File: init.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (3640 lines) | stat: -rw-r--r-- 147,155 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
#include <torch/csrc/python_headers.h>

#include <c10/util/intrusive_ptr.h>
#include <c10/util/string_view.h>
#include <torch/csrc/distributed/c10d/FileStore.hpp>
#include <torch/csrc/distributed/c10d/Functional.hpp>
#include <torch/csrc/distributed/c10d/GroupRegistry.hpp>
#include <torch/csrc/distributed/c10d/TCPStore.hpp>
#include <torch/csrc/distributed/c10d/Utils.hpp>
#include <torch/csrc/distributed/c10d/control_collectives/ControlCollectives.hpp>
#include <torch/csrc/distributed/c10d/control_collectives/StoreCollectives.hpp>
#include <torch/csrc/distributed/c10d/control_plane/WorkerServer.hpp>
#include <utility>
#include <vector>
#ifndef _WIN32
#include <torch/csrc/distributed/c10d/HashStore.hpp>
#endif
#include <torch/csrc/distributed/c10d/FakeProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/PyProcessGroup.hpp>

#ifdef USE_C10D_GLOO
#include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupWrapper.hpp>
#endif

#ifdef USE_C10D_XCCL
#include <torch/csrc/distributed/c10d/ProcessGroupXCCL.hpp>
#endif

#ifdef USE_C10D_NCCL
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#include <torch/csrc/distributed/c10d/intra_node_comm.hpp>
#endif

#ifdef USE_C10D_MPI
#include <torch/csrc/distributed/c10d/ProcessGroupMPI.hpp>
#endif

#ifdef USE_C10D_UCC
#include <torch/csrc/distributed/c10d/ProcessGroupUCC.hpp>
#endif

#include <fmt/format.h>
#include <pybind11/chrono.h>
#include <torch/csrc/distributed/c10d/DMAConnectivity.hpp>
#include <torch/csrc/distributed/c10d/PrefixStore.hpp>
#include <torch/csrc/distributed/c10d/SymmetricMemory.hpp>

#include <torch/csrc/distributed/c10d/comm.hpp>
#include <torch/csrc/distributed/c10d/debug.h>
#include <torch/csrc/distributed/c10d/logger.hpp>
#include <torch/csrc/distributed/c10d/reducer.hpp>

#include <torch/csrc/Exceptions.h>
#include <torch/csrc/distributed/c10d/python_comm_hook.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/pybind.h>

#include <torch/custom_class.h>

namespace {

#ifdef USE_C10D_NCCL

bool acquire_gil() {
  // basically if this function can acquire the gil, it will return quickly.
  // if not, it will hang forever.  The idea is to call this from a thread
  // wrapped in a future, and then check the future after a timeout, to
  // determine whether we're facing gil contention.
  if (Py_IsInitialized()) {
    pybind11::gil_scoped_acquire gil;
    return true;
  }

  // If we end up here, its probably still a "pass" from the perspective of
  // checking whether python is stuck. but currently we don't check the return
  // value of this function anyway, just check whether it returned quickly vs
  // timing out.  Taking a long time is the main sign of trouble.  Fast return
  // with true or with false is both OK from the perspective of debugging python
  // hangs.
  return false;
}

bool registerGilChecker() {
  c10d::get_gil_checker() = &acquire_gil;
  return true;
}

static bool registered = registerGilChecker();
#endif // USE_C10D_NCCL

// Wrapper to ensure GIL is released before destructing ProcessGroupGloo
// TODO: move this somewhere more generally useful
template <typename T>
class IntrusivePtrNoGilDestructor {
  c10::intrusive_ptr<T> impl_{};

 public:
  IntrusivePtrNoGilDestructor() = default;
  IntrusivePtrNoGilDestructor(const IntrusivePtrNoGilDestructor&) = default;
  IntrusivePtrNoGilDestructor(IntrusivePtrNoGilDestructor&&) noexcept = default;
  IntrusivePtrNoGilDestructor& operator=(const IntrusivePtrNoGilDestructor&) =
      default;
  IntrusivePtrNoGilDestructor& operator=(
      IntrusivePtrNoGilDestructor&&) noexcept = default;
  /* implicit */ IntrusivePtrNoGilDestructor(c10::intrusive_ptr<T> impl)
      : impl_(std::move(impl)) {}
  // This ctor is very important; see
  // https://github.com/pybind/pybind11/issues/2957
  explicit IntrusivePtrNoGilDestructor(T* impl)
      // NOLINTNEXTLINE(bugprone-exception-escape)
      : impl_(c10::intrusive_ptr<T>::unsafe_steal_from_new(impl)) {}
  // NOLINTNEXTLINE(bugprone-exception-escape)
  ~IntrusivePtrNoGilDestructor() {
    if (impl_) {
      if (PyGILState_Check()) {
        pybind11::gil_scoped_release release;
        impl_.reset();
      } else {
        impl_.reset();
      }
    }
  }
  T& operator*() const noexcept {
    return *impl_;
  }
  T* operator->() const noexcept {
    return impl_.get();
  }
  [[nodiscard]] T* get() const noexcept {
    return impl_.get();
  }
  void reset() noexcept {
    impl_.reset();
  }
  operator bool() const noexcept {
    return impl_;
  }
};

} // anonymous namespace

PYBIND11_DECLARE_HOLDER_TYPE(T, IntrusivePtrNoGilDestructor<T>, true)

namespace torch::distributed::c10d {

namespace {

py::bytes toPyBytes(const std::vector<uint8_t>& data) {
  return py::bytes(reinterpret_cast<const char*>(data.data()), data.size());
}

std::vector<py::bytes> toPyBytes(
    const std::vector<std::vector<uint8_t>>& data) {
  std::vector<py::bytes> out;
  out.reserve(data.size());
  for (const std::vector<uint8_t>& data_ : data) {
    out.emplace_back(reinterpret_cast<const char*>(data_.data()), data_.size());
  }
  return out;
}

std::vector<uint8_t> toVec8(const std::string& data) {
  std::vector<uint8_t> out{data.begin(), data.end()};
  return out;
}

std::vector<std::vector<uint8_t>> toVec8(const std::vector<std::string>& data) {
  std::vector<std::vector<uint8_t>> out;
  out.reserve(data.size());
  for (auto& data_ : data) {
    out.emplace_back(toVec8(data_));
  }
  return out;
}

template <typename T>
using shared_ptr_class_ = py::class_<T, std::shared_ptr<T>>;

constexpr auto kDeprecationWarning =
    "{} API is being deprecated, please ping "
    "https://github.com/pytorch/pytorch/issues/46291 "
    "if you see this warning";
template <typename T>
using intrusive_ptr_class_ = py::class_<T, c10::intrusive_ptr<T>>;

template <typename T>
using intrusive_ptr_no_gil_destructor_class_ =
    py::class_<T, IntrusivePtrNoGilDestructor<T>>;

// PythonStore is a pybind11 trampoline class to allow a Python
// class to inherit from c10d.Store and implement its interface.
class PythonStore : public ::c10d::Store {
 public:
  using ::c10d::Store::Store;

  // Note: this function manually calls the Python-side overload
  // for this function instead of using the PYBIND11_OVERLOAD_XYZ
  // macros. This is done so that we can call the Python-side
  // function with a std::string instead of a std::vector<uint8_t>.
  void set(const std::string& key, const std::vector<uint8_t>& value) override {
    pybind11::gil_scoped_acquire gil;
    pybind11::function fn =
        pybind11::get_overload(static_cast<const ::c10d::Store*>(this), "set");
    TORCH_INTERNAL_ASSERT(fn, "Not implemented.");
    // Call function with a py::bytes object for the value.
    fn(key, toPyBytes(value));
  }

  // Note: this function manually calls the Python-side overload
  // for this function instead of using the PYBIND11_OVERLOAD_XYZ
  // macros. This is done so that the Python-side function can
  // return a py::bytes instead of a std::vector<uint8_t>.
  std::vector<uint8_t> get(const std::string& key) override {
    pybind11::gil_scoped_acquire gil;
    pybind11::function fn =
        pybind11::get_overload(static_cast<const ::c10d::Store*>(this), "get");
    TORCH_INTERNAL_ASSERT(fn, "Not implemented.");
    // Cast return value from Python to py::bytes, then implicitly
    // convert that to a std::string, so that we can construct a
    // std::vector<uint8_t>. There is no API for directly accessing
    // the contents of the py::bytes object.
    std::string str = pybind11::cast<py::bytes>(fn(key));
    return toVec8(str);
  }

  // Note: this function manually calls the Python-side overload
  // for this function instead of using the PYBIND11_OVERLOAD_XYZ
  // macros. This is done so that the Python-side function can
  // return a py::bytes instead of a std::vector<uint8_t>.
  std::vector<uint8_t> compareSet(
      const std::string& key,
      const std::vector<uint8_t>& expectedValue,
      const std::vector<uint8_t>& desiredValue) override {
    pybind11::gil_scoped_acquire gil;
    pybind11::function fn = pybind11::get_overload(
        static_cast<const ::c10d::Store*>(this), "compare_set");
    TORCH_INTERNAL_ASSERT(fn, "Not implemented.");
    // Cast return value from Python to py::bytes, then implicitly
    // convert that to a std::string, so that we can construct a
    // std::vector<uint8_t>. There is no API for directly accessing
    // the contents of the py::bytes object.
    std::string str = pybind11::cast<py::bytes>(
        fn(key, toPyBytes(expectedValue), toPyBytes(desiredValue)));
    return toVec8(str);
  }

  int64_t add(const std::string& key, int64_t value) override {
    PYBIND11_OVERLOAD_PURE(int64_t, ::c10d::Store, add, key, value);
  }

  int64_t getNumKeys() override {
    PYBIND11_OVERLOAD_PURE(int64_t, ::c10d::Store, getNumKeys);
  }

  bool deleteKey(const std::string& key) override {
    PYBIND11_OVERLOAD_PURE(bool, ::c10d::Store, deleteKey, key);
  }

  bool check(const std::vector<std::string>& keys) override {
    PYBIND11_OVERLOAD_PURE(bool, ::c10d::Store, check, keys);
  }

  void wait(const std::vector<std::string>& keys) override {
    PYBIND11_OVERLOAD_PURE(void, ::c10d::Store, wait, keys);
  }

  void wait(
      const std::vector<std::string>& keys,
      const std::chrono::milliseconds& timeout) override {
    PYBIND11_OVERLOAD_PURE(void, ::c10d::Store, wait, keys, timeout);
  }

