1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
|
#pragma once
#ifdef USE_C10D_NCCL
#if defined(__linux__)
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#include <atomic>
#include <chrono>
#include <deque>
#include <future>
#include <iostream>
#include <list>
#include <mutex>
#include <thread>
#include <unordered_map>
#include <torch/csrc/distributed/c10d/Backend.hpp>
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/PrefixStore.hpp>
#include <torch/csrc/distributed/c10d/Store.hpp>
#include <torch/csrc/distributed/c10d/intra_node_comm.hpp>
#include <ATen/DynamicLibrary.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
#include <c10/core/Stream.h>
#include <c10/core/StreamGuard.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/custom_class.h>
namespace c10d {
// Control broadcasting of NCCL uniqueId
static std::vector<std::string> TORCH_NCCL_BCAST_UNIQUEID = {
"TORCH_NCCL_BCAST_UNIQUEID"};
// Control whether to always use high priority streams
static std::vector<std::string> TORCH_NCCL_HIGH_PRIORITY = {
"TORCH_NCCL_HIGH_PRIORITY"};
// Control whether or not wait() is blocking or non-blocking.
static std::vector<std::string> TORCH_NCCL_BLOCKING_WAIT = {
"TORCH_NCCL_BLOCKING_WAIT",
"NCCL_BLOCKING_WAIT"};
// TODO: We want to eventually remove this variable and make users to use
// the default value (3 - SkipCleanUp).
// Control whether or not we perform Async Error Handling with NCCL.
static std::vector<std::string> TORCH_NCCL_ASYNC_ERROR_HANDLING = {
"TORCH_NCCL_ASYNC_ERROR_HANDLING",
"NCCL_ASYNC_ERROR_HANDLING"};
// Control whether dumping debug info on watchdog
// timeout is enabled. This variable must be set together with
// TORCH_NCCL_ENABLE_MONITORING=1 and TORCH_NCCL_TRACE_BUFFER_SIZE > 0.
static std::vector<std::string> TORCH_NCCL_DUMP_ON_TIMEOUT = {
"TORCH_NCCL_DUMP_ON_TIMEOUT"};
// Control whether Desync Debug is enabled. This variable must be set
// together with TORCH_NCCL_ASYNC_ERROR_HANDLING.
static std::vector<std::string> TORCH_NCCL_DESYNC_DEBUG = {
"TORCH_NCCL_DESYNC_DEBUG",
"NCCL_DESYNC_DEBUG"};
// Enable recording start-events for all ProcessGroupNCCL collectives, and
// compute accurate collective timing per-collective. (Note: end-events are
// recorded by default. Turn on this flag can increase chances of a watchdog
// hang due to performing a CUDA event query which eventually calls
// cudaEventElapsedTime() API.
static std::vector<std::string> TORCH_NCCL_ENABLE_TIMING = {
"TORCH_NCCL_ENABLE_TIMING",
"NCCL_ENABLE_TIMING"};
// Enable monitoring thread which aborts the process when the ProcessGroupNCCL
// Watchdog thread gets stuck and no heartbeat is detected after
// TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC. This can happen due to calling CUDA/NCCL
// APIs that may hang. It is Useful to prevent jobs being stuck for a prolonged
// time than necessary tying up cluster resources.
static std::vector<std::string> TORCH_NCCL_ENABLE_MONITORING = {
"TORCH_NCCL_ENABLE_MONITORING"};
// Control the watchdog heartbeat timeout period after which the monitoring
// thread will abort the process.
static std::vector<std::string> TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC = {
"TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC"};
// Whether to rethrow CUDA Errors in the watchdog (default true)
static std::vector<std::string> TORCH_NCCL_RETHROW_CUDA_ERRORS = {
"TORCH_NCCL_RETHROW_CUDA_ERRORS"};
// The maximum number of events we store in the flight recorder's ring buffer.
// (One event could be the start or end of a collective, for example).
static std::vector<std::string> TORCH_NCCL_TRACE_BUFFER_SIZE = {
"TORCH_NCCL_TRACE_BUFFER_SIZE"};
// Control how much extra time we will wait for dumping the debugging info
// before we exit and throws timeout exception.
static std::vector<std::string> TORCH_NCCL_WAIT_TIMEOUT_DUMP_MILSEC = {
"TORCH_NCCL_WAIT_TIMEOUT_DUMP_MILSEC"};
// Control the interval inside the monitoring thread to check the coordinated
// signal from other ranks, e.g. to dump the debugging information.
static std::vector<std::string> TORCH_NCCL_COORD_CHECK_MILSEC = {
"TORCH_NCCL_COORD_CHECK_MILSEC"};
// Whether to log C++ stack traces on unclean shutdown (default true)
static std::vector<std::string> TORCH_NCCL_LOG_CPP_STACK_ON_UNCLEAN_SHUTDOWN = {
"TORCH_NCCL_LOG_CPP_STACK_ON_UNCLEAN_SHUTDOWN"};
// Control whether to use CudaEventCache for the collective in watchdog thread.
// We noticed in the past when cuda global lock is held, destroying CudaEvent
// can cause a hang.
static std::vector<std::string> TORCH_NCCL_CUDA_EVENT_CACHE = {
"TORCH_NCCL_CUDA_EVENT_CACHE"};
static std::vector<std::string> TORCH_NCCL_NAN_CHECK = {"TORCH_NCCL_NAN_CHECK"};
constexpr const char* NCCL_BACKEND_NAME = "nccl";
constexpr const char* EXCEPTION_DUMP = "exception_dump";
constexpr const int kWorkStatusUpdatePeriodMs = 30 * 1000; // 30 seconds
constexpr auto kProcessGroupNCCLDefaultTimeout =
std::chrono::milliseconds(10 * 60 * 1000);
// NoHandling: do not handle asynchronous NCCL errors
// TearDown: tear down process upon error, see `WorkNCCL::handleException`
// CleanUpOnly: just clean up collectives and abort communicators without
// tearing down process SkipCleanUp: (this is a temporary option and can be
// removed in future) tear down process without cleaning up NCCL communicators.
