1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
|
#include <torch/csrc/distributed/c10d/ProcessGroupWrapper.hpp>
#ifdef USE_C10D_GLOO
#include <c10/core/Allocator.h>
#include <c10/core/DeviceType.h>
#include <c10/core/ScalarType.h>
#include <c10/core/TensorOptions.h>
#include <c10/util/Exception.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/util/irange.h>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
#include <optional>
#include <stdexcept>
#include <utility>
namespace c10d {
namespace {
// A container for information about a particular collective, including optype
// and input tensors (if applicable.)
struct CollectiveFingerPrint {
// Current collective's operation type.
OpType op_type_;
// Number of input tensors
std::size_t num_tensors_{};
// input tensor data types
std::vector<int8_t> tensor_dtypes_;
// input tensor device types
std::vector<int8_t> tensor_device_types_;
// input tensor sizes
std::vector<std::vector<int64_t>> tensor_sizes_;
uint64_t sequence_number_;
CollectiveFingerPrint(
OpType op_type,
const std::vector<at::Tensor>& input_tensors,
uint64_t sequence_number)
: op_type_(op_type),
num_tensors_(input_tensors.size()),
sequence_number_(sequence_number) {
tensor_dtypes_.reserve(num_tensors_);
tensor_device_types_.reserve(num_tensors_);
tensor_sizes_.reserve(num_tensors_);
for (const at::Tensor& t : input_tensors) {
tensor_dtypes_.push_back(static_cast<int8_t>(t.dtype().toScalarType()));
tensor_device_types_.push_back(static_cast<int8_t>(t.device().type()));
tensor_sizes_.push_back(t.sizes().vec());
}
}
// Constructor for the data received from deserialized fingerprint
CollectiveFingerPrint(
OpType op_type,
size_t num_tensors,
std::vector<int8_t> tensor_dtypes,
std::vector<int8_t> tensor_device_types,
std::vector<std::vector<int64_t>> tensor_sizes,
uint64_t sequence_number)
: op_type_(op_type),
num_tensors_(num_tensors),
tensor_dtypes_(std::move(tensor_dtypes)),
tensor_device_types_(std::move(tensor_device_types)),
tensor_sizes_(std::move(tensor_sizes)),
sequence_number_(sequence_number) {}
// Logs collective information in case of a failure.
friend std::ostream& operator<<(
std::ostream& output,
const CollectiveFingerPrint& collective_fingerprint);
// Executes and verifies the collective fingerprint.
void verify(c10::intrusive_ptr<Backend> backend) {
at::Tensor serialized_tensor = serialize_fingerprint();
std::vector<at::Tensor> inp{serialized_tensor};
// First verify tensor shapes. This is needed because if e.g. tensor dim
// does not match across processes, directly verifying tensors will result
// in a crash during allgather, but we'd actually like to report a
// description about the inconsistency. Since the input is just a 1D tensor
// the shape will be a single int k_i and we need to make sure k_i is
// consistent across the whole world.
std::vector<at::Tensor> sp = c10d::getTensorShapes(inp);
verify_tensors(sp, backend);
// Now verify consistency for the actual tensor.