  // Note: this function manually calls the Python-side overload
  // for this function instead of using the PYBIND11_OVERLOAD_XYZ
  // macros. This is done so that we can call the Python-side
  // function with a std::string instead of a std::vector<uint8_t>.
  void append(const std::string& key, const std::vector<uint8_t>& value)
      override {
    pybind11::gil_scoped_acquire gil;
    pybind11::function fn = pybind11::get_overload(
        static_cast<const ::c10d::Store*>(this), "append");
    if (!fn) {
      return Store::append(key, value);
    }
    // Call function with a py::bytes object for the value.
    fn(key, toPyBytes(value));
  }

  std::vector<std::vector<uint8_t>> multiGet(
      const std::vector<std::string>& keys) override {
    pybind11::gil_scoped_acquire gil;
    pybind11::function fn = pybind11::get_overload(
        static_cast<const ::c10d::Store*>(this), "multi_get");
    if (!fn) {
      return Store::multiGet(keys);
    }
    std::vector<std::string> py_list =
        pybind11::cast<std::vector<std::string>>(fn(keys));
    std::vector<std::vector<uint8_t>> res;
    res.reserve(py_list.size());

    for (auto& str : py_list) {
      res.emplace_back(str.begin(), str.end());
    }

    return res;
  }

  void multiSet(
      const std::vector<std::string>& keys,
      const std::vector<std::vector<uint8_t>>& values) override {
    pybind11::gil_scoped_acquire gil;
    pybind11::function fn = pybind11::get_overload(
        static_cast<const ::c10d::Store*>(this), "multi_set");
    if (!fn) {
      return Store::multiSet(keys, values);
    }

    fn(keys, toPyBytes(values));
  }

  bool hasExtendedApi() const override {
    PYBIND11_OVERLOAD_NAME(
        bool, ::c10d::Store, "has_extended_api", hasExtendedApi);
  }
};

class PythonRequest : public ::c10d::control_plane::Request {
 public:
  const std::string& body() const override {
    PYBIND11_OVERRIDE_PURE(
        const std::string&, ::c10d::control_plane::Request, body);
  }

  const std::multimap<std::string, std::string>& params() const override {
    using MultiMap = const std::multimap<std::string, std::string>&;
    PYBIND11_OVERRIDE_PURE(MultiMap, ::c10d::control_plane::Request, params);
  }
};
class PythonResponse : public ::c10d::control_plane::Response {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-rvalue-reference-param-not-moved)
  void setContent(std::string&& content, const std::string& content_type)
      override {
    PYBIND11_OVERRIDE_PURE_NAME(
        void,
        ::c10d::control_plane::Response,
        "set_content",
        setContent,
        content,
        content_type);
  }
  void setStatus(int status) override {
    PYBIND11_OVERRIDE_PURE_NAME(
        void, ::c10d::control_plane::Response, "set_status", setStatus, status);
  }
};

// Called from DDP's Python API to create a c10d Python comm hook object.
// The input state and callable comm_hook are Python objects. It later calls
// register_comm_hook function of the reducer input to register the hook.
void _register_comm_hook(
    ::c10d::Reducer& reducer,
    py::object state,
    py::object comm_hook) {
  reducer.register_comm_hook(std::make_unique<::c10d::PythonCommHook>(
      std::move(state), std::move(comm_hook)));
}

// Called from DDP's Python API to create a c10d C++ comm hook.
// The input is an enum hook type. It later calls register_builtin_comm_hook
// function of the reducer input to set the hook type.
void _register_builtin_comm_hook(
    ::c10d::Reducer& reducer,
    ::c10d::BuiltinCommHookType comm_hook_type) {
  reducer.register_builtin_comm_hook(comm_hook_type);
}

// Customize the metaclass of ::c10d::ReduceOp for the backward compatibility.
// https://github.com/pytorch/pytorch/pull/84243 changed ::c10d::ReduceOp to
// struct from enum, sacrificing some of the Python built-in function supports
// such as `isinstance` (see https://github.com/pytorch/pytorch/issues/87191)
// and `copy` (see
// https://github.com/pytorch/pytorch/pull/87303#discussion_r1002879700). Below,
// we define a custom `isinstance` in CPython/pybind11
// (`reduceopmeta___instancecheck__`) and modify the default metaclass of
// pybind11 (`GetReduceOpMetaclass`) so that
// `isinstance(torch.distributed.ReduceOp.SUM, torch.distributed.ReduceOp)`
// returns :obj:`True` as if `ReduceOp` is enum.
// Ref:
//   - https://docs.python.org/3/extending/newtypes_tutorial.html
//   - https://docs.python.org/3/c-api/typeobj.html?highlight=tp_methods
//   - https://github.com/pybind/pybind11/issues/2696
static PyObject* reduceopmeta___instancecheck__(
    PyObject* self,
    PyObject* args) {
  if (Py_TYPE(self) == Py_TYPE(args)) {
    Py_RETURN_TRUE;
  }
  if (std::string_view(args->ob_type->tp_name).find("RedOpType") !=
      std::string_view::npos) {
    Py_RETURN_TRUE;
  }
  Py_RETURN_FALSE;
}
// NOLINTNEXTLINE(*c-arrays)
static PyMethodDef reduceopmeta_methods[] = {
    {"__instancecheck__",
     (PyCFunction)reduceopmeta___instancecheck__,
     METH_O,
     "Custom `__instancecheck__` for ReduceOp"},
    {nullptr, nullptr}};
PyTypeObject* GetReduceOpMetaclass() {
  static auto* metaclass = [] {
    PyTypeObject* base_metaclass =
        pybind11::detail::get_internals().default_metaclass;
    // NOLINTNEXTLINE(*c-arrays)
    PyType_Slot slots[] = {
        {Py_tp_base, base_metaclass},
        {Py_tp_methods, reduceopmeta_methods},
        {0},
    };
    PyType_Spec spec = {};
    spec.name = "torch._C._distributed_c10d._ReduceOpMeta";
    // NOLINTNEXTLINE(*-narrowing-conversions)
    spec.basicsize = base_metaclass->tp_basicsize;
    spec.flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE;
    spec.slots = slots;
    PyTypeObject* metaclass = (PyTypeObject*)PyType_FromSpec(&spec);
    if (!metaclass)
      throw py::error_already_set();
    return metaclass;
  }();
  return metaclass;
}

PyObject* c10d_init(PyObject* _unused, PyObject* noargs) {
  C10_LOG_API_USAGE_ONCE("c10d.python.import");

  auto c10d_module = THPObjectPtr(PyImport_ImportModule("torch.distributed"));
  if (!c10d_module) {
    throw python_error();
  }

  auto torch_C_module = THPObjectPtr(PyImport_ImportModule("torch._C"));
  if (!torch_C_module) {
    throw python_error();
  }

  auto torch_C_m = py::handle(torch_C_module).cast<py::module>();
  auto m =
      torch_C_m.def_submodule("_distributed_c10d", "distributed c10d bindings");

  auto module = py::handle(m).cast<py::module>();

  module
      .def(
          "_register_comm_hook",
          &_register_comm_hook,
          py::arg("reducer"),
          py::arg("state"),
          py::arg("comm_hook"),
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_register_builtin_comm_hook",
          &_register_builtin_comm_hook,
          py::arg("reducer"),
          py::arg("comm_hook_type"));

  shared_ptr_class_<::c10d::GradBucket>(
      module,
      "GradBucket",
      R"(
This class mainly passes a flattened gradient tensor
(returned by :meth:`~torch.distributed.GradBucket.buffer`)
to DDP communication hook.
This tensor can be further decomposed into a list of per-parameter tensors within this bucket
(returned by :meth:`~torch.distributed.GradBucket.get_per_parameter_tensors`)
to apply layer-wise operations.
)")
      .def(
          "index",
          &::c10d::GradBucket::getIndex,
          py::call_guard<py::gil_scoped_release>(),
          R"(
.. warning::
    Since the buckets are rebuilt after the first iteration, should not rely on the indices at the beginning of training.