// This should be used as a last resort in case `ncclCommAbort` itself is
// hanging
enum ErrorHandlingMode {
NoHandling = 0,
TearDown = 1,
CleanUpOnly = 2,
SkipCleanUp = 3
};
#define SHOULD_CLEAN_UP(a) (a != NoHandling && a != SkipCleanUp)
#define SHOULD_TEAR_DOWN(a) (a != NoHandling && a != CleanUpOnly)
#define PRINT_COLLECTIVE_HASH_SIGNATURE(phase, opType, numel, hashValue) \
LOG(WARNING) << logPrefix() << "Hash of " << phase << " to NCCL " << opType \
<< " with size " << numel << " is " << hashValue;
// If set, ProcessGroupNCCL doesn't use recordStream calls to ensure
// caching allocator safety for tensors used on both user-facing and
// internal comm streams.
// Instead, it stashes live references to those tensors until after
// user-facing streams are synced with comm streams.
// See stashed_for_allocator_safety_ below.
static std::vector<std::string> TORCH_NCCL_AVOID_RECORD_STREAMS = {
"TORCH_NCCL_AVOID_RECORD_STREAMS"};
// If set, ProcessGroupNCCL registers postAlloc and preFree hooks to cuda cache
// allocator so that whenever a tensor is allocated or freed, ProcessGroupNCCL
// can register/deregister the tensor on all available NCCL communicators.
static std::vector<std::string> TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK =
{"TORCH_NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK",
"NCCL_USE_TENSOR_REGISTER_ALLOCATOR_HOOK"};
#if defined(__linux__)
struct DumpPipe {
DumpPipe(int rank) {
std::string fileStem =
getCvarString({"TORCH_NCCL_DEBUG_INFO_PIPE_FILE"}, "");
if (fileStem.empty() ||
getCvarInt({"TORCH_NCCL_TRACE_BUFFER_SIZE"}, 0) <= 0) {
return;
}
TORCH_CHECK(!fileStem.empty(), "TORCH_NCCL_DEBUG_INFO_PIPE_FILE is empty");
std::string filename = c10::str(fileStem, rank, ".pipe");
TORCH_CHECK(
unlink(filename.c_str()) != -1 || errno == ENOENT,
"Error removing existing named pipe ",
filename);
TORCH_CHECK(
mkfifo(filename.c_str(), 0666) != -1,
"Error creating named pipe ",
filename);
fd_ = open(filename.c_str(), O_RDONLY | O_NONBLOCK);
LOG(INFO) << "Pipe file " << filename
<< " has been opened, write to it to trigger NCCL Debug Dump.";
TORCH_CHECK(fd_ != -1, "Error opening named pipe ", filename);
}
bool shouldDump() {
if (fd_ == -1) {
return false;
}
// NOLINTNEXTLINE(*array*)
char buf[128]{};
// non-blocking from O_NONBLOCK above.
// Ignore EINTR because we already will poll this
// again later.
ssize_t bytesRead = read(fd_, &buf, 128);
return bytesRead > 0;
}
~DumpPipe() {
if (fd_ != -1) {
close(fd_);
}
}
private:
int fd_ = -1;
};
#else
struct DumpPipe {
DumpPipe(int rank) {}
bool shouldDump() {
return false;
}
};
#endif
// ProcessGroupNCCL implements NCCL bindings for c10d.
//
// All functions of the class are expected to be called in the same order
// across all processes in the process group. This is the only way that we
// can guarantee to match up the same calls among all processes.
//
// All NCCL functions provided by this class are asynchronous functions. More
// specifically, each NCCL call is scheduled on a separate CUDA stream that is
// different from the current CUDA stream. This is for the purpose of
// achieving potentially concurrency and better performance. As a result,
// it is the callers' responsibility to make sure that the CUDA stream their
// code works on needs to wait for the NCCL operation from
// this class.
//
// This can be done by calling:
//
// either WorkNCCL::wait() or WorkNCCL::synchronize(), both achieves the same
// functionality and are synonyms.
//
// Also note that WorkNCCL::finishedGPUExecution() is a helper function only
// provided by ProcessGroupNCCL to check if the NCCL operation of WorkNCCL has
// finished execution on the GPU (not just scheduled).
//
// Example on using the NCCL process group
//
// ProcessGroupNCCL pg(store, rank, size);
// std::shared_ptr<WorkNCCL> work = pg.allreduce(tensors);
//
// // At this point, NCCL kernel has already by queued successfully
// // Now, let current stream wait for the NCCL to finish, this function is
// // async operation as well
//
// work->wait()
//
// // Now continue on other work in the current stream.
class TORCH_API ProcessGroupNCCL : public Backend {
public:
class WorkNCCL : public Work, public std::enable_shared_from_this<WorkNCCL> {
public:
friend struct WorkInfo;
// Constructor takes a list of CUDA devices
WorkNCCL(
std::string pgUID,
std::string pgDesc,
at::Device& device,
int rank,
OpType opType,
uint64_t seq,
bool isP2P = false,
const char* profilingTitle = nullptr,
const std::optional<std::vector<at::Tensor>>& inputs = std::nullopt,
bool desyncDebug = false,
bool enableTiming = false,
bool cudaEventCacheEnabled = false,
DebugLevel distDebugLevel = DebugLevel::Off);
// Copy constructor doing partial copy without outputs_. Cleanup thread
// monitors and removes finished works. However it will deadlock when
// destructs outputs_ tensors who are view tensors in autograd graph.