verify_tensors(inp, backend);
}
// Takes a serialized fingerprint from
// CollectiveFingerPrint::serialize_fingerprint and deserializes it back to a
// CollectiveFingerPrint struct
CollectiveFingerPrint deserialize_fingerprint(
const at::Tensor& serialized_tensor) {
auto dtypes = std::vector<int8_t>();
auto device_types = std::vector<int8_t>();
auto sizes = std::vector<std::vector<int64_t>>();
int index = 0;
int64_t seq = 0;
// 1. OpType
auto optype = OpType(serialized_tensor[index].item<int>());
index++;
int num_tensors = 0;
if (index < serialized_tensor.size(0)) {
seq = serialized_tensor[index].item<int64_t>();
index++;
// 2. Num tensors
num_tensors = serialized_tensor[index].item<int>();
index++;
dtypes.reserve(num_tensors);
device_types.reserve(num_tensors);
sizes.reserve(num_tensors);
// 3. Tensor dtypes
for (int i = 0; i < num_tensors; i++) {
dtypes.push_back(serialized_tensor[index].item<int8_t>());
index++;
}
// 4. Device types
for (int i = 0; i < num_tensors; i++) {
device_types.push_back(serialized_tensor[index].item<int8_t>());
index++;
}
// 5. Tensor shapes
for (int i = 0; i < num_tensors; i++) {
// 5a. Shape size
int size = serialized_tensor[index].item<int>();
index++;
// 5b. Shape
auto shapeVec = std::vector<int64_t>();
shapeVec.reserve(size);
for (int j = 0; j < size; j++) {
shapeVec.push_back(serialized_tensor[index].item<int64_t>());
index++;
}
sizes.push_back(shapeVec);
}
}
return CollectiveFingerPrint(
optype, num_tensors, dtypes, device_types, sizes, seq);
}
private:
void verify_tensors(
std::vector<at::Tensor>& tensors_to_verify,
c10::intrusive_ptr<Backend>& backend) {
// Create output tensor data structure to pass into allgather.
std::vector<std::vector<at::Tensor>> output_tensors;
// output tensors: [<tensor 0 outputs>, <tensor 1 outputs>, ..., <tensor n
// outputs>]
output_tensors.reserve(tensors_to_verify.size());
for (const auto& tensor_shape : tensors_to_verify) {
// Each rank has its own outputs shape, e.g.
// <tensor 0 outputs>: [<rank 0 tensor>, <rank 1 tensor>, ..., <rank n
// tensor>]
std::vector<at::Tensor> outputs;
outputs.reserve(backend->getSize());
for ([[maybe_unused]] const auto i : c10::irange(backend->getSize())) {
outputs.emplace_back(at::zeros_like(tensor_shape));
}
output_tensors.emplace_back(outputs);
}
// Allgather tensor shapes.
backend->allgather(output_tensors, tensors_to_verify)->wait();
// Verify equivalence
for (const auto i : c10::irange(output_tensors.size())) {
const std::vector<at::Tensor> gathered_tensors = output_tensors[i];
const at::Tensor reference_tensor = tensors_to_verify[i];
for (const auto rank : c10::irange(gathered_tensors.size())) {
const auto& rank_tensor = gathered_tensors[rank];
if (!rank_tensor.equal(reference_tensor)) {
CollectiveFingerPrint rank_fingerprint =
deserialize_fingerprint(rank_tensor);
std::stringstream ss;
ss << "Detected mismatch between collectives on ranks. Rank "
<< backend->getRank() << " is running collective: " << *this
<< ", but Rank " << rank
<< " is running collective: " << rank_fingerprint << ".";
auto diff_result = compute_collective_diff(rank_fingerprint);
if (std::get<0>(diff_result)) {
ss << std::get<1>(diff_result);
}
TORCH_CHECK(false, ss.str());
}
}
}
}
static std::vector<std::string> get_size_strs(
const CollectiveFingerPrint& collective_fingerprint) {
std::vector<std::string> size_strs;
if (!collective_fingerprint.tensor_sizes_.empty()) {
for (const auto& single_tensor_shape_num :
collective_fingerprint.tensor_sizes_[0]) {
size_strs.emplace_back(std::to_string(single_tensor_shape_num));
}
}
return size_strs;
}
static std::vector<std::string> get_dtype_strs(
const CollectiveFingerPrint& collective_fingerprint) {
std::vector<std::string> dtype_strs;
dtype_strs.reserve(collective_fingerprint.tensor_dtypes_.size());
for (const auto& tensor_dtype : collective_fingerprint.tensor_dtypes_) {
dtype_strs.emplace_back(
c10::toString(static_cast<at::ScalarType>(tensor_dtype)));
}
return dtype_strs;
}
static std::vector<std::string> get_device_type_strs(
const CollectiveFingerPrint& collective_fingerprint) {
std::vector<std::string> device_type_strs;
device_type_strs.reserve(
collective_fingerprint.tensor_device_types_.size());
for (const auto& tensor_device_type :
collective_fingerprint.tensor_device_types_) {
device_type_strs.emplace_back(
c10::toString(static_cast<at::DeviceType>(tensor_device_type)));
}
return device_type_strs;
}
std::pair<bool, std::string> compute_collective_diff(
CollectiveFingerPrint& other) {
// Computes the difference between two collectives (seq num, tensor shapes,
// collective type, etc) for easier understanding of how mismatched
// collectives across ranks differ.