Returns:
    The index of a bucket that stores gradients of a few contiguous layers.
    All the gradients are bucketized.
)")
      .def(
          "buffer",
          &::c10d::GradBucket::getBuffer,
          py::call_guard<py::gil_scoped_release>(),
          R"(
Returns:
    A flattened 1D ``torch.Tensor`` buffer,
    which can be further decomposed into a list of per-parameter tensors within this bucket.
)")
      .def(
          "gradients",
          &::c10d::GradBucket::getGradients,
          py::call_guard<py::gil_scoped_release>(),
          R"(
Returns:
    A list of ``torch.Tensor``. Each tensor in the list corresponds to a gradient.
)")
      .def(
          "parameters",
          &::c10d::GradBucket::getParameters,
          py::call_guard<py::gil_scoped_release>(),
          R"(
Returns:
    A list of ``torch.Tensor``. Each tensor in the list corresponds to a model
    parameter.
)")
      .def(
          "is_last",
          &::c10d::GradBucket::isLast,
          py::call_guard<py::gil_scoped_release>(),
          R"(
Returns:
    Whether this bucket is the last bucket to allreduce in an iteration.
    This also means that this bucket corresponds to the first few layers in the forward pass.
)")
      .def(
          "set_buffer",
          &::c10d::GradBucket::setBuffer,
          py::arg("buffer"),
          py::call_guard<py::gil_scoped_release>(),
          R"(
Replaces the tensor in the bucket with the input tensor buffer.
)");

  py::enum_<::c10d::BuiltinCommHookType>(module, "BuiltinCommHookType", R"(
An enum-like class for built-in communication hooks: ``ALLREDUCE`` and ``FP16_COMPRESS``.)")
      .value("ALLREDUCE", ::c10d::BuiltinCommHookType::ALLREDUCE)
      .value("FP16_COMPRESS", ::c10d::BuiltinCommHookType::FP16_COMPRESS);

  shared_ptr_class_<::c10d::Reducer>(module, "Reducer")
      .def(
          py::init<
              std::vector<at::Tensor>,
              std::vector<std::vector<size_t>>,
              std::vector<size_t>,
              c10::intrusive_ptr<::c10d::ProcessGroup>,
              std::vector<bool>,
              int64_t,
              bool,
              bool,
              std::unordered_map<size_t, std::string>,
              int64_t>(),
          py::arg("params"),
          py::arg("bucket_indices"),
          py::arg("per_bucket_size_limits"),
          py::arg("process_group"),
          py::arg("expect_sparse_gradients") = std::vector<bool>(),
          py::arg("bucket_bytes_cap") = ::c10d::kDefaultBucketBytesCap,
          py::arg("find_unused_parameters") = false,
          py::arg("gradient_as_bucket_view") = false,
          py::arg("param_to_name_mapping") =
              std::unordered_map<size_t, std::string>(),
          py::arg("first_bucket_bytes_cap") = ::c10d::kDefaultFirstBucketBytes,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "prepare_for_forward",
          &::c10d::Reducer::prepare_for_forward,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "prepare_for_backward",
          &::c10d::Reducer::prepare_for_backward,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "prepare_for_backward",
          [](::c10d::Reducer& reducer, const at::Tensor& output) -> void {
            reducer.prepare_for_backward({output});
          },
          py::call_guard<py::gil_scoped_release>())
      .def("get_backward_stats", &::c10d::Reducer::get_backward_stats)
      .def(
          "_install_post_backward_futures",
          [](::c10d::Reducer& reducer,
             const std::vector<std::shared_ptr<jit::PythonFutureWrapper>>&
                 futs) {
            c10::List<c10::intrusive_ptr<c10::ivalue::Future>> futures(
                c10::FutureType::create(c10::TensorType::get()));
            for (const auto& fut : futs) {
              futures.push_back(fut->fut);
            }
            reducer.install_futures(futures);
          },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_rebuild_buckets",
          &::c10d::Reducer::rebuild_buckets,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_get_zeros_like_grad_buckets",
          [](::c10d::Reducer& reducer) {
            return reducer.get_grad_buckets(/* return_zero_tensors */ true);
          },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_set_optimizer_in_backward",
          [](::c10d::Reducer& reducer) { reducer.set_optimizer_in_backward(); },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_set_sparse_metadata",
          &::c10d::Reducer::setSparseMetadata,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_set_mixed_precision_param_dtype",
          [](::c10d::Reducer& reducer, py::object data_type_obj) {
            auto scalar_type =
                reinterpret_cast<THPDtype*>(data_type_obj.ptr())->scalar_type;
            reducer.set_mixed_precision_param_dtype(scalar_type);
          },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_push_all_rebuilt_params",
          &::c10d::Reducer::push_rebuilt_params_for_all_indices,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_set_forward_pass_work_handle",
          &::c10d::Reducer::set_forward_pass_work_handle,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_get_local_used_map", &::c10d::Reducer::get_local_used_map_on_device)
      .def(
          "_set_ddp_runtime_logging_sample_rate",
          &::c10d::Reducer::set_ddp_runtime_logging_sample_rate,
          py::arg("sample_rate"),
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_set_static_graph",
          &::c10d::Reducer::set_static_graph,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_ddp_graph_static",
          &::c10d::Reducer::ddp_graph_static,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_delay_all_reduce",
          &::c10d::Reducer::delay_all_reduce,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_run_comm_hook",
          [](::c10d::Reducer& reducer, ::c10d::GradBucket& bucket)
              -> std::shared_ptr<jit::PythonFutureWrapper> {
            c10::intrusive_ptr<c10::ivalue::Future> fut =
                reducer.run_comm_hook(bucket);
            return std::make_shared<jit::PythonFutureWrapper>(fut);
          },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_run_allreduce_hook",
          [](::c10d::Reducer& reducer, ::c10d::GradBucket& bucket)
              -> std::shared_ptr<jit::PythonFutureWrapper> {
            c10::intrusive_ptr<c10::ivalue::Future> fut =
                reducer.run_allreduce_hook(bucket);
            return std::make_shared<jit::PythonFutureWrapper>(fut);
          },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_autograd_hook",
          [](::c10d::Reducer& reducer, int index) -> void {
            reducer.autograd_hook(index);
          },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "set_logger",
          [](::c10d::Reducer& reducer,
             const std::shared_ptr<::c10d::Logger>& logger) {
            std::weak_ptr<::c10d::Logger> logger_weakref = logger;
            reducer.set_logger(logger_weakref);
          })
      .def(
          "_remove_autograd_hooks",
          [](::c10d::Reducer& reducer) { reducer.remove_autograd_hooks(); },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_check_reducer_finalized",
          [](::c10d::Reducer& reducer) { return reducer.check_finalized(); },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_reset_state",
          [](::c10d::Reducer& reducer) { return reducer.reset_state(); },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_update_process_group",
          [](::c10d::Reducer& reducer,
             c10::intrusive_ptr<::c10d::ProcessGroup> new_process_group) {
            return reducer.update_process_group(std::move(new_process_group));
          },
          py::call_guard<py::gil_scoped_release>());

  shared_ptr_class_<::c10d::Logger>(module, "Logger")
      .def(
          py::init<std::shared_ptr<::c10d::Reducer>>(),
          py::arg("reducer"),
          py::call_guard<py::gil_scoped_release>())
      .def(
          "set_construction_data_and_log",
          &::c10d::Logger::set_construction_data_and_log,
          py::arg("module_name"),
          py::arg("device_ids"),
          py::arg("output_device"),
          py::arg("broadcast_buffers"),
          py::arg("has_sync_bn"),
          py::arg("static_graph"),
          py::call_guard<py::gil_scoped_release>())
      .def(
          "set_runtime_stats_and_log",
          &::c10d::Logger::set_runtime_stats_and_log,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "set_error_and_log",
          [](::c10d::Logger& logger, const std::string& error) {
            logger.set_error_and_log(error);
          },
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_get_ddp_logging_data",
          &::c10d::Logger::get_ddp_logging_data,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_set_comm_hook_name",
          &::c10d::Logger::set_comm_hook,
          py::arg("comm_hook"),
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_set_uneven_input_join",
          &::c10d::Logger::set_uneven_input_join,
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_set_static_graph",
          &::c10d::Logger::set_static_graph,
          py::call_guard<py::gil_scoped_release>());

  py::enum_<::c10d::DebugLevel>(module, "DebugLevel", R"(
      An enum whose values correspond to different debug levels of the
      torch.distributed package. Currently supporting OFF, INFO, and DETAIL,
      which can be set via the TORCH_DISTRIBUTED_DEBUG environment variable
      or via ``set_debug_level()`` function.
  )")
      .value("OFF", ::c10d::DebugLevel::Off)
      .value("INFO", ::c10d::DebugLevel::Info)
      .value("DETAIL", ::c10d::DebugLevel::Detail);

  module
      .def(
          "get_debug_level",
          ::c10d::debug_level,
          R"(Gets the debug level of the torch.distributed package.)")
      .def(
          "set_debug_level",
          ::c10d::setDebugLevel,
          R"(Sets the debug level of the torch.distributed package.)")
      .def(
          "set_debug_level_from_env",
          ::c10d::setDebugLevelFromEnvironment,
          R"(Sets the debug level of the torch.distributed package from the
          ``TORCH_DISTRIBUTED_DEBUG`` environment variable.)");

  // TODO(crcrpar): Hardening `ReduceOp`.
  //    While keeping most op types as enum value,
  //    making `PREMUL_SUM` callable, i.e., allowing for
  //    `ReduceOp.PREMUL_SUM(scale)` might be better as per @wanchaol.
  // https://pybind11.readthedocs.io/en/stable/classes.html#enumerations-and-internal-types
  py::class_<::c10d::ReduceOp> reduce_op(
      module, "ReduceOp", py::metaclass((PyObject*)GetReduceOpMetaclass()), R"(
An enum-like class for available reduction operations: ``SUM``, ``PRODUCT``,
``MIN``, ``MAX``, ``BAND``, ``BOR``, ``BXOR``, and ``PREMUL_SUM``.