WorkNCCL(const WorkNCCL& w);
~WorkNCCL() override;
// Checks if the NCCL kernel has started to execute.
bool isStarted();
// Checks if request has completed. In this specific case of NCCL, it checks
// if the NCCL operation has completed on the GPU in its own NCCL stream.
// Non-blocking operation.
bool isCompleted() override;
bool isSuccess() const override;
// Same as calling synchronize() for NCCL work if timeout is not set.
// Otherwise, it will block the CPU thread until the NCCL work is completed
// or timed out. If timeout, exception will be thrown.
bool wait(std::chrono::milliseconds timeout = kNoTimeout) override;
void abort() override;
// Let current stream wait on the completion of the NCCL work
// Throws on exceptions.
void synchronize() override;
// Synchronize streams by blocking each on the NCCL stream
void synchronizeStream();
// Helper function to handle exception (throw if needed).
void handleException(ErrorHandlingMode asyncErrorHandling);
// Helper function that checks if the NCCL kernels have finished
// execution on the GPUs
bool finishedGPUExecution();
// Get a Future object that will be marked as completed internally.
c10::intrusive_ptr<c10::ivalue::Future> getFuture() override;
// Get a Future result of each work (e.g. success, different error types).
// instead of the tensor output.
c10::intrusive_ptr<c10::ivalue::Future> getFutureResult() override;
float getDuration() const override;
uint64_t getSequencenumber() const override;
const std::string& logPrefix() const;
// Helper function that sets an exception_ptr on the WorkNCCL object.
void setException(std::exception_ptr exception_ptr);
// Helper function that returns True if the WorkNCCL object has timed out
// and False otherwise.
// In case of timeout, set exception on the WorkNCCL object.
bool checkTimeout(
std::optional<std::chrono::milliseconds> timeout = std::nullopt);
// Print the traceback of the collective at call time
void printTraceback() const;
std::vector<at::Tensor> result() override;
protected:
// The process group unique id
std::string pgUID_;
// The process group description
std::string pgDesc_;
// The cached list of CUDA devices to operate on
at::Device device_;
// The start CUDA event of NCCL operator tracking this work item. These
// start CUDA events are needed by desync debugging if enabled.
std::shared_ptr<at::cuda::CUDAEvent> ncclStartEvent_;
// The end CUDA event of NCCL operator tracking this work item.
std::shared_ptr<at::cuda::CUDAEvent> ncclEndEvent_;
// The NCCL communicator used for this work item.
std::shared_ptr<NCCLComm> ncclComm_;
// whether this work is a barrier op
bool isBarrierOp_{false};
// Clone of blockingWait_ from ProcessGroupNCCL.
bool blockingWait_{false};
// Clone of avoidRecordStreams_ from ProcessGroupNCCL.
bool avoidRecordStreams_{false};
// Clone of opTimeout_ from ProcessGroupNCCL.
std::chrono::milliseconds opTimeout_{};
// Ephemeral timeouts are owned by exactly one work,
// and reset after that work completes.
// There may be more than one ephemeral timeout active at the same time,
// and this variable is used to track the ownership of ephemeral timeout.
std::chrono::milliseconds ownedEphermeralTimeout_ =
std::chrono::milliseconds(0);
// Time point representing when the work started.
std::chrono::time_point<std::chrono::steady_clock> workStartTime_;
// Record the sequential number of collective or p2p.
uint64_t seq_;
bool isP2P_;
// Indicates if the nccl start event has been updated to the store trace.
// This will be used by desync debug.
bool startTraceUpdated_{false};
// Record collective sizes for debug. We only record the size on the first
// device as multi-device per process is deprecated
size_t numelIn_ = -1;
size_t numelOut_ = -1;
// Wrapper method for the static checkForNCCLErrors which can be overridden
// for tests.
virtual std::exception_ptr checkForNCCLErrors();
friend std::ostream& operator<<(
std::ostream& output,
const WorkNCCL& workNCCL);
private:
// Checks for NCCL errors and sets an appropriate exception_ptr.
void checkAndSetException();
// Just checks whether GPU execution has started, without modifying
// exception_ptr.
bool startedGPUExecutionInternal() const;
// Just checks whether GPU execution has completed, without modifying
// exception_ptr.
bool finishedGPUExecutionInternal() const;
// Reference to the store so that we can write aborted communicators
// to the store.
c10::intrusive_ptr<Store> store_;
// Store a reference to NCCL collective's outputs, used by result and to
// give a more descriptive message when representing the Work as a string.
std::shared_ptr<std::vector<at::Tensor>> outputs_;
// TORCH_NCCL_AVOID_RECORD_STREAMS implementation helper.
// Stores references to participating non-output tensors (ie inputs,
// flattened intermediates).
// We'll clear this list in synchronizeStream, just after user-facing
// stream(s) are synced with the nccl work stream(s).
// By keeping these refs (as well as outputs_) alive until after the
// collective's work rejoins the user-facing streams, we achieve
// caching allocator safety without any recordStream calls.