bool found_diff = false;
std::stringstream ss;
ss << "Collectives differ in the following aspects: ";
// Check seq_num
if (other.sequence_number_ != sequence_number_) {
found_diff = true;
ss << c10::str(
"\t Sequence number: ",
sequence_number_,
"vs ",
other.sequence_number_);
}
// Check op type
auto other_op = opTypeToString(other.op_type_);
auto this_op = opTypeToString(op_type_);
if (other_op != this_op) {
found_diff = true;
ss << c10::str(" Op type: ", this_op, "vs ", other_op);
}
auto check = [&ss, &found_diff](
const char* arg,
std::vector<std::string> other,
std::vector<std::string> curr) {
if (other.size() != curr.size()) {
found_diff = true;
ss << c10::str(" Tensor ", arg, ": ", curr, "vs ", other);
return;
}
for (size_t i = 0; i < other.size(); ++i) {
if (other[i] != curr[i]) {
found_diff = true;
ss << c10::str(" Tensor ", arg, ": ", curr, "vs ", other);
return;
}
}
};
// check tensor sizes
auto other_sizes = get_size_strs(other);
auto this_sizes = get_size_strs(*this);
check("Tensor shapes", other_sizes, this_sizes);
// check tensor dtypes
auto other_dtypes = get_dtype_strs(other);
auto this_dtypes = get_dtype_strs(*this);
check("Tensor dtypes", other_dtypes, this_dtypes);
// check tensor devices
auto other_devices = get_device_type_strs(other);
auto this_devices = get_device_type_strs(*this);
check("Tensor devices", other_devices, this_devices);
if (!found_diff) {
return std::make_pair(false, ss.str());
} else {
return std::make_pair(true, ss.str());
}
}
// Serializes the information (op type, input shapes, data types, device
// types) about the collective fingerprint into a tensor
at::Tensor serialize_fingerprint() {
auto data = std::make_unique<std::vector<int64_t>>();
// std::vector<int64_t> data;
// 1. OpType
data->push_back(static_cast<int64_t>(op_type_));
// sequence number
data->push_back(static_cast<int64_t>(sequence_number_));
// 2. Num tensors
data->push_back(static_cast<int64_t>(num_tensors_));
// 3. Tensor dtypes
for (const auto& type : tensor_dtypes_) {
data->push_back(type);
}
// 4. Device types
for (const auto& d : tensor_device_types_) {
data->push_back(d);
}
// 5. Shapes
for (const auto& sizes : tensor_sizes_) {
data->push_back(static_cast<int64_t>(sizes.size()));
for (const auto& s : sizes) {
data->push_back(s);
}
}
// Serialize data into tensor
int64_t data_size = static_cast<int64_t>(data->size());
// Need to release here and get the ptr due to C++ parameter evaluation
// order.
auto d = data.release();
at::Tensor serialized_tensor =
at::for_blob(d->data(), {data_size})
.context(
d,
[](void* ctx) {
delete static_cast<std::vector<int64_t>*>(ctx);
})
.options(at::TensorOptions().dtype(at::kLong))
.make_tensor();
return serialized_tensor;
}
};
std::ostream& operator<<(
std::ostream& output,
const CollectiveFingerPrint& collective_fingerprint) {
std::string collectiveInfo;
auto op_type_str = opTypeToString(collective_fingerprint.op_type_);
if (collective_fingerprint.num_tensors_ != 0) {
// Convert dtype and device type info to string.
