1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/core/Tensor.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/nvrtc_stub/ATenNVRTC.h>
#include <c10/cuda/CUDAGuard.h>
#if !defined(USE_ROCM) && !defined(_WIN32) && defined(CUDA_VERSION) && \
CUDA_VERSION >= 12000
#define BUILD_ASYNC_MM_KERNEL
#endif
#if defined(BUILD_ASYNC_MM_KERNEL)
// We are going to override the cuTensorMapEncodeTiled driver api with our lazy
// loader
static CUresult CUDAAPI nvrtc_cuTensorMapEncodeTiled(
CUtensorMap* tensorMap,
CUtensorMapDataType tensorDataType,
cuuint32_t tensorRank,
void* globalAddress,
const cuuint64_t* globalDim,
const cuuint64_t* globalStrides,
const cuuint32_t* boxDim,
const cuuint32_t* elementStrides,
CUtensorMapInterleave interleave,
CUtensorMapSwizzle swizzle,
CUtensorMapL2promotion l2Promotion,
CUtensorMapFloatOOBfill oobFill) {
return at::globalContext().getNVRTC().cuTensorMapEncodeTiled(
tensorMap,
tensorDataType,
tensorRank,
globalAddress,
globalDim,
globalStrides,
boxDim,
elementStrides,
interleave,
swizzle,
l2Promotion,
oobFill);
}
// clang-format off
#include <cutlass/core_io.h>
#include <cutlass/cutlass.h>
#include <cutlass/gemm/device/gemm.h>
#include <cutlass/half.h>
#include <cutlass/numeric_types.h>
#include <cutlass/trace.h>
#include <cutlass/util/host_tensor.h>
// Rename the global function symbol
#define cuTensorMapEncodeTiled nvrtc_cuTensorMapEncodeTiled
#include <cute/tensor.hpp>
#undef cuTensorMapEncodeTiled
// Set everything back to normal
#include <cutlass/gemm/collective/collective_builder.hpp>
#include <cutlass/gemm/device/gemm_universal_adapter.h>
#include <cutlass/epilogue/collective/collective_builder.hpp>
#include <cute/atom/mma_atom.hpp>
#include <cutlass/gemm/dispatch_policy.hpp>
#include <cutlass/gemm/kernel/gemm_universal.hpp>
#include <cutlass/util/packed_stride.hpp>
// clang-format on
#include <torch/csrc/distributed/c10d/cuda/cutlass/gemm/kernel/persistent_async_input_scheduler.cuh>
namespace {
using namespace cute;
template <typename LayoutB, typename TileShape_MNK, typename ClusterShape_MNK>
at::Tensor async_input_mm_impl(
at::Tensor a,
at::Tensor b,
at::Tensor a_chunk_signals,
int64_t a_chunk_pivot,
at::Tensor out) {
c10::cuda::CUDAGuard guard(a.device());
using ElementA = cutlass::bfloat16_t;
using LayoutA = cutlass::layout::RowMajor;
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
using ElementB = cutlass::bfloat16_t;
constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
using ElementC = cutlass::bfloat16_t;
using LayoutC = cutlass::layout::RowMajor;
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
using ElementAccumulator = float;
using KernelSchedule = cutlass::gemm::KernelTmaWarpSpecializedCooperative;
using EpilogueSchedule = cutlass::epilogue::TmaWarpSpecializedCooperative;
using CollectiveEpilogue =
typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm90,
cutlass::arch::OpClassTensorOp,
TileShape_MNK,
ClusterShape_MNK,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator,
ElementAccumulator,
void,
LayoutC,
AlignmentC,
ElementC,
LayoutC,
AlignmentC,
EpilogueSchedule>::CollectiveOp;
using CollectiveMainloop =
typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm90,
cutlass::arch::OpClassTensorOp,
ElementA,
LayoutA,
AlignmentA,
ElementB,
LayoutB,
AlignmentB,
ElementAccumulator,
TileShape_MNK,
ClusterShape_MNK,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(
sizeof(typename CollectiveEpilogue::SharedStorage))>,
KernelSchedule>::CollectiveOp;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>,
CollectiveMainloop,
CollectiveEpilogue,
cutlass::gemm::PersistentAsyncInputScheduler<KernelSchedule>>;
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideC = typename Gemm::GemmKernel::StrideC;
TORCH_CHECK(a.dim() == 2 && b.dim() == 2 && out.dim() == 2);
TORCH_CHECK(a.is_contiguous() && out.is_contiguous());
if constexpr (std::is_same_v<LayoutB, cutlass::layout::RowMajor>) {
TORCH_CHECK(b.is_contiguous());
} else {
TORCH_CHECK(b.stride(1) == b.size(0));
TORCH_CHECK(b.stride(0) == 1);
}
TORCH_CHECK_EQ(a.scalar_type(), at::kBFloat16);
TORCH_CHECK_EQ(b.scalar_type(), at::kBFloat16);