// For in-place collectives, some refs stashed here may alias outputs_,
// but that doesn't do any harm.
std::shared_ptr<std::vector<at::Tensor>> stashed_for_allocator_safety_;
// The future returned by getFuture.
c10::intrusive_ptr<at::ivalue::Future> future_;
// the future result (e.g., success or failure) of the work
c10::intrusive_ptr<at::ivalue::Future> futureWorkResult_;
bool timingEnabled_;
// unique id used to tell the trace buffer that this
// work has completed
std::optional<uint64_t> trace_id_;
DebugLevel distDebugLevel_;
friend class ProcessGroupNCCL;
};
class CUDAEventCache {
public:
CUDAEventCache();
std::shared_ptr<at::cuda::CUDAEvent> create(bool timing);
static CUDAEventCache& get(at::DeviceIndex device);
private:
std::mutex cacheMutex_;
// NOTE: We intentionally store raw pointers so that
// we do not attempt to destroy the event objects on process exit,
// because cuda may be gone.
std::array<std::deque<at::cuda::CUDAEvent*>, 2>
eventsArray_; // 0 for timing=false, 1 for timing=true
};
struct Options : Backend::Options {
// NOTE: timeout in ProcessGroupNCCL::Options denote the timeout for
// operations. This is only used when blockingWait_ is enabled.
explicit Options(bool is_high_priority_stream = false);
// return intrusive_ptr of the object
static c10::intrusive_ptr<Options> create(
bool is_high_priority_stream = false) {
return c10::make_intrusive<Options>(is_high_priority_stream);
}
// Schedule NCCL operations on high priority CUDA streams
bool is_high_priority_stream;
#ifdef NCCL_HAS_COMM_NONBLOCKING
// Configure ranks
ncclConfig_t config = NCCL_CONFIG_INITIALIZER;
#endif
// Optional "parent" backend and color to create communicators from
// via `ncclCommSplit`
std::shared_ptr<ProcessGroupNCCL> split_from;
// Color to use for `ncclCommSplit`, values:
// * Non-negative value: in group;
// * NCCL_SPLIT_NOCOLOR (-1): not in group;
// * NCCL_SPLIT_NOCOLOR - 1: uninitialized.
// [Note 1]: the type must be `int` instead of `int64_t` because NCCL API
// accepts int. Otherwise, an implicit conversion may happen at the API call
// and the value may become negative.
// [Note 2]: this member is pybinded to Python, the value passed from Python
// must be within the numerical range of C++ int. Otherwise, Python will
// raise a RuntimeError saying type is incompatible. See also
// `_process_group_color` in `distributed_c10d.py`.
#ifdef NCCL_HAS_COMM_SPLIT
int split_color{NCCL_SPLIT_NOCOLOR - 1};
#else
// [Note 3]: for older NCCL versions, NCCL_SPLIT_NOCOLOR is not defined. But
// `split_color` is pybinded to Python, so we need to define it. So we use
// the int value of `NCCL_SPLIT_NOCOLOR` (-1) instead.
int split_color{-2};
#endif
std::vector<uint64_t> global_ranks_in_group;
std::string group_name;
};
// Helper class related to TORCH_NCCL_DESYNC_DEBUG
class DesyncDebugger {
public:
// Initialize and enable DesyncDebugger
void init(int rank, int size, c10::intrusive_ptr<Store> store);
// Run desync debug. This function is called by watchdog at time of timeout.
void run();
// Log work start to store.
void logWorkStart(WorkNCCL& work);
// Log work end to store.
void logWorkEnd(WorkNCCL& work);
private:
// Whether desync debug is enabled.
// If false, all functions are no-op.
bool enabled_{false};
// From ProcessGroupNCCL
int rank_;
int size_;
// Reference to the store so that we can log start/end event.
c10::intrusive_ptr<Store> store_;
// The store keys to trace the last NCCL collective kernel CUDA events -
// start event and end event respectively. These are used to do desync root
// cause analysis.
std::string traceKeyStart_;
std::string traceKeyEnd_;
};
// If you wish to create multiple process groups, each with a potentially
// different rank and size, you can do so by passing a new store instance
// to each one. If you have only a single store object, you can
// use the `c10d::PrefixStore` to derive scoped instances.
// This is also what the Python API in torch.distributed does.
//
// The process group instance keeps a reference to the store because
// it may be used long after the constructor runs. In fact, the constructor
// doesn't create any NCCL communicators. A single NCCL communicator can
// only be used on a specific set of devices, and are therefore created
// on-demand when a collective runs. If another collective is executed later,
// against a different set of devices, the process group creates another NCCL
// communicator. These NCCL communicators are cached and reused if possible.
//
ProcessGroupNCCL(
c10::intrusive_ptr<Store> store,
int rank,
int size,
c10::intrusive_ptr<Options> options = Options::create());
// This constructor includes the deprecated `groupName` argument.
// If you have existing code that uses the `groupName`, you can replace
// it by specifying a `c10d::PrefixStore(groupName, store)` for store.
C10_DEPRECATED ProcessGroupNCCL(
const c10::intrusive_ptr<Store>& store,
int rank,
int size,
const std::string& groupName,
c10::intrusive_ptr<Options> options = Options::create())
: ProcessGroupNCCL(store, rank, size, std::move(options)) {}
~ProcessGroupNCCL() override;
// This function returns a local uid for ProcessGroupNCCL.