std::vector<std::string> dtype_strs =
CollectiveFingerPrint::get_dtype_strs(collective_fingerprint);
std::vector<std::string> device_type_strs =
CollectiveFingerPrint::get_device_type_strs(collective_fingerprint);
std::vector<std::string> size_strs =
CollectiveFingerPrint::get_size_strs(collective_fingerprint);
collectiveInfo = c10::str(
"CollectiveFingerPrint(",
"SequenceNumber=",
collective_fingerprint.sequence_number_,
", OpType=",
op_type_str,
", TensorShape=[",
c10::Join(", ", size_strs),
"], TensorDtypes=",
(dtype_strs),
", TensorDeviceTypes=",
(device_type_strs),
")");
} else {
collectiveInfo = c10::str(
"CollectiveFingerPrint(",
"SequenceNumber=",
collective_fingerprint.sequence_number_,
"OpType=",
op_type_str,
")");
}
return output << collectiveInfo;
}
bool check_same_size(const std::vector<at::Tensor>& input_tensors) {
for (const auto& input_tensor : input_tensors) {
if (!input_tensors[0].is_same_size(input_tensor)) {
return false;
}
}
return true;
}
} // namespace
ProcessGroupWrapper::ProcessGroupWrapper(
const c10::intrusive_ptr<Backend>& backend,
c10::intrusive_ptr<Backend> glooBackend)
: Backend(backend->getRank(), backend->getSize()),
backend_(backend),
glooBackend_(std::move(glooBackend)) {
// Set the sequence number for the underlying process group.
backend_->setSequenceNumberForGroup();
}
const std::string ProcessGroupWrapper::getBackendName() const {
return backend_->getBackendName();
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::broadcast(
std::vector<at::Tensor>& data,
const BroadcastOptions& opts) {
runCollectiveChecks(OpType::BROADCAST, data);
return backend_->broadcast(data, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::allreduce(
std::vector<at::Tensor>& data,
const AllreduceOptions& opts) {
runCollectiveChecks(OpType::ALLREDUCE, data);
return backend_->allreduce(data, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::allreduce_coalesced(
std::vector<at::Tensor>& tensors,
const AllreduceCoalescedOptions& opts) {
// NOTE: We don't enforce shape checking for allreduce_coalesced because
// the implementation itself does not enforce it we have tests that use
// inconsistent shapes, see python implementation in distributed_c10d for
// details.
runCollectiveChecks(OpType::ALLREDUCE_COALESCED, {});
return backend_->allreduce_coalesced(tensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::reduce(
std::vector<at::Tensor>& tensors,
const ReduceOptions& opts) {
runCollectiveChecks(OpType::REDUCE, tensors);
return backend_->reduce(tensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::allgather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllgatherOptions& opts) {
if (check_same_size(outputTensors.back())) {
runCollectiveChecks(OpType::ALLGATHER, inputTensors);
} else {
runCollectiveChecks(OpType::ALLGATHER, {});
}
return backend_->allgather(outputTensors, inputTensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::_allgather_base(
at::Tensor& outputBuffer,
at::Tensor& inputBuffer,
const AllgatherOptions& opts) {
std::vector<at::Tensor> inputTensors({inputBuffer});
runCollectiveChecks(OpType::_ALLGATHER_BASE, inputTensors);
return backend_->_allgather_base(outputBuffer, inputBuffer, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::allgather_coalesced(
std::vector<std::vector<at::Tensor>>& outputTensorLists,
std::vector<at::Tensor>& inputTensors,
const AllgatherOptions& opts) {
// NOTE: We don't enforce shape checking for allgather_coalesced because
// the implementation itself does not enforce it we have tests that use
// inconsistent shapes, see python implementation in distributed_c10d for
// details.
runCollectiveChecks(OpType::ALLGATHER_COALESCED, {});
return backend_->allgather_coalesced(outputTensorLists, inputTensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::gather(
std::vector<std::vector<at::Tensor>>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const GatherOptions& opts) {
runCollectiveChecks(OpType::GATHER, inputTensors);
return backend_->gather(outputTensors, inputTensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ScatterOptions& opts) {
runCollectiveChecks(OpType::SCATTER, outputTensors);
return backend_->scatter(outputTensors, inputTensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::reduce_scatter(
std::vector<at::Tensor>& outputTensors,
std::vector<std::vector<at::Tensor>>& inputTensors,
const ReduceScatterOptions& opts) {
if (check_same_size(inputTensors.back())) {
runCollectiveChecks(OpType::REDUCE_SCATTER, outputTensors);
} else {
runCollectiveChecks(OpType::REDUCE_SCATTER, {});
}
return backend_->reduce_scatter(outputTensors, inputTensors, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::alltoall_base(
at::Tensor& outputTensor,
at::Tensor& inputTensor,
std::vector<int64_t>& outputSplitSizes,
std::vector<int64_t>& inputSplitSizes,
const AllToAllOptions& opts) {
// alltoall supports uneven split, so don't enforce shape checking.
