcRank,
int /* unused */) {
TORCH_CHECK(tensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
// @lint-ignore CLANGTIDY
auto tensor = tensors.back();
check_gpu_single_tensor(tensor, true);
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqP2P_) + (coalescing_state_ & CoalP2P ? 0 : 1),
true), // the 1st p2p in coalesced range sets coalescing_state_ and
// bumps seqP2P_
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
tensors, // inputTensors
tensors, // outputTensors
srcRank, // src rank
"recv", // collective name
tensor.numel(), // inNelems
tensor.numel(), // outNelems
tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSizes
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
auto ret = pointToPoint(
tensor,
[&](at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream,
int src) {
auto ncclDataType = getNcclDataType(output.scalar_type());
return ncclRecv(
output.data_ptr(),
output.numel(),
ncclDataType,
src,
comm,
stream.stream());
},
srcRank,
OpType::RECV,
c10::str("nccl:recv ", rank_, "<-", srcRank).c_str());
return ret;
}
void ProcessGroupNCCL::groupStart() {
C10D_NCCL_CHECK(ncclGroupStart(), std::nullopt);
++ncclActiveGroupCounter_;
}
void ProcessGroupNCCL::groupEnd() {
C10D_NCCL_CHECK(ncclGroupEnd(), std::nullopt);
--ncclActiveGroupCounter_;
}
void ProcessGroupNCCL::groupEndNonblocking(
const std::shared_ptr<NCCLComm>& comm) {
#ifndef NCCL_HAS_COMM_NONBLOCKING
C10D_NCCL_CHECK(ncclGroupEnd(), std::nullopt);
#else
if (!useNonblocking()) {
C10D_NCCL_CHECK(ncclGroupEnd(), std::nullopt);
} else {
C10D_NCCL_CHECK_TIMEOUT_GROUPEND(ncclGroupEnd(), comm, std::nullopt);
}
#endif
--ncclActiveGroupCounter_;
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::gather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const GatherOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
C10_THROW_ERROR(ValueError, "ProcessGroupNCCL::gather: " + msg);
};
assertRootRank(invalidArgument, opts.rootRank, size_);
TORCH_CHECK(inputTensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
// @lint-ignore CLANGTIDY
auto inputTensor = inputTensors.back();
std::vector<at::Tensor> outputs;
if (getRank() == opts.rootRank) {
if (outputTensors.size() != 1) {
std::stringstream ss;
ss << "requires a single-element output list containing a list with "
<< getSize() << " tensors.";
invalidArgument(ss.str());
} else if (outputTensors[0].size() != static_cast<size_t>(getSize())) {
std::stringstream ss;
ss << "Incorrect output list size " << outputTensors[0].size()
<< ". Output list size should be " << getSize()
<< ", same as size of the process group.";
invalidArgument(ss.str());
}
const auto& options = inputTensor.options();
const auto& sizes = inputTensor.sizes();
assertTypeAndSizesMatch(invalidArgument, outputTensors[0], options, sizes);
outputs = outputTensors[0];
} else {
// if not in the root rank, initialize outputs as empty list
if (!outputTensors.empty()) {
invalidArgument("requires empty output on non-root");
}
outputs = {};
// append a empty tensor to the list, we don't use it but the
// `collective` template function requires it to invoke its function
outputs.emplace_back();
}
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputTensors, // inputTensors
outputTensors, // outputTensors
opts.rootRank, // root rank
"gather", // collective name
inputTensor.numel(), // inNelems
inputTensor.numel() * this->getSize(), // outNelems
inputTensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSize
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash inputTensors and
// outputs, which == outputTensors[0] on the root rank where it matters.
auto inputs = std::vector<at::Tensor>{inputTensor};
return collective(
inputs,
outputs, // just to fit the collective interface
[&](at::Tensor& /* unused */,
at::Tensor& /* unused */,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
const auto root = opts.rootRank;
if (getRank() == root) {
if (!avoidRecordStreams_) {
for (auto const& output : outputs) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
}
}
}
torch::cuda::nccl::gather(
inputTensor, outputs, comm, stream, static_cast<int32_t>(root));
return ncclSuccess;
},
[](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
[](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
OpType::GATHER,
"nccl:gather");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ScatterOptions& opts) {
static auto invalidArgument = [](const std::string& msg) {
C10_THROW_ERROR(ValueError, "ProcessGroupNCCL::scatter: " + msg);
};
assertRootRank(invalidArgument, opts.rootRank, size_);
TORCH_CHECK(outputTensors.size() == 1, MULTI_DEVICE_ERROR_MSG);
auto outputTensor = outputTensors.back();
std::vector<at::Tensor> inputs;
if (getRank() == opts.rootRank) {
if (inputTensors.size() != 1) {
std::stringstream ss;
ss << "requires a single-element input list containing a list with "
<< getSize() << " tensors.";
invalidArgument(ss.str());
} else if (inputTensors[0].size() != static_cast<size_t>(getSize())) {
std::stringstream ss;
ss << "Incorrect input list size " << inputTensors[0].size()
<< ". Input list size should be " << getSize()
<< ", same as size of the process group.";
invalidArgument(ss.str());
}
const auto& options = outputTensor.options();
const auto& sizes = outputTensor.sizes();
assertTypeAndSizesMatch(invalidArgument, inputTensors[0], options, sizes);
inputs = inputTensors[0];
} else {
// if not in the root rank, initialize inputTensors as empty place holder
// with an empty list
if (!inputTensors.empty()) {
invalidArgument("requires empty input on non-root");
}
inputs = {};
// append a empty tensor to the list, we don't use it but the
// `collective` template function requires it to invoke its function
inputs.emplace_back();
}
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
inputTensors, // inputTensors
outputTensors, // outputTensors
opts.rootRank, // root rank
"scatter", // collective name
outputTensor.numel() * this->getSize(), // inNelems
outputTensor.numel(), // outNelems
outputTensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSize
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash outputTensors and
// inputs, which == inputTensors[0] on the root rank where it matters.