uint64_t getUid() {
return static_cast<uint64_t>(local_id_);
}
c10::intrusive_ptr<Options> getOptions() {
return options_;
}
const std::string getBackendName() const override {
return std::string(NCCL_BACKEND_NAME);
}
bool supportsSplitting() const override {
return true;
}
void startCoalescing() override;
c10::intrusive_ptr<Work> endCoalescing() override;
// For specifying a composite optype, such as ALLGATHER and REDUCE_SCATTER
c10::intrusive_ptr<Work> endCoalescing(OpType optype);
c10::intrusive_ptr<Work> broadcast(
std::vector<at::Tensor>& tensors,
const BroadcastOptions& opts = BroadcastOptions()) override;
c10::intrusive_ptr<Work> _broadcast_oop(
at::Tensor& outputTensors,
at::Tensor& inputTensors,
const BroadcastOptions& opts = BroadcastOptions());
c10::intrusive_ptr<Work> allreduce_sparse(
std::vector<at::Tensor>& tensors,
const AllreduceOptions& opts = AllreduceOptions()) override;
c10::intrusive_ptr<Work> allreduce(
std::vector<at::Tensor>& tensors,
const AllreduceOptions& opts = AllreduceOptions()) override;
c10::intrusive_ptr<Work> allreduce_coalesced(
std::vector<at::Tensor>& tensors,
const AllreduceCoalescedOptions& opts =
AllreduceCoalescedOptions()) override;
c10::intrusive_ptr<Work> reduce(
std::vector<at::Tensor>& tensors,
const ReduceOptions& opts = ReduceOptions()) override;
c10::intrusive_ptr<Work> _reduce_oop(
at::Tensor& outputTensors,
at::Tensor& inputTensors,
const ReduceOptions& opts = ReduceOptions());
c10::intrusive_ptr<Work> allgather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllgatherOptions& opts = AllgatherOptions()) override;
c10::intrusive_ptr<Work> _allgather_base(
at::Tensor& outputbuffer,
at::Tensor& inputbuffer,
const AllgatherOptions& opts = AllgatherOptions()) override;
c10::intrusive_ptr<Work> allgather_coalesced(
std::vector<std::vector<at::Tensor>>& outputTensorLists,
std::vector<at::Tensor>& inputTensors,
const AllgatherOptions& opts = AllgatherOptions()) override;
c10::intrusive_ptr<Work> allgather_into_tensor_coalesced(
std::vector<at::Tensor>& outputs,
std::vector<at::Tensor>& inputs,
const AllgatherOptions& opts = AllgatherOptions()) override;
c10::intrusive_ptr<Work> reduce_scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
c10::intrusive_ptr<Work> _reduce_scatter_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
c10::intrusive_ptr<Work> reduce_scatter_tensor_coalesced(
std::vector<at::Tensor>& outputs,
std::vector<at::Tensor>& inputs,
const ReduceScatterOptions& opts = ReduceScatterOptions()) override;
c10::intrusive_ptr<Work> barrier(
const BarrierOptions& opts = BarrierOptions()) override;
c10::intrusive_ptr<Work> alltoall_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
std::vector<int64_t>& outputSplitSizes,
std::vector<int64_t>& inputSplitSizes,
const AllToAllOptions& opts = AllToAllOptions()) override;
c10::intrusive_ptr<Work> alltoall(
std::vector<at::Tensor>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllToAllOptions& opts = AllToAllOptions()) override;
c10::intrusive_ptr<Work> send(
std::vector<at::Tensor>& tensors,
int dstRank,
int tag) override;
c10::intrusive_ptr<Work> recv(
std::vector<at::Tensor>& tensors,
int srcRank,
int tag) override;
void groupStart();
void groupEnd();
void groupEndNonblocking(const std::shared_ptr<NCCLComm>& comm);
c10::intrusive_ptr<Work> gather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const GatherOptions& opts = GatherOptions()) override;
c10::intrusive_ptr<Work> scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ScatterOptions& opts = ScatterOptions()) override;
// Unsupported Ops
c10::intrusive_ptr<Work> recvAnysource(
std::vector<at::Tensor>& tensors,
int tag) override;
// Agrees on an initial sequence number for the whole group by having rank 0
// create it and broadcast it to other ranks using the store.
void setSequenceNumberForGroup() override;
// Retrieves the current sequence number for the whole group, which should be
// in sync. If the returned number is not consistent across the group, it
// may indicate that there is some sort of collective desynchronization.
uint64_t getSequenceNumberForGroup() override;
// Return the total number of splits the communicators held by this process
// group have performed. Counts ncclCommCreateFromRanks() for ncclx v2.21.5+
uint64_t getCommSplitCounter() const;
void registerOnCompletionHook(
std::function<void(std::shared_ptr<WorkInfo>)>&& hook) override;
void waitForPendingWorks() override;
void enableCollectivesTiming() override;
// Helper function for iteratively aborting communicators in the provided map
void abortCommsFromMap(
std::unordered_map<std::string, std::shared_ptr<NCCLComm>>& ncclCommsMap,
const std::optional<std::string>& abortReason);
c10::intrusive_ptr<intra_node_comm::IntraNodeComm> initIntraNodeComm();
// Destroy (shutdown) this backend -- normal exit.
void shutdown();
// Provides an API to abort the ProcessGroup (similar to ncclCommAbort)
// instead of relying on ProcessGroupNCCL destructor.
void abort();
void eagerConnectSingleDevice(at::Device device) override;
void performNocolorSplit(at::Device device);
// If all comms on this PG are fully initialized, return true.
bool isInitialized();
// Performs NCCL user buffer registration for all buffers in
// the given MemPool
void registerMemPool(c10::cuda::MemPool* pool);
// Performs NCCL user buffer de-registration for all buffers in
// the given MemPool
void deregisterMemPool(c10::cuda::MemPool* pool);
// This method adds a temporary extension for the timeout period,
// applying to all collectives between the calling of this API and
// the completion of the first collective on the GPU. While this feature
// provides flexibility in specific scenarios, it introduces statefulness
// to timeout setting. Therefore, it is advisable to use this API sparingly
// and consider alternative approaches, such as directly setting the timeout
// or utilizing a barrier collective (one can set any timeout to the barrier),
// whenever feasible.
void addEphemeralTimeout(const std::chrono::milliseconds& timeout);
// This function is only intended for testing purposes because we don't
// want to expose the `WorkNCCL` via pybind. It verifies whether the
// `opTimeout_` of the provided WorkNCCL instance is the same as the specified
// timeout.
bool verifyWorkTimeoutForTest(
const c10::intrusive_ptr<Work>& work,
const std::chrono::milliseconds& timeout);
protected:
// Helper that broadcasts nccl unique ID to all ranks through the store
void broadcastUniqueNCCLID(
ncclUniqueId* ncclID,
bool isSingleP2POp,
const std::string& devicesKey,
int p2pRank);
// Helper that looks up the cached NCCL communicators only
std::shared_ptr<NCCLComm> getNCCLComm(const std::string& deviceKey);
std::shared_ptr<NCCLComm> initNCCLComm(
const std::string& deviceKey,
at::Device& device,
OpType opType,
int p2pRank = 0,
bool isSendRecvSelf = false);
// Wrapper method which can be overridden for tests.