runCollectiveChecks(OpType::ALLTOALL_BASE, {});
return backend_->alltoall_base(
outputTensor, inputTensor, outputSplitSizes, inputSplitSizes, opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::alltoall(
std::vector<at::Tensor>& outputTensors,
std::vector<at::Tensor>& inputTensors,
const AllToAllOptions& opts) {
// alltoall supports uneven split, so don't enforce shape checking.
runCollectiveChecks(OpType::ALLTOALL, {});
return backend_->alltoall(outputTensors, inputTensors, opts);
}
void ProcessGroupWrapper::monitoredBarrier(
const BarrierOptions& opts,
bool waitAllRanks) {
return backend_->monitoredBarrier(opts, waitAllRanks);
}
void ProcessGroupWrapper::setSequenceNumberForGroup() {
// Set underlying pg's sequence number if it is not set.
if (backend_->getSequenceNumberForGroup() == 0) {
// Set the sequence number for the underlying process group.
backend_->setSequenceNumberForGroup();
}
}
uint64_t ProcessGroupWrapper::getSequenceNumberForGroup() {
return backend_->getSequenceNumberForGroup();
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::send(
std::vector<at::Tensor>& tensors,
int dstRank,
int tag) {
return backend_->send(tensors, dstRank, tag);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::recv(
std::vector<at::Tensor>& tensors,
int srcRank,
int tag) {
return backend_->recv(tensors, srcRank, tag);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::recvAnysource(
std::vector<at::Tensor>& tensors,
int tag) {
return backend_->recvAnysource(tensors, tag);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::barrier(
const BarrierOptions& opts) {
runCollectiveChecks(OpType::BARRIER, {});
return backend_->barrier(opts);
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::_reduce_scatter_base(
at::Tensor& outputBuffer,
at::Tensor& inputBuffer,
const ReduceScatterOptions& opts) {
runCollectiveChecks(
OpType::_REDUCE_SCATTER_BASE, {inputBuffer, outputBuffer});
return backend_->_reduce_scatter_base(outputBuffer, inputBuffer, opts);
}
void ProcessGroupWrapper::startCoalescing() {
return backend_->startCoalescing();
}
c10::intrusive_ptr<Work> ProcessGroupWrapper::endCoalescing() {
return backend_->endCoalescing();
}
c10::intrusive_ptr<Backend> ProcessGroupWrapper::getWrappedPg() const {
return backend_;
}
void ProcessGroupWrapper::runCollectiveChecks(
OpType op_type,
const std::vector<at::Tensor>& tensors) {
// first perform a monitored barrier to ensure all ranks can synchronize.
c10d::BarrierOptions options;
// TODO: we should use wrapped backend_'s timeout here, but C++ ProcessGroup
// API does not expose timeout.
auto seq = getSequenceNumberForGroup();
auto finger_print = CollectiveFingerPrint(op_type, tensors, seq);
LOG(INFO) << "[Rank " << getRank() << "] "
<< "Running collective: " << finger_print;
try {
glooBackend_->monitoredBarrier(options, /* waitAllRanks */ true);
} catch (const std::runtime_error& e) {
// Attach collective info to the exception and re-raise.
std::stringstream ss;
ss << finger_print;
auto collective_info = ss.str();
auto err_msg = c10::str(
"ProcessGroupWrapper: Monitored Barrier encountered error running collective: ",
collective_info,
". Error: \n",
e.what());
TORCH_CHECK(false, err_msg);
}
// Will throw if an ill-formed collective is detected.
finger_print.verify(glooBackend_);
}
} // namespace c10d
#endif // USE_C10D_GLOO
|