TORCH_CHECK_EQ(out.scalar_type(), at::kBFloat16);
int M = static_cast<int>(a.sizes()[0]);
int N = static_cast<int>(b.sizes()[1]);
int K = static_cast<int>(a.sizes()[1]);
TORCH_CHECK_EQ(b.sizes()[0], K);
TORCH_CHECK_EQ(out.sizes()[0], M);
TORCH_CHECK_EQ(out.sizes()[1], N);
auto stride_A = cutlass::make_cute_packed_stride(StrideA{}, {M, K, 1});
auto stride_B = cutlass::make_cute_packed_stride(StrideB{}, {N, K, 1});
auto stride_C = cutlass::make_cute_packed_stride(StrideC{}, {M, N, 1});
Gemm gemm;
typename Gemm::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
{M, N, K, 1},
{
reinterpret_cast<ElementA*>(a.data_ptr<at::BFloat16>()),
stride_A,
reinterpret_cast<ElementB*>(b.data_ptr<at::BFloat16>()),
stride_B,
},
{{1, 1},
nullptr,
stride_C,
reinterpret_cast<ElementC*>(out.data_ptr<at::BFloat16>()),
stride_C},
};
TORCH_CHECK(
a_chunk_signals.sizes().size() == 1,
"async_input_mm: `a_chunk_signals` must be a 1D tensor.");
size_t num_chunks_M = a_chunk_signals.numel();
TORCH_CHECK(
M % num_chunks_M == 0,
"async_input_mm: `a.shape(0)` must be an interger multiple of `a_chunk_signals.numel()`");
size_t chunk_size_M = M / num_chunks_M;
size_t tile_size_M = cute::get<0>(TileShape_MNK{});
TORCH_CHECK(chunk_size_M % tile_size_M == 0);
// We want to swizzle within a chunk
arguments.scheduler.max_swizzle_size = chunk_size_M / tile_size_M;
// PersistentAsyncInputScheduler currently only supports rastering along N
using RasterOrderOptions = typename cutlass::gemm::kernel::detail::
PersistentTileSchedulerSm90::RasterOrderOptions;
arguments.scheduler.raster_order = RasterOrderOptions::AlongN;
// Convert the number of chunks to pivot to the number of m idx to pivot
arguments.scheduler.tile_idx_pivot_m =
a_chunk_pivot * (chunk_size_M / tile_size_M);
arguments.scheduler.tiles_per_chunk_m = chunk_size_M / tile_size_M;
arguments.scheduler.chunk_signals = a_chunk_signals.data_ptr<uint32_t>();
size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
TORCH_CHECK(gemm.can_implement(arguments) == cutlass::Status::kSuccess);
TORCH_CHECK(
gemm.initialize(arguments, workspace.get()) == cutlass::Status::kSuccess);
TORCH_CHECK(
gemm(at::cuda::getCurrentCUDAStream()) == cutlass::Status::kSuccess);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return out;
}
} // namespace
#endif
namespace c10d::cuda::detail {
#define DISPATCH_LAYOUT_B(is_b_row_major, ...) \
if (is_b_row_major) { \
using LayoutB = cutlass::layout::RowMajor; \
__VA_ARGS__(); \
} else { \
using LayoutB = cutlass::layout::ColumnMajor; \
__VA_ARGS__(); \
}
at::Tensor async_input_mm_out(
at::Tensor a,
at::Tensor b,
at::Tensor a_chunk_signals,
int64_t a_chunk_pivot,
at::Tensor out) {
TORCH_CHECK(
a.dim() == 2 && b.dim() == 2 && out.dim() == 2,
"async_input_mm: `a`, `b` and `out` must be matrices")
TORCH_CHECK(
a.is_contiguous() && out.is_contiguous(),
"async_input_mm: `a` and `out` must be in row-major layout");
bool is_b_row_major = b.is_contiguous();
if (!b.is_contiguous()) {
TORCH_CHECK(b.stride(1) == b.size(0));
TORCH_CHECK(b.stride(0) == 1);
}
TORCH_CHECK_EQ(a.scalar_type(), at::kBFloat16);
TORCH_CHECK_EQ(b.scalar_type(), at::kBFloat16);
TORCH_CHECK_EQ(out.scalar_type(), at::kBFloat16);
int64_t M = a.sizes()[0];
int64_t N = b.sizes()[1];
int64_t K = a.sizes()[1];
TORCH_CHECK_EQ(b.sizes()[0], K);
TORCH_CHECK_EQ(out.sizes()[0], M);
TORCH_CHECK_EQ(out.sizes()[1], N);
#if defined(BUILD_ASYNC_MM_KERNEL)
DISPATCH_LAYOUT_B(is_b_row_major, [&]() {
// TODO(yifu): tuning
async_input_mm_impl<LayoutB, Shape<_128, _256, _64>, Shape<_2, _1, _1>>(
a, b, a_chunk_signals, a_chunk_pivot, out);
});
#else
TORCH_CHECK(
false, "async_input_mm is not currenlty supported on your device");
#endif
return out;
}
at::Tensor async_input_mm(
at::Tensor a,
at::Tensor b,
at::Tensor a_chunk_signals,
int64_t a_chunk_pivot) {
TORCH_CHECK(
a.dim() == 2 && b.dim() == 2,
"async_input_mm: `a`, `b` and `out` must all be a matrix")
int64_t M = a.sizes()[0];
int64_t N = b.sizes()[1];
auto out = a.new_empty({M, N});
return async_input_mm_out(a, b, a_chunk_signals, a_chunk_pivot, out);
}
} // namespace c10d::cuda::detail
|