virtual std::exception_ptr checkForNCCLErrors(
std::shared_ptr<NCCLComm>& ncclComm);
// Ensure thaht if record is True, the work obj will be enqueued via
// workEnqueue
virtual c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL> initWork(
at::Device& device,
int rank,
OpType opType,
bool isP2P,
const char* profilingTitle = nullptr,
const std::vector<at::Tensor>& inputs = {},
const std::vector<at::Tensor>& outputs = {},
bool record = false);
// In the timeout case and we will dump debug info such as the NCCL flight
// recorder to storage. Down the road, if we have more complicated or blocking
// operations, we might need to use a side thread to do it.
bool dumpDebuggingInfo(bool includeStackTrace = true);
// Abort all communicators on this rank.
bool abortComms(const std::optional<std::string>& abortReason = std::nullopt);
// A helper function to check if nonblocking API mode should be used.
// Use this helper instead of directly checking `useNonblocking_` variable.
bool useNonblocking();
private:
int globalRankStart;
int globalRankStride;
// Helper that encapsulates work shared across all collective communication
// primitives. The callbacks have the following signatures:
//
// ncclResult_t fn(at::Tensor& input, at::Tensor& output,
// ncclComm_t, at::cuda::CUDAStream&);
// void {pre,post}(std::vector<at::cuda::CUDAStream&>);
template <typename Fn>
c10::intrusive_ptr<Work> collective(
at::Tensor& input,
at::Tensor& output,
Fn fn,
OpType opType,
const char* profilingTitle = nullptr,
bool avoidRecordStreams = false,
bool nanCheck = true);
template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> collective(
at::Tensor& input,
at::Tensor& output,
Fn fn,
PreProcess pre,
PostProcess post,
OpType opType,
const char* profilingTitle = nullptr,
bool avoidRecordStreams = false,
bool nanCheck = true);
template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> collective(
std::vector<at::Tensor>& inputs,
std::vector<at::Tensor>& outputs,
Fn fn,
PreProcess pre,
PostProcess post,
OpType opType,
const char* profilingTitle = nullptr,
bool avoidRecordStreams = false,
bool nanCheck = true);
template <typename Fn>
c10::intrusive_ptr<Work> collectiveCoalesced(
std::vector<at::Tensor>& input,
std::vector<at::Tensor>& output,
Fn fn,
OpType opType,
const char* profilingTitle = nullptr,
bool avoidRecordStreams = false);
// Helper that encapsulates work shared across point-to-point communication
// primitives. It is the same structure as the helper used for collective
// communication primitives.
template <typename Fn>
c10::intrusive_ptr<Work> pointToPoint(
at::Tensor& tensor,
Fn fn,
int peer,
OpType opType,
const char* profilingTitle = nullptr);
template <typename Fn, typename PreProcess, typename PostProcess>
c10::intrusive_ptr<Work> pointToPoint(
at::Tensor& tensor,
Fn fn,
int peer,
OpType opType,
PreProcess pre,
PostProcess post,
const char* profilingTitle);
c10::intrusive_ptr<Work> allreduce_impl(
at::Tensor& tensor,
const char* profilingTitle = "nccl:all_reduce",
const AllreduceOptions& opts = AllreduceOptions());
// Checks for NCCL errors on each of the communicators and returns an
// appropriate exception_ptr (nullptr if no errors).
static std::exception_ptr checkForNCCLErrorsInternal(
std::shared_ptr<NCCLComm>& ncclComm);
// Function that runs as part of a separate thread and checks for errors on
// NCCL communicators. We need a separate thread to check for NCCL errors
// since we can't rely on the user calling certain methods like wait(),
// isCompleted() etc. to detect and remediate errors. In addition to this, we
// need a mechanism to safely abort and remove NCCL communicators from our
// cache. This can be done cleanly by having a thread for the ProcessGroupNCCL
// class. Attempting to modify the communicator cache from the WorkNCCL class
// might run into issues with object lifetime since the ProcessGroupNCCL
// object might get destroyed before the WorkNCCL object.
void ncclCommWatchdog();
// Return the CUDA device most likely associated with this backend.
// If we aren't bound to a specific device, there is no strict
// guarantee that this heuristic is the correct assignment of ranks
// to GPUs that Python layers use, but in practice it tends to be.
// Fortunately we don't rely on this for correctness of any tensor
// operations, just for ancillary uses like barriers.
at::Device guessDeviceForRank() const;
// Destroys initialized NCCL communicators in devNCCLComMap_ given by input
// key. Throws if there are no communicators to destroy. Also removes
// communicators from the cache and clears used device indices.
void destroyNCCLComms(const std::string& devNCCLCommMapKey);
// Watchdog's inside loop.
// Takes care of cleaning up completed work, and aborting upon failure or
// timeout.
void watchdogHandler();
void runHookLoop();
// Generates a prefix that is unique to this process group and rank, for
// disambiguating logs
std::string createLogPrefix() const;
// Returns the unique prefix created in createLogPrefix
const std::string& logPrefix() const;
// Returns the global rank of the device. This function assumes that users
// always create a default global process group(PG) which includes all
// devices. It is called in the constructor of ProcessGroupNCCL, so it always
// return the rank_ of the the very first PG created, aka, default global PG.
const int& globalRank() const;
// Returns the global ranks of a PG.
const std::vector<uint64_t>& groupRanks() const;
// Util function to assign timeout to each work.
void assignTimeoutToWork(
const c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>& work,
const c10::intrusive_ptr<Options>& option);
// Broadcast flight-recorder dump signal
void broadcastDumpSignal();
protected:
// Function that runs as part of a separate thread aside from watchdog
// thread because we need to check the heartbeat from watchdog thread
// so that when we get stuck in some NCCL/CUDA calls,
// we can dump the debugging information and abort the process.
virtual void heartbeatMonitor();
// Function that directly trigger std::abort so that the whole process
// gets terminated.
virtual void terminateProcess(const std::string& errMsg);
// A helper function to wait for a future to complete or timeout.