``BAND``, ``BOR``, and ``BXOR`` reductions are not available when
using the ``NCCL`` backend.

``AVG`` divides values by the world size before summing across ranks.
``AVG`` is only available with the ``NCCL`` backend,
and only for NCCL versions 2.10 or later.

``PREMUL_SUM`` multiplies inputs by a given scalar locally before reduction.
``PREMUL_SUM`` is only available with the ``NCCL`` backend,
and only available for NCCL versions 2.11 or later. Users are supposed to
use ``torch.distributed._make_nccl_premul_sum``.

Additionally, ``MAX``, ``MIN`` and ``PRODUCT`` are not supported for complex tensors.

The values of this class can be accessed as attributes, e.g., ``ReduceOp.SUM``.
They are used in specifying strategies for reduction collectives, e.g.,
:func:`reduce`.

This class does not support ``__members__`` property.)");

  reduce_op.def(py::init<::c10d::ReduceOp::RedOpType>())
      .def_readwrite("op", &::c10d::ReduceOp::op_);
  // The following are for some kind of backward compatibility.
  // Since c10d::ReduceOp had been an `enum class`, users can do comparison and
  // take hash of `::c10d::ReduceOp`. To avoid losing these functionality, here
  // I define some member methods.
  reduce_op
      // todo(crcrpar): Support `RedOpType == ReduceOp`.
      .def(
          // This calls `operator==(const ReduceOp::RedOpType)`
          "__eq__",
          [](const ::c10d::ReduceOp& self,
             const ::c10d::ReduceOp::RedOpType& other) {
            return self == other;
          })
      .def(
          // This calls `operator==(const ReduceOp)` for the future support of
          // `PREMUL_SUM` comparison
          "__eq__",
          [](const ::c10d::ReduceOp& self, const ::c10d::ReduceOp& other) {
            return self == other;
          })
      .def(
          // With the above custom `__eq__`'s, I have to manually support the
          // other types.
          "__eq__",
          // NOLINTNEXTLINE(performance-unnecessary-value-param)
          [](const ::c10d::ReduceOp& self, py::object) { return false; })
      .def(
          "__hash__",
          [](const ::c10d::ReduceOp& self) {
            return static_cast<uint8_t>(self.op_);
          })
      .def(
          "__copy__",
          [](const ::c10d::ReduceOp& self) { return ::c10d::ReduceOp(self); })
      .def(
          "__deepcopy__",
          [](const ::c10d::ReduceOp& self, const py::dict& memo) {
            return ::c10d::ReduceOp(self);
          })
      .def(py::pickle(
          [](const ::c10d::ReduceOp& r) {
            // __getstate__
            if (r.op_ != ::c10d::ReduceOp::RedOpType::PREMUL_SUM) {
              return py::make_tuple(r.op_, py::none());
            }
            TORCH_CHECK(r.supplement_.defined(), "Invalid PREMUL_SUM ReduceOp");
            const auto* preMulSupplement =
                reinterpret_cast<::c10d::NCCLPreMulSumSupplement*>(
                    r.supplement_.get());
            if (!preMulSupplement->tensor_factor.defined()) {
              return py::make_tuple(r.op_, preMulSupplement->double_factor);
            } else {
              return py::make_tuple(r.op_, preMulSupplement->tensor_factor);
            }
          },
          [](const py::tuple& t) {
            // __setstate__
            TORCH_CHECK(t.size() == 2, "Invalid state");
            const auto op =
                static_cast<::c10d::ReduceOp::RedOpType>(t[0].cast<uint8_t>());
            if (op != ::c10d::ReduceOp::RedOpType::PREMUL_SUM) {
              return ::c10d::ReduceOp(op);
            }
            const auto preMulSupplement_factor = t[1];
            if (py::isinstance<py::float_>(preMulSupplement_factor)) {
              return ::c10d::makeNCCLPreMulSum(t[1].cast<double>());
            } else {
              return ::c10d::makeNCCLPreMulSum(t[1].cast<at::Tensor>());
            }
          }));

  py::enum_<::c10d::ReduceOp::RedOpType>(reduce_op, "RedOpType")
      .value("SUM", ::c10d::ReduceOp::RedOpType::SUM)
      .value("AVG", ::c10d::ReduceOp::RedOpType::AVG)
      .value("PRODUCT", ::c10d::ReduceOp::RedOpType::PRODUCT)
      .value("MIN", ::c10d::ReduceOp::RedOpType::MIN)
      .value("MAX", ::c10d::ReduceOp::RedOpType::MAX)
      .value("BAND", ::c10d::ReduceOp::RedOpType::BAND)
      .value("BOR", ::c10d::ReduceOp::RedOpType::BOR)
      .value("BXOR", ::c10d::ReduceOp::RedOpType::BXOR)
      .value("PREMUL_SUM", ::c10d::ReduceOp::RedOpType::PREMUL_SUM)
      .export_values();

  // note(crcrpar): This could be removed because users will not pass
  // `RedOpType` to reduce collective ops Ref: [Implicit
  // conversions](https://pybind11.readthedocs.io/en/stable/advanced/classes.html#implicit-conversions)
  // Let us skip the explicit construction of `c10d::ReduceOp` from
  // `c10d::ReduceOp::RedOpType` in Python.
  py::implicitly_convertible<::c10d::ReduceOp::RedOpType, ::c10d::ReduceOp>();

  module
      .def(
          "_make_nccl_premul_sum",
          &::c10d::makeNCCLPreMulSum<double>,
          py::arg("factor").noconvert(),
          py::return_value_policy::copy, // seems safest
          py::call_guard<py::gil_scoped_release>())
      .def(
          "_make_nccl_premul_sum",
          &::c10d::makeNCCLPreMulSum<at::Tensor>,
          py::arg("factor").noconvert(),
          py::return_value_policy::copy, // seems safest
          py::call_guard<py::gil_scoped_release>());

  module.def(
      "_set_thread_isolation_mode",
      &::c10d::set_thread_isolation_mode,
      py::arg("enable"));

  // Bindings for GroupRegistry.hpp
  //
  // Register a process group in the native registry. Process groups registered
  // via `_register_process_group` can be resolved from both Python and C++.
  module.def(
      "_register_process_group",
      [](const std::string& group_name,
         const c10::intrusive_ptr<::c10d::ProcessGroup>& group) {
        ::c10d::register_process_group(group_name, group);
      },
      py::arg("group_name"),
      py::arg("group"));

  // Resolve a process group from the native registry
  module.def(
      "_resolve_process_group",
      [](const std::string& group_name) {
        return ::c10d::resolve_process_group(group_name);
      },
      py::arg("group_name"));

  module.def(
      "_register_work",
      [](const at::Tensor& tensor,
         const c10::intrusive_ptr<::c10d::Work>& work) {
        dynamic_cast<::c10d::PyProcessGroup::PyWork*>(work.get())
            ->ref_py_object();
        ::c10d::register_work(tensor, work);
      },
      py::arg("tensor"),
      py::arg("work"));

  module.def("_get_work_registry_size", []() {
    return ::c10d::get_work_registry_size();
  });

  module.def(
      "_set_allow_inflight_collective_as_graph_input",
      [](bool value) {
        return ::c10d::set_allow_inflight_collective_as_graph_input(value);
      },
      py::arg("value"));

  module.def("_allow_inflight_collective_as_graph_input", []() {
    return ::c10d::allow_inflight_collective_as_graph_input();
  });

  // Remove a group from the native registry
  module.def(
      "_unregister_process_group",
      [](const std::string& group_name) {
        return ::c10d::unregister_process_group(group_name);
      },
      py::arg("group_name"));

  // Remove all process groups from the native registry
  module.def("_unregister_all_process_groups", []() {
    return ::c10d::unregister_all_process_groups();
  });

  py::class_<::c10d::BroadcastOptions>(module, "BroadcastOptions")
      .def(py::init<>())
      .def_readwrite("rootRank", &::c10d::BroadcastOptions::rootRank)
      .def_readwrite("rootTensor", &::c10d::BroadcastOptions::rootTensor)
      .def_readwrite("timeout", &::c10d::BroadcastOptions::timeout)
      .def_readwrite("asyncOp", &::c10d::BroadcastOptions::asyncOp);

  py::class_<::c10d::AllreduceOptions>(module, "AllreduceOptions")
      .def(py::init<>())
      .def_readwrite("reduceOp", &::c10d::AllreduceOptions::reduceOp)
      .def_readwrite("timeout", &::c10d::AllreduceOptions::timeout);

  py::class_<::c10d::AllreduceCoalescedOptions>(
      module, "AllreduceCoalescedOptions")
      .def(py::init<>())
      .def_readwrite("reduceOp", &::c10d::AllreduceCoalescedOptions::reduceOp)
      .def_readwrite("timeout", &::c10d::AllreduceCoalescedOptions::timeout);

  py::class_<::c10d::ReduceOptions>(module, "ReduceOptions")
      .def(py::init<>())
      .def_readwrite("reduceOp", &::c10d::ReduceOptions::reduceOp)
      .def_readwrite("rootRank", &::c10d::ReduceOptions::rootRank)
      .def_readwrite("rootTensor", &::c10d::ReduceOptions::rootTensor)
      .def_readwrite("timeout", &::c10d::ReduceOptions::timeout);

  py::class_<::c10d::AllgatherOptions>(module, "AllgatherOptions")
      .def(py::init<>())
      .def_readwrite("timeout", &::c10d::AllgatherOptions::timeout)
      .def_readwrite("asyncOp", &::c10d::AllgatherOptions::asyncOp);