bool avoidRecordStreams = avoidRecordStreams_ || (!opts.asyncOp);
const auto root = opts.rootRank;
bool nanCheck = (rank_ == root);
auto outputs = std::vector<at::Tensor>{outputTensor};
return collective(
outputs,
inputs, // just to fit the collective interface
[&](at::Tensor& /* unused */,
at::Tensor& /* unused */,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
if (getRank() == root) {
if (!avoidRecordStreams) {
for (auto const& input : inputs) {
c10::cuda::CUDACachingAllocator::recordStream(
input.storage().data_ptr(), stream);
}
}
}
torch::cuda::nccl::scatter(
inputs, outputTensor, comm, stream, static_cast<int32_t>(root));
return ncclSuccess;
},
[](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
[](at::cuda::CUDAStream&,
c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work) {},
OpType::SCATTER,
"nccl:scatter",
avoidRecordStreams,
nanCheck);
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::recvAnysource(
std::vector<at::Tensor>& /* unused */,
int /* unused */) {
C10_THROW_ERROR(
NotImplementedError, "ProcessGroupNCCL does not support recvAnysource");
}
c10::intrusive_ptr<Work> ProcessGroupNCCL::_allgather_base(
at::Tensor& output_tensor,
at::Tensor& input_tensor,
const AllgatherOptions& opts) {
check_gpu_single_tensor(input_tensor);
check_gpu_single_tensor(output_tensor);
if (input_tensor.dtype() != output_tensor.dtype()) {
C10_THROW_ERROR(
TypeError, "output tensor must have the same type as input tensor");
}
if (input_tensor.numel() * size_ != output_tensor.numel()) {
C10_THROW_ERROR(
ValueError,
"output tensor size must be equal to world_size times input tensor size");
}
RECORD_PARAM_COMMS_DATA(
std::make_tuple(
static_cast<int64_t>(seqCollective_) + 1,
false), // seq + 1 to match collective
std::make_tuple(pg_uid_, pg_desc_), // PG name tuple
input_tensor, // inputTensors
output_tensor, // outputTensors
rank_, // rank
"_allgather_base", // collective name
input_tensor.numel(), // inNelems
output_tensor.numel(), // outNelems
output_tensor.scalar_type(), // dType
std::vector<int64_t>(), // inSplitSizes
std::vector<int64_t>(), // outSplitSize
globalRankStart, // globalRankStart
globalRankStride, // globalRankStride
this->getSize()); // worldSize
// avoidRecordStreams_ note: collective() will stash inputs and outputs.
// Note 2: for asyncOp = false, we don't want to record streams because we
// know that the NCCL stream will join back to the "current" stream right
// after this op. So we might just as well keep the stream ownership of the
// input/output tensors unchanged. The benefit would be that the
// allocation/free of the tensors would look deterministic to the "current"
// stream so that the caching allocator can reuse memory pool for this stream
// in a clever way. This setting is added for libraries like FSDP which uses
// `all_gather_into_tensor`.
bool avoidRecordStreams = avoidRecordStreams_ || (!opts.asyncOp);
return collective(
input_tensor,
output_tensor,
[&](at::Tensor& input,
at::Tensor& output,
ncclComm_t comm,
at::cuda::CUDAStream& stream) {
if (!avoidRecordStreams) {
c10::cuda::CUDACachingAllocator::recordStream(
output.storage().data_ptr(), stream);
}
return ncclAllGather(
input.data_ptr(),
output.data_ptr(),
input.numel(),
getNcclDataType(input.scalar_type()),
comm,
stream.stream());
},
OpType::_ALLGATHER_BASE,
"nccl:_all_gather_base",
avoidRecordStreams);
}
} // namespace c10d
#endif // USE_C10D_NCCL
|