// Returns true if the future completes before timeout, false otherwise.
bool waitForFutureOrTimeout(
std::future<bool>& fut,
const std::chrono::milliseconds& timeOutMilSec,
const std::string& futDescription,
bool throwException = false,
bool log = false);
std::string getNCCLWatchdogTimeoutErrorMsg(const std::string& extraMsg);
std::string getNCCLWatchdogTimeoutExitMsg(const std::string& exitReason);
static const int64_t kWatchdogThreadSleepMillis;
// The store is used to broadcast the NCCL unique ID of rank 0. This store
// comes with prefix and it is different across ProcessGroup NCCL instances
// (aka, different ProcessGroups).
c10::intrusive_ptr<Store> store_;
// Reference to the store without prefix so that keys are same across all
// ProcessGroup NCCL instances and (key, value) pairs written to the store are
// global.
c10::intrusive_ptr<Store> globalStore_;
// The lock which protects the write/read of
// ephemeralTimeoutActive_/ephemeralTimeoutInflight_.
// TODO(fduwjj): We need to have an audit on all mutexes we are adding here.
// And consolidate them if possible.
std::mutex mtxTimeoutExtension_;
// The ephemeral timeout added on top of existing timeout for works issued
// before first work finishes.
std::chrono::milliseconds ephemeralTimeoutActive_ =
std::chrono::milliseconds(0);
// The ephemeral timeout addition which has been already applied to work.
std::chrono::milliseconds ephemeralTimeoutInflight_ =
std::chrono::milliseconds(0);
const c10::intrusive_ptr<Options> options_;
// The number of NCCL communicators that have been created during
// the lifetime of this process group. This sequence number is
// used to scope keys used in the store.
uint64_t ncclCommCounter_{0};
// The NCCL communicator that the process group has cached.
//
// For collective operations:
// The key is a list of GPU devices that an operation is operating on
// The GPU devices are stored in a device sequence and the cache NCCL
// communicator is associated with this GPU device sequence
//
// e.g. If the process group op only uses device 0, then the value of
// the used device string stored (value of the hashmap) would be "0".
//
// If the process group op uses device 0 - 7 and the each tensor of the
// input tensor list is on device, 0, 1, 2, 3, 4, 5, 6, 7 separately,
// then the value of the used device string (key) stored would be
// "0,1,2,3,4,5,6,7"
//
// If the process group op uses device 0 - 7 and the each tensor of the
// input tensor list is on device, 0, 4, 5, 6, 7, 1, 2, 3 separately,
// then the value of the used device string stored would be
// "0,4,5,6,7,1,2,3"
//
// Note that the order of the device for the tensor list matters.
//
// For point-to-point operations:
// The key is a string of my current rank and the peer process rank.
// e.g. If process 1 and process 2 are involved in a point-to-point
// communication, the key will be "1:2" on both processes. Note: this is for
// the scenario where there is only 1 GPU per process. When it comes to
// multiple GPUs per process, this part may need to redesigned.
// TODO: we probably need a separte map for P2P comms
std::unordered_map<std::string, std::shared_ptr<NCCLComm>> devNCCLCommMap_;
// The NCCL communicators currently in process of being initialized.
std::unordered_map<std::string, std::shared_ptr<NCCLComm>>
inInitializationCommMap_;
// Mutex to guard maps like devNCCLCommMap_.
std::mutex mutex_;
// Heartbeat of watchdog thread.
std::atomic_uint64_t heartbeat_{};
// The time interval used for deciding whether there is no watchdog heartbeat.
int heartbeatTimeoutInSec_;
// timeout for the dump to finish.
int waitTimeoutDumpInMilSec_;
// promise to coordinate flight recorder dump.
std::promise<void> promiseFlightRecorderDump_;
// Interval of check coordinated signals in ProcessGroupNCCL from other ranks
// e.g., trigger the dump of the debugging info for timeout when notified.
int coordCheckIntervalMilSec_;
// Size of ring buffer where we store NCCL Traces for debugging.
int traceBufferSize_;
// We gate the heartbeat monitor thread so that we can roll it out gradually.
std::atomic<bool> monitorThreadEnabled_{};
// We gate the cudaEventCache so that we can roll it out gradually.
std::atomic<bool> cudaEventCacheEnabled_{};
// Monitor thread which checks the heartbeat of Watchdog thread.
// If the monitor thread finds there is no heartbeat, it will dump debug info
// and then kill the watchdog thread to avoid hang.
std::thread ncclHeartbeatMonitorThread_;
// Watchdog thread which looks for errors on the cached NCCL communicators.
std::thread ncclCommWatchdogThread_;
std::thread onCompletionHookThread_;
// Whether or not we should terminate the watchdog and workCleanup threads.
std::atomic<bool> terminateProcessGroup_;
// Whether or not we should terminate the heartbeat monitoring threads.
std::atomic<bool> terminateHeartbeatMonitorThread_;
// Whether there are hooks pending to be fired
std::atomic<bool> hasPendingHooks_{};
// This is the signal from watchdog threads to indicate whether the monitor
// thread should dump. Making it static so that it is accessiable from all the
// PGs. With this flag, monitor thread would dump debug info under any one of
// the three conditions:
//
// 1: watchdog thread of any PG detects a collective timeout.
// 2: timeout signal is received from other ranks through tcpstore.