  py::class_<::c10d::GatherOptions>(module, "GatherOptions")
      .def(py::init<>())
      .def_readwrite("rootRank", &::c10d::GatherOptions::rootRank)
      .def_readwrite("timeout", &::c10d::GatherOptions::timeout);

  py::class_<::c10d::ScatterOptions>(module, "ScatterOptions")
      .def(py::init<>())
      .def_readwrite("rootRank", &::c10d::ScatterOptions::rootRank)
      .def_readwrite("timeout", &::c10d::ScatterOptions::timeout)
      .def_readwrite("asyncOp", &::c10d::ScatterOptions::asyncOp);

  py::class_<::c10d::ReduceScatterOptions>(module, "ReduceScatterOptions")
      .def(py::init<>())
      .def_readwrite("reduceOp", &::c10d::ReduceScatterOptions::reduceOp)
      .def_readwrite("timeout", &::c10d::ReduceScatterOptions::timeout)
      .def_readwrite("asyncOp", &::c10d::ReduceScatterOptions::asyncOp);

  py::class_<::c10d::BarrierOptions>(module, "BarrierOptions")
      .def(py::init<>())
      .def_readwrite("device_ids", &::c10d::BarrierOptions::device_ids)
      .def_readwrite("timeout", &::c10d::BarrierOptions::timeout)
      .def_readwrite("device", &::c10d::BarrierOptions::device);

  py::class_<::c10d::AllToAllOptions>(module, "AllToAllOptions")
      .def(py::init<>())
      .def_readwrite("timeout", &::c10d::AllToAllOptions::timeout);

  py::class_<::c10d::DistributedBackendOptions>(
      module, "_DistributedBackendOptions")
      .def(py::init<>())
      .def_readwrite("store", &::c10d::DistributedBackendOptions::store)
      .def_readwrite(
          "group_rank", &::c10d::DistributedBackendOptions::group_rank)
      .def_readwrite(
          "group_size", &::c10d::DistributedBackendOptions::group_size)
      .def_readwrite("timeout", &::c10d::DistributedBackendOptions::timeout)
      .def_readwrite("group_id", &::c10d::DistributedBackendOptions::group_id)
      .def_readwrite(
          "global_ranks_in_group",
          &::c10d::DistributedBackendOptions::global_ranks_in_group);

  py::class_<
      ::c10d::DMAConnectivity,
      c10::intrusive_ptr<::c10d::DMAConnectivity>>(module, "_DMAConnectivity")
      .def_readonly("device_type", &::c10d::DMAConnectivity::device_type)
      .def_readonly(
          "connection_type", &::c10d::DMAConnectivity::connection_type)
      .def_readonly("matrix", &::c10d::DMAConnectivity::matrix);

  module.def("_detect_dma_connectivity", ::c10d::detect_dma_connectivity);

  using SymmetricMemory = ::c10d::symmetric_memory::SymmetricMemory;
  py::class_<SymmetricMemory, c10::intrusive_ptr<SymmetricMemory>>(
      module, "_SymmetricMemory")
      .def_static("set_group_info", &::c10d::symmetric_memory::set_group_info)
      .def_static(
          "empty_strided_p2p",
          ::c10d::symmetric_memory::empty_strided_p2p,
          py::arg("size"),
          py::arg("stride"),
          py::arg("dtype"),
          py::arg("device"),
          py::arg("group_name") = py::none(),
          py::arg("alloc_id") = py::none())
      .def_static(
          "rendezvous",
          &::c10d::symmetric_memory::rendezvous,
          py::arg("tensor"),
          py::arg("group_name") = py::none())
      .def_static(
          "has_multicast_support",
          &::c10d::symmetric_memory::has_multicast_support)
      .def_property_readonly("rank", &SymmetricMemory::get_rank)
      .def_property_readonly("world_size", &SymmetricMemory::get_world_size)
      .def_property_readonly(
          "buffer_ptrs",
          [](const c10::intrusive_ptr<SymmetricMemory>& symm_mem) {
            std::vector<uintptr_t> ret;
            for (auto ptr : symm_mem->get_buffer_ptrs()) {
              ret.push_back(reinterpret_cast<uintptr_t>(ptr));
            }
            return ret;
          })
      .def_property_readonly(
          "buffer_ptrs_dev",
          [](const c10::intrusive_ptr<SymmetricMemory>& symm_mem) {
            return reinterpret_cast<uintptr_t>(symm_mem->get_buffer_ptrs_dev());
          })
      .def_property_readonly(
          "signal_pad_ptrs",
          [](const c10::intrusive_ptr<SymmetricMemory>& symm_mem) {
            std::vector<uintptr_t> ret;
            for (auto ptr : symm_mem->get_signal_pad_ptrs()) {
              ret.push_back(reinterpret_cast<uintptr_t>(ptr));
            }
            return ret;
          })
      .def_property_readonly(
          "signal_pad_ptrs_dev",
          [](const c10::intrusive_ptr<SymmetricMemory>& symm_mem) {
            return reinterpret_cast<uintptr_t>(
                symm_mem->get_signal_pad_ptrs_dev());
          })
      .def_property_readonly(
          "multicast_ptr",
          [](const c10::intrusive_ptr<SymmetricMemory>& symm_mem) {
            return reinterpret_cast<uintptr_t>(symm_mem->get_multicast_ptr());
          })
      .def_property_readonly("buffer_size", &SymmetricMemory::get_buffer_size)
      .def_property_readonly(
          "signal_pad_size", &SymmetricMemory::get_signal_pad_size)
      .def(
          "get_buffer",
          &SymmetricMemory::get_buffer,
          py::arg("rank"),
          py::arg("sizes"),
          py::arg("dtype"),
          py::arg("storage_offset") = 0)
      .def(
          "get_signal_pad",
          &SymmetricMemory::get_signal_pad,
          py::arg("rank"),
          py::arg("sizes") = py::list(),
          py::arg("dtype") = py::none(),
          py::arg("storage_offset") = 0)
      .def(
          "barrier",
          &SymmetricMemory::barrier,
          py::arg("channel") = 0,
          py::arg("timeout_ms") = 0)
      .def(
          "put_signal",
          &SymmetricMemory::put_signal,
          py::arg("dst_rank"),
          py::arg("channel") = 0,
          py::arg("timeout_ms") = 0)
      .def(
          "wait_signal",
          &SymmetricMemory::wait_signal,
          py::arg("src_rank"),
          py::arg("channel") = 0,
          py::arg("timeout_ms") = 0)
      // Util functions that are often used together with symmetric memory but
      // not necessarily directly on symmetric memory.
      .def_static(
          "stream_write_value32",
          [](at::Tensor& input, int64_t offset, int64_t val) {
            // The range of `val` is checked inside the op
            auto op =
                c10::Dispatcher::singleton()
                    .findSchemaOrThrow("symm_mem::stream_write_value32_", "")
                    .typed<at::Tensor(at::Tensor&, int64_t, int64_t)>();
            return op.call(input, offset, val);
          },
          py::arg("input"),
          py::arg("offset"),
          py::arg("val"))
      .def_static(
          "memset32",
          [](at::Tensor& input, int64_t offset, int64_t val, int64_t count) {
            // The range of `val` is checked inside the op
            auto op = c10::Dispatcher::singleton()
                          .findSchemaOrThrow("symm_mem::memset32_", "")
                          .typed<at::Tensor(
                              at::Tensor&, int64_t, int64_t, int64_t)>();
            return op.call(input, offset, val, count);
          },
          py::arg("input"),
          py::arg("offset"),
          py::arg("val"),
          py::arg("count") = 1);

  auto store =
      py::class_<::c10d::Store, c10::intrusive_ptr<::c10d::Store>, PythonStore>(
          module,
          "Store",
          R"(
Base class for all store implementations, such as the 3 provided by PyTorch
distributed: (:class:`~torch.distributed.TCPStore`, :class:`~torch.distributed.FileStore`,
and :class:`~torch.distributed.HashStore`).
)")
          // Default constructor.
          .def(py::init<>())
          // Convert from std::string to std::vector<uint8>.
          .def(
              "set",
              [](::c10d::Store& store,
                 const std::string& key,
                 const std::string& value) { store.set(key, toVec8(value)); },
              py::call_guard<py::gil_scoped_release>(),
              R"(
Inserts the key-value pair into the store based on the supplied ``key`` and
``value``. If ``key`` already exists in the store, it will overwrite the old
value with the new supplied ``value``.

Arguments:
    key (str): The key to be added to the store.
    value (str): The value associated with ``key`` to be added to the store.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.set("first_key", "first_value")
    >>> # Should return "first_value"
    >>> store.get("first_key")
)")
          .def(
              "compare_set",
              [](::c10d::Store& store,
                 const std::string& key,
                 const std::string& expected_value,
                 const std::string& desired_value) -> py::bytes {
                auto value = [&]() {
                  py::gil_scoped_release guard;
                  return store.compareSet(
                      key, toVec8(expected_value), toVec8(desired_value));
                }();
                return toPyBytes(value);
              },
              R"(
Inserts the key-value pair into the store based on the supplied ``key`` and
performs comparison between ``expected_value`` and ``desired_value`` before inserting. ``desired_value``
will only be set if ``expected_value`` for the ``key`` already exists in the store or if ``expected_value``
is an empty string.