// 3: current PG's watchdog heartbeat timeout occurs.
//
// Note that only the monitor thread from PG0 will dump the debug info for
// case one and two so that the debug info is only dumped once.
static std::atomic<bool> shouldDump_;
// Mutex to Guard workMetaList_
std::mutex workMetaListMutex_;
// Mutex to Guard monitorWakeUpCV_
std::mutex monitorMutex_;
bool writeDebugInfo_ = false;
// Condition Variable for watchdog thread sleep
std::condition_variable workMetaListCV_;
// Condition Variable for monitor thread to wake up early
std::condition_variable monitorWakeUpCV_;
// Vector to Store WorkNCCL pointers
std::list<ProcessGroupNCCL::WorkNCCL> workMetaList_;
std::chrono::time_point<std::chrono::steady_clock> lastWorkListUpdateTime_;
// Mutex to Guard workMetaList_
std::mutex completedWorkListMutex_;
// Condition Variable for watchdog thread sleep
std::condition_variable completedWorkListCV_;
std::list<ProcessGroupNCCL::WorkNCCL> completedWorkList_;
// Add Work Pointer to workVector
void workEnqueue(const c10::intrusive_ptr<ProcessGroupNCCL::WorkNCCL>&);
// The CUDA streams used by NCCL kernels
std::unordered_map<std::string, at::cuda::CUDAStream> ncclStreams_;
// The CUDA events used to sync NCCL streams
std::unordered_map<std::string, at::cuda::CUDAEvent> ncclEvents_;
// Device Indexes used for all collectives in this group
std::set<int> usedDeviceIdxs_;
// Flag to denote if a coalescing groupStart/groupEnd block is active
int coalescing_state_ = 0;
// Stores device indexes for all collectives run inside a coalescing block
at::Device coalescedDevice_ = at::Device("cuda");
// Stores communicators for all collectives run inside a coalescing block
std::shared_ptr<NCCLComm> coalescedComm_ = nullptr;
// Whether or not wait() and synchronize() are blocking operations that wait
// for the operation to complete.
bool blockingWait_ = false;
// Whether or not to hook the cache allocator to register all allocated
// tensors
bool useTensorRegisterAllocatorHook_ = false;
// Whether or not the workCleanupThread is used to perform async error
// handling.
ErrorHandlingMode asyncErrorHandling_ = NoHandling;
// Whether or not to enable timeout root cause analysis.
bool desyncDebug_;
DesyncDebugger desyncDebugger_;
// Whether or not to dump debug info on exception including both watchdog
// timeout and nccl errors.
bool dumpOnTimeoutOrEx_;
// Whether or not to sleep after an exception is thrown in the watchdog.
bool sleepAfterException_{};
// Whether or not to enable nan check for input tensors to collectives.
bool enableNanCheck_;
// Whether or not to print C++ stack traces to logs on unclean shutdown.
bool logCppStackOnUncleanShutdown_;
// Whether or not to create start CUDAEvent and enable timing for start
// and end events. Note that enableTiming_ is always true if desyncDebug_
// is set to true.
std::atomic<bool> enableTiming_{};
// Flag to enable the print of hash value of input/output of collectives for
// verification.
std::atomic<bool> enableCollecticeHashDebug_{};
// Whether or not TORCH_NCCL_AVOID_RECORD_STREAMS was set
bool avoidRecordStreams_ = false;
// Whether the NCCL watchdog should rethrow CUDA errors.
bool rethrowCUDAErrors_ = false;
// The number of active ncclGroupStart() calls. This counter will be increased
// by 1 when ncclGroupStart() is called and decreased by 1 when ncclGroupEnd()
// is called.
static thread_local uint64_t ncclActiveGroupCounter_;
// Counting for the sequential number of NCCL collective call.
// (specifically, how many actual kernels we launched, which differs from
// op_id_ when coalescing is enabled)
uint64_t seqCollective_{0};
// Counting for the sequential number of NCCL P2P calls.
uint64_t seqP2P_{0};
// Incrementing counter for logical operations (collective or p2p) issued on
// the ProcessGroup
uint64_t op_id_{0};
std::exception_ptr watchDogException_ = nullptr;
// The number of ProcessGroupNCCL created on the current rank.
size_t local_id_;
std::string logPrefix_;
c10::intrusive_ptr<intra_node_comm::IntraNodeComm> intraNodeComm_;
// Number of devices on this node.
int localDeviceCount_{0};
std::shared_ptr<ProcessGroupStatus> pgStatus_ =
std::make_shared<ProcessGroupStatus>();
// Internal cached value: use NCCL non-blocking API mode or not.
// Use `useNonblocking()` method instead of accessing this variable directly.
std::optional<bool> useNonblocking_{std::nullopt};
};
// Dumps the NCCL comm traces and additional information about the Process
// Group.
TORCH_API std::string dump_nccl_trace(
bool includeCollectives,
bool includeStackTraces,
bool onlyActive);
// Dumps the NCCL comm traces and additional information about the Process
// Group in JSON formatted string.
// We don't include stack traces in JSON format as it is far too much data.
TORCH_API std::string dump_nccl_trace_json(
bool includeCollectives,
bool onlyActive);
// Gets a mutable reference to a global optional function.Heartbeat Monitor
// will use this function to dump traces, if available. Inside fbcode, we
// store a function here that uses an internal tool for process tracing
TORCH_API std::optional<
std::function<void(std::function<void(const std::string&)>)>>&
get_cpp_trace_dumper();
// Similar to get_cpp_trace_dumper, this stores a function defined in
// torch-python layer that lets us check whether the GIL can be acquired,
// helpful for instrumenting in cases where a hang was observed.
typedef bool (*gil_checker_t)();
TORCH_API gil_checker_t& get_gil_checker();
} // namespace c10d
#endif // USE_C10D_NCCL
|