Arguments:
    key (str): The key to be checked in the store.
    expected_value (str): The value associated with ``key`` to be checked before insertion.
    desired_value (str): The value associated with ``key`` to be added to the store.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.set("key", "first_value")
    >>> store.compare_set("key", "first_value", "second_value")
    >>> # Should return "second_value"
    >>> store.get("key")
)")
          // Convert from std::vector<uint8_t> to py::bytes.
          // The returned value is not guaranteed to be valid UTF-8.
          .def(
              "get",
              [](::c10d::Store& store, const std::string& key) -> py::bytes {
                auto value = [&]() {
                  py::gil_scoped_release guard;
                  return store.get(key);
                }();
                return toPyBytes(value);
              },
              R"(
Retrieves the value associated with the given ``key`` in the store. If ``key`` is not
present in the store, the function will wait for ``timeout``, which is defined
when initializing the store, before throwing an exception.

Arguments:
    key (str): The function will return the value associated with this key.

Returns:
    Value associated with ``key`` if ``key`` is in the store.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.set("first_key", "first_value")
    >>> # Should return "first_value"
    >>> store.get("first_key")
)")
          .def(
              "add",
              &::c10d::Store::add,
              py::call_guard<py::gil_scoped_release>(),
              R"(
The first call to add for a given ``key`` creates a counter associated
with ``key`` in the store, initialized to ``amount``. Subsequent calls to add
with the same ``key`` increment the counter by the specified ``amount``.
Calling :meth:`~torch.distributed.store.add` with a key that has already
been set in the store by :meth:`~torch.distributed.store.set` will result
in an exception.

Arguments:
    key (str): The key in the store whose counter will be incremented.
    amount (int): The quantity by which the counter will be incremented.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> # Using TCPStore as an example, other store types can also be used
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.add("first_key", 1)
    >>> store.add("first_key", 6)
    >>> # Should return 7
    >>> store.get("first_key")
)")
          .def(
              "check",
              &::c10d::Store::check,
              py::call_guard<py::gil_scoped_release>(),
              R"(
The call to check whether a given list of ``keys`` have value stored in
the store. This call immediately returns in normal cases but still suffers
from some edge deadlock cases, e.g, calling check after TCPStore has been destroyed.
Calling :meth:`~torch.distributed.store.check` with a list of keys that
one wants to check whether stored in the store or not.

Arguments:
    keys (lisr[str]): The keys to query whether stored in the store.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> # Using TCPStore as an example, other store types can also be used
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.add("first_key", 1)
    >>> # Should return 7
    >>> store.check(["first_key"])
)")
          .def(
              "delete_key",
              &::c10d::Store::deleteKey,
              py::call_guard<py::gil_scoped_release>(),
              R"(
Deletes the key-value pair associated with ``key`` from the store. Returns
`true` if the key was successfully deleted, and `false` if it was not.

.. warning::
    The ``delete_key`` API is only supported by the :class:`~torch.distributed.TCPStore` and :class:`~torch.distributed.HashStore`. Using this API
    with the :class:`~torch.distributed.FileStore` will result in an exception.

Arguments:
    key (str): The key to be deleted from the store

Returns:
    `True` if ``key`` was deleted, otherwise `False`.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> # Using TCPStore as an example, HashStore can also be used
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.set("first_key")
    >>> # This should return true
    >>> store.delete_key("first_key")
    >>> # This should return false
    >>> store.delete_key("bad_key")
)")
          .def(
              "num_keys",
              &::c10d::Store::getNumKeys,
              py::call_guard<py::gil_scoped_release>(),
              R"(
Returns the number of keys set in the store. Note that this number will typically
be one greater than the number of keys added by :meth:`~torch.distributed.store.set`
and :meth:`~torch.distributed.store.add` since one key is used to coordinate all
the workers using the store.

.. warning::
    When used with the :class:`~torch.distributed.TCPStore`, ``num_keys`` returns the number of keys written to the underlying file. If the store is destructed and another store is created with the same file, the original keys will be retained.

Returns:
    The number of keys present in the store.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> # Using TCPStore as an example, other store types can also be used
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.set("first_key", "first_value")
    >>> # This should return 2
    >>> store.num_keys()
)")
          .def(
              "set_timeout",
              &::c10d::Store::setTimeout,
              py::call_guard<py::gil_scoped_release>(),
              R"(
Sets the store's default timeout. This timeout is used during initialization and in
:meth:`~torch.distributed.store.wait` and :meth:`~torch.distributed.store.get`.

Arguments:
    timeout (timedelta): timeout to be set in the store.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> # Using TCPStore as an example, other store types can also be used
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.set_timeout(timedelta(seconds=10))
    >>> # This will throw an exception after 10 seconds
    >>> store.wait(["bad_key"])
)")
          .def(
              "wait",
              [](::c10d::Store& store, const std::vector<std::string>& keys) {
                store.wait(keys);
              },
              py::call_guard<py::gil_scoped_release>(),
              R"(
Waits for each key in ``keys`` to be added to the store. If not all keys are
set before the ``timeout`` (set during store initialization), then ``wait``
will throw an exception.

Arguments:
    keys (list): List of keys on which to wait until they are set in the store.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> # Using TCPStore as an example, other store types can also be used
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> # This will throw an exception after 30 seconds
    >>> store.wait(["bad_key"])
)")
          .def(
              "wait",
              [](::c10d::Store& store,
                 const std::vector<std::string>& keys,
                 const std::chrono::milliseconds& timeout) {
                store.wait(keys, timeout);
              },
              py::call_guard<py::gil_scoped_release>(),
              R"(
Waits for each key in ``keys`` to be added to the store, and throws an exception
if the keys have not been set by the supplied ``timeout``.

Arguments:
    keys (list): List of keys on which to wait until they are set in the store.
    timeout (timedelta): Time to wait for the keys to be added before throwing an exception.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> # Using TCPStore as an example, other store types can also be used
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> # This will throw an exception after 10 seconds
    >>> store.wait(["bad_key"], timedelta(seconds=10))
)")
          .def_property_readonly(
              "timeout",
              &::c10d::Store::getTimeout,
              R"(Gets the timeout of the store.)")
          .def(
              "append",
              [](::c10d::Store& store,
                 const std::string& key,
                 const std::string& value) {
                store.append(key, toVec8(value));
              },
              py::call_guard<py::gil_scoped_release>(),
              R"(
Append the key-value pair into the store based on the supplied ``key`` and
``value``. If ``key`` does not exists in the store, it will be created.

Arguments:
    key (str): The key to be appended to the store.
    value (str): The value associated with ``key`` to be added to the store.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.append("first_key", "po")
    >>> store.append("first_key", "tato")
    >>> # Should return "potato"
    >>> store.get("first_key")
)")
          .def(
              "multi_get",
              [](::c10d::Store& store, const std::vector<std::string>& keys) {
                auto values = [&]() {
                  py::gil_scoped_release guard;
                  return store.multiGet(keys);
                }();
                return toPyBytes(values);
              },
              R"(
Retrieve all values in ``keys``. If any key in ``keys`` is not
present in the store, the function will wait for ``timeout``

Arguments:
    keys (List[str]): The keys to be retrieved from the store.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.set("first_key", "po")
    >>> store.set("second_key", "tato")
    >>> # Should return [b"po", b"tato"]
    >>> store.multi_get(["first_key", "second_key"])
)")
          .def(
              "multi_set",
              [](::c10d::Store& store,
                 const std::vector<std::string>& keys,
                 const std::vector<std::string>& values) {
                store.multiSet(keys, toVec8(values));
              },
              py::call_guard<py::gil_scoped_release>(),
              R"(
Inserts a list key-value pair into the store based on the supplied ``keys`` and ``values``

Arguments:
    keys (List[str]): The keys to insert.
    values (List[str]): The values to insert.

Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> store = dist.TCPStore("127.0.0.1", 0, 1, True, timedelta(seconds=30))
    >>> store.multi_set(["first_key", "second_key"], ["po", "tato"])
    >>> # Should return b"po"
    >>> store.get("first_key")
)")
          .def(
              "has_extended_api",
              &::c10d::Store::hasExtendedApi,
              R"(Returns true if the store supports extended operations.)");

  intrusive_ptr_class_<::c10d::FileStore>(
      module,
      "FileStore",
      store,
      R"(
A store implementation that uses a file to store the underlying key-value pairs.

Arguments:
    file_name (str): path of the file in which to store the key-value pairs
    world_size (int, optional): The total number of processes using the store. Default is -1 (a negative value indicates a non-fixed number of store users).

Example::
    >>> import torch.distributed as dist
    >>> store1 = dist.FileStore("/tmp/filestore", 2)
    >>> store2 = dist.FileStore("/tmp/filestore", 2)
    >>> # Use any of the store methods from either the client or server after initialization
    >>> store1.set("first_key", "first_value")
    >>> store2.get("first_key")

      )")
      .def(
          py::init<const std::string&, int>(),
          py::arg("file_name"),
          py::arg("world_size") = -1,
          R"(Creates a new FileStore.)")
      .def_property_readonly(
          "path",
          &::c10d::FileStore::getPath,
          R"(Gets the path of the file used by FileStore to store key-value pairs.)");

#ifndef _WIN32
  intrusive_ptr_class_<::c10d::HashStore>(
      module,
      "HashStore",
      store,
      R"(
A thread-safe store implementation based on an underlying hashmap. This store can be used
within the same process (for example, by other threads), but cannot be used across processes.

Example::
    >>> import torch.distributed as dist
    >>> store = dist.HashStore()
    >>> # store can be used from other threads
    >>> # Use any of the store methods after initialization
    >>> store.set("first_key", "first_value")
      )")
      .def(py::init<>(), R"(Creates a new HashStore.)");
#endif

  intrusive_ptr_class_<::c10d::TCPStore>(
      module,
      "TCPStore",
      store,
      R"(
A TCP-based distributed key-value store implementation. The server store holds
the data, while the client stores can connect to the server store over TCP and
perform actions such as :meth:`~torch.distributed.store.set` to insert a key-value
pair, :meth:`~torch.distributed.store.get` to retrieve a key-value pair, etc. There
should always be one server store initialized because the client store(s) will wait for
the server to establish a connection.

Arguments:
    host_name (str): The hostname or IP Address the server store should run on.
    port (int): The port on which the server store should listen for incoming requests.
    world_size (int, optional): The total number of store users (number of clients + 1 for the server). Default is None (None indicates a non-fixed number of store users).
    is_master (bool, optional): True when initializing the server store and False for client stores. Default is False.
    timeout (timedelta, optional): Timeout used by the store during initialization and for methods such as :meth:`~torch.distributed.store.get` and :meth:`~torch.distributed.store.wait`. Default is timedelta(seconds=300)
    wait_for_workers (bool, optional): Whether to wait for all the workers to connect with the server store. This is only applicable when world_size is a fixed value. Default is True.
    multi_tenant (bool, optional): If True, all ``TCPStore`` instances in the current process with the same host/port will use the same underlying ``TCPServer``. Default is False.
    master_listen_fd (int, optional): If specified, the underlying ``TCPServer`` will listen on this file descriptor, which must be a socket already bound to ``port``. Useful to avoid port assignment races in some scenarios. Default is None (meaning the server creates a new socket and attempts to bind it to ``port``).
    use_libuv (bool, optional): If True, use libuv for ``TCPServer`` backend. Default is True.
Example::
    >>> import torch.distributed as dist
    >>> from datetime import timedelta
    >>> # Run on process 1 (server)
    >>> server_store = dist.TCPStore("127.0.0.1", 1234, 2, True, timedelta(seconds=30))
    >>> # Run on process 2 (client)
    >>> client_store = dist.TCPStore("127.0.0.1", 1234, 2, False)
    >>> # Use any of the store methods from either the client or server after initialization
    >>> server_store.set("first_key", "first_value")
    >>> client_store.get("first_key")
      )")
      .def(
          py::init([](const std::string& host,
                      uint16_t port,
                      std::optional<int> worldSize,
                      bool isServer,
                      std::chrono::milliseconds timeout,
                      bool waitWorkers,
                      bool multiTenant,
                      std::optional<int> masterListenFd,
                      bool useLibUV) {
            std::optional<std::size_t> numWorkers = std::nullopt;
            if (worldSize.has_value() && worldSize.value() > -1) {
              if (worldSize.value() == 0) {
                throw py::value_error("TCPStore world size cannot be 0");
              }
              numWorkers = static_cast<std::size_t>(worldSize.value());
            }

            ::c10d::TCPStoreOptions opts{
                port,
                isServer,
                numWorkers,
                waitWorkers,
                timeout,
                multiTenant,
                masterListenFd,
                useLibUV};

            return c10::make_intrusive<::c10d::TCPStore>(host, opts);
          }),
          py::arg("host_name"),
          py::arg("port"),
          py::arg("world_size") = py::none(),
          // using noconvert() requires this argument to be True or False
          // prevents accidental implicit conversion to bool
          py::arg("is_master").noconvert() = false,
          py::arg("timeout") =
              std::chrono::milliseconds(::c10d::Store::kDefaultTimeout),
          py::arg("wait_for_workers") = true,
          py::arg("multi_tenant") = false,
          py::arg("master_listen_fd") = py::none(),
          py::arg("use_libuv") = true,
          py::call_guard<py::gil_scoped_release>(),
          R"(Creates a new TCPStore.)")
      .def_property_readonly(
          "host",
          &::c10d::TCPStore::getHost,
          R"(Gets the hostname on which the store listens for requests.)")
      .def_property_readonly(
          "port",
          &::c10d::TCPStore::getPort,
          R"(Gets the port number on which the store listens for requests.)")
      .def_property_readonly(
          "libuvBackend",
          &::c10d::TCPStore::isLibUvBackend,
          R"(Returns True if it's using the libuv backend.)")
      .def(
          "__repr__",
          &::c10d::TCPStore::repr,
          R"(Returns a string representation of the TCPStore.)",
          py::call_guard<py::gil_scoped_release>());

  intrusive_ptr_class_<::c10d::PrefixStore>(
      module,
      "PrefixStore",
      store,
      R"(
A wrapper around any of the 3 key-value stores (:class:`~torch.distributed.TCPStore`,
:class:`~torch.distributed.FileStore`, and :class:`~torch.distributed.HashStore`)
that adds a prefix to each key inserted to the store.

Arguments:
    prefix (str): The prefix string that is prepended to each key before being inserted into the store.
    store (torch.distributed.store): A store object that forms the underlying key-value store.
      )")
      .def(
          py::init([](const std::string& prefix,
                      c10::intrusive_ptr<::c10d::Store> store) {
            if (!store) {
              throw py::value_error("store argument cannot be None");
            }
            return new ::c10d::PrefixStore(prefix, std::move(store));
          }),
          py::arg("prefix"),
          py::arg("store"),
          R"(Creates a new PrefixStore.)")
      .def_property_readonly(
          "underlying_store",
          &::c10d::PrefixStore::getUnderlyingStore,
          R"(Gets the underlying store object that PrefixStore wraps around.)")
      .def_property_readonly(
          "_underlying_non_prefix_store",
          &::c10d::PrefixStore::getUnderlyingNonPrefixStore,
          R"(Recursively to get the store before layers of wrapping with PrefixStore.)");

  using namespace std::chrono_literals;

  auto collectives =
      py::class_<
          ::c10d::ControlCollectives,
          c10::intrusive_ptr<::c10d::ControlCollectives>>(
          module,
          "_ControlCollectives",
          R"(
Base class for all ControlCollectives implementations.
)")
          .def(
              "barrier",
              &::c10d::ControlCollectives::barrier,
              py::arg("key"),
              py::arg("timeout") = 5min,
              py::arg("block") = true,
              py::call_guard<py::gil_scoped_release>(),
              R"(
Blocks until all workers have entered this function.

Arguments:
    key (str): The unique key used to identify this operation.
    timeout (duration): The timeout for this operation.
    block (bool): whether to block this working waiting on the results of the barrier.
)")
          .def(
              "all_sum",
              &::c10d::ControlCollectives::allSum,
              py::arg("key"),
              py::arg("data"),
              py::arg("timeout") = 5min,
              py::call_guard<py::gil_scoped_release>(),
              R"(
Computes a sum across all workers and returns the final value.

Arguments:
    key (str): The unique key used to identify this operation.
    data (int): The data to sum.
    timeout (duration): The timeout for this operation.
)")
          .def(
              "broadcast_send",
              [](::c10d::ControlCollectives& collectives,
                 const std::string& key,
                 const std::string& data,
                 std::chrono::milliseconds timeout = 5min) {
                collectives.broadcastSend(key, toVec8(data), timeout);
              },
              py::arg("key"),
              py::arg("data"),
              py::arg("timeout") = 5min,
              py::call_guard<py::gil_scoped_release>(),
              R"(
Sends data to all other workers. Must be only called from one worker.

Arguments:
    key (str): The unique key used to identify this operation.
    data (str): The data to send.
    timeout (duration): The timeout for this operation.
)")
          .def(
              "broadcast_recv",
              [](::c10d::ControlCollectives& collectives,
                 const std::string& key,
                 std::chrono::milliseconds timeout = 5min) {
                auto out = [&]() {
                  py::gil_scoped_release guard;
                  return collectives.broadcastRecv(key, timeout);
                }();
                return toPyBytes(out);
              },
              py::arg("key"),
              py::arg("timeout") = 5min,
              R"(
Receives data broadcasted from 1 worker.

Arguments:
    key (str): The unique key used to identify this operation.
    timeout (duration): The timeout for this operation.
)")
          .def(
              "gather_send",
              [](::c10d::ControlCollectives& collectives,
                 const std::string& key,
                 const std::string& data,
                 std::chrono::milliseconds timeout = 5min) {
                collectives.gatherSend(key, toVec8(data), timeout);
              },
              py::arg("key"),
              py::arg("data"),
              py::arg("timeout") = 5min,
              py::call_guard<py::gil_scoped_release>(),
              R"(
Sends data to one other worker.

Arguments:
    key (str): The unique key used to identify this operation.
    data (str): The data to send.
    timeout (duration): The timeout for this operation.
)")
          .def(
              "gather_recv",
              [](::c10d::ControlCollectives& collectives,
                 const std::string& key,
                 const std::string& data,
                 std::chrono::milliseconds timeout = 5min) {
                auto out = [&]() {
                  py::gil_scoped_release guard;
                  return collectives.gatherRecv(key, toVec8(data), timeout);
                }();
                return toPyBytes(out);
              },
              py::arg("key"),
              py::arg("data"),
              py::arg("timeout") = 5min,
              R"(
Receives data broadcasted from all workers. Must only be called by one worker.

Arguments:
    key (str): The unique key used to identify this operation.
    timeout (duration): The timeout for this operation.
)")

          .def(
              "scatter_send",
              [](::c10d::ControlCollectives& collectives,
                 const std::string& key,
                 const std::vector<std::string>& data,
                 std::chrono::milliseconds timeout = 5min) {
                auto out = [&]() {
                  py::gil_scoped_release guard;
                  return collectives.scatterSend(key, toVec8(data), timeout);
                }();
                return toPyBytes(out);
              },
              py::arg("key"),
              py::arg("data"),
              py::arg("timeout") = 5min,
              R"(
Sends rank specific data to all other workers.

Arguments:
    key (str): The unique key used to identify this operation.
    data (str): The data to send.
    timeout (duration): The timeout for this operation.
)")
          .def(
              "scatter_recv",
              [](::c10d::ControlCollectives& collectives,
                 const std::string& key,
                 std::chrono::milliseconds timeout = 5min) {
                auto out = [&]() {
                  py::gil_scoped_release guard;
                  return collectives.scatterRecv(key, timeout);
                }();
                return toPyBytes(out);
              },
              py::arg("key"),
              py::arg("timeout") = 5min,
              R"(
Receives rank specific data from one worker.

Arguments:
    key (str): The unique key used to identify this operation.
    timeout (duration): The timeout for this operation.
)")

          .def(
              "all_gather",
              [](::c10d::ControlCollectives& collectives,
                 const std::string& key,
                 const std::string& data,
                 std::chrono::milliseconds timeout = 5min) {
                auto out = [&]() {
                  py::gil_scoped_release guard;
                  return collectives.allGather(key, toVec8(data), timeout);
                }();
                return toPyBytes(out);
              },
              py::arg("key"),
              py::arg("data"),
              py::arg("timeout") = 5min,
              R"(
Sends data to all workers and receives data from all other workers.

Arguments:
    key (str): The unique key used to identify this operation.
    data (str): The data to send.
    timeout (duration): The timeout for this operation.
)");

  intrusive_ptr_class_<::c10d::StoreCollectives>(
      module,
      "_StoreCollectives",
      collectives,
      R"(
An implementation of ControlCollectives that uses the provided store as the underlying
communication mechanism.
      )")
      .def(
          py::init<c10::intrusive_ptr<::c10d::Store>, int, int>(),
          py::arg("store"),
          py::arg("rank"),
          py::arg("world_size"));

  auto processGroup =
      py::class_<
          ::c10d::ProcessGroup,
          c10::intrusive_ptr<::c10d::ProcessGroup>,
          ::c10d::PyProcessGroup>(module, "ProcessGroup",
          R"(A ProcessGroup is a communication primitive that allows for
          collective operations across a group of processes.

          This is a base class that provides the interface for all
          ProcessGroups. It is not meant to be used directly, but rather
          extended by subclasses.)")
          .def(
              py::init<int, int>(),
              py::arg("rank"),
              py::arg("size"),
              R"(Create a new ProcessGroup instance.)")
          .def(
              py::init<
                  const c10::intrusive_ptr<::c10d::Store>&,
                  int,
                  int>(),
              py::arg("store"),
              py::arg("rank"),
              py::arg("size"),
              py::call_guard<py::gil_scoped_release>(),
              R"(Create a new ProcessGroup instance.)")
          .def("rank", &::c10d::ProcessGroup::getRank, R"(Get the rank of this process group.)")
          .def("size", &::c10d::ProcessGroup::getSize, R"(Get the size of this process group.)")
          .def("name", &::c10d::ProcessGroup::getBackendName, R"(Get the name of this process group.)")
          .def("_id", &::c10d::ProcessGroup::getID)
          .def(
              "_backend_id",
              &::c10d::ProcessGroup::getBackendID,
              py::arg("backend_type"))
          .def(
              "broadcast",
              &::c10d::ProcessGroup::broadcast,
              py::arg("tensors"),
              py::arg("opts") = ::c10d::BroadcastOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Broadcasts the tensor to all processes in the process group.

              See :func:`torch.distributed.broadcast for more details.)")
          .def(
              "broadcast",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 at::Tensor& x,
                 int rootRank) {
                ::c10d::BroadcastOptions opts;
                opts.rootRank = rootRank;
                std::vector<at::Tensor> tensors = {x};
                return self->broadcast(tensors, opts);
              },
              py::arg("tensor"),
              py::arg("root"),
              py::call_guard<py::gil_scoped_release>(),
              R"(Broadcasts the tensor to all processes in the process group.

              See :func:`torch.distributed.broadcast` for more details.)")
          .def(
              "allreduce",
              &::c10d::ProcessGroup::allreduce,
              py::arg("tensors"),
              py::arg("opts") = ::c10d::AllreduceOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Allreduces the provided tensors across all processes in the process group.

              See :func:`torch.distributed.all_reduce` for more details.)")
          .def(
              "allreduce",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 std::vector<at::Tensor>& xs,
                 const ::c10d::ReduceOp& op) {
                ::c10d::AllreduceOptions opts;
                opts.reduceOp = op;
                return self->allreduce(xs, opts);
              },
              py::arg("tensors"),
              py::arg("op") = ::c10d::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>(),
              R"(Allreduces the provided tensors across all processes in the process group.

              See :func:`torch.distributed.all_reduce` for more details.)")

          .def(
              "allreduce",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 at::Tensor& x,
                 const ::c10d::ReduceOp& op) {
                ::c10d::AllreduceOptions opts;
                opts.reduceOp = op;
                std::vector<at::Tensor> xs = {x};
                return self->allreduce(xs, opts);
              },
              py::arg("tensor"),
              py::arg("op") = ::c10d::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>(),
              R"(Allreduces the provided tensors across all processes in the process group.

              See :func:`torch.distributed.all_reduce` for more details.)")
          .def(
              "allreduce_coalesced",
              &::c10d::ProcessGroup::allreduce_coalesced,
              py::arg("tensors"),
              py::arg("opts") = ::c10d::AllreduceCoalescedOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Allreduces the provided tensors across all processes in the process group.

              See :func:`torch.distributed.all_reduce` for more details.)")

          .def(
              "reduce",
              &::c10d::ProcessGroup::reduce,
              py::arg("tensors"),
              py::arg("opts") = ::c10d::ReduceOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Reduces the provided tensors across all processes in the process group.

              See :func:`torch.distributed.reduce` for more details.)")

          .def(
              "reduce",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 at::Tensor& x,
                 int rootRank,
                 const ::c10d::ReduceOp& op) {
                ::c10d::ReduceOptions opts;
                opts.reduceOp = op;
                opts.rootRank = rootRank;
                std::vector<at::Tensor> xs = {x};
                return self->reduce(xs, opts);
              },
              py::arg("tensor"),
              py::arg("root"),
              py::arg("op") = ::c10d::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>(),
              R"(Reduces the provided tensors across all processes in the process group.

              See :func:`torch.distributed.reduce` for more details.)")
          .def(
              "allgather",
              &::c10d::ProcessGroup::allgather,
              py::arg("output_tensors"),
              py::arg("input_tensors"),
              py::arg("opts") = ::c10d::AllgatherOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Allgathers the input tensors from all processes across the process group.

              See :func:`torch.distributed.all_gather` for more details.)")
          .def(
              "allgather",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 std::vector<at::Tensor>& output,
                 at::Tensor& input) {
                std::vector<std::vector<at::Tensor>> outputs = {output};
                std::vector<at::Tensor> inputs = {input};
                return self->allgather(
                    outputs, inputs, ::c10d::AllgatherOptions());
              },
              py::arg("output_tensors"),
              py::arg("input_tensor"),
              py::call_guard<py::gil_scoped_release>(),
              R"(Allgathers the input tensors from all processes across the process group.

              See :func:`torch.distributed.all_gather: for more details.)")
          .def(
              "_allgather_base",
              &::c10d::ProcessGroup::_allgather_base,
              py::arg("output"),
              py::arg("input"),
              py::arg("opts") = ::c10d::AllgatherOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "allgather_coalesced",
              &::c10d::ProcessGroup::allgather_coalesced,
              py::arg("output_lists"),
              py::arg("input_list"),
              py::arg("opts") = ::c10d::AllgatherOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Allgathers the input tensors from all processes across the process group.

              See :func:`torch.distributed.all_gather` for more details.)")
          .def(
              "allgather_into_tensor_coalesced",
              &::c10d::ProcessGroup::allgather_into_tensor_coalesced,
              py::arg("outputs"),
              py::arg("inputs"),
              py::arg("opts") = ::c10d::AllgatherOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Allgathers the input tensors from all processes across the process group.

              See :func:`torch.distributed.all_gather` for more details.)")
          .def(
              "gather",
              &::c10d::ProcessGroup::gather,
              py::arg("output_tensors"),
              py::arg("input_tensors"),
              py::arg("opts") = ::c10d::GatherOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Gathers the input tensors from all processes across the process group.

              See :func:`torch.distributed.gather` for more details.)")

          .def(
              "gather",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 std::vector<at::Tensor>& output,
                 at::Tensor& input,
                 int rootRank) {
                ::c10d::GatherOptions opts;
                opts.rootRank = rootRank;
                std::vector<std::vector<at::Tensor>> outputs = {output};
                std::vector<at::Tensor> inputs = {input};
                return self->gather(outputs, inputs, opts);
              },
              py::arg("output_tensors"),
              py::arg("input_tensor"),
              py::arg("root"),
              py::call_guard<py::gil_scoped_release>(),
              R"(Gathers the input tensors from all processes across the process group.

              See :func:`torch.distributed.gather` for more details.)")
          .def(
              "scatter",
              &::c10d::ProcessGroup::scatter,
              py::arg("output_tensors"),
              py::arg("input_tensors"),
              py::arg("opts") = ::c10d::ScatterOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Scatters the input tensors from all processes across the process group.

              See :func:`torch.distributed.scatter` for more details.)")
          .def(
              "scatter",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 at::Tensor& output,
                 std::vector<at::Tensor>& input,
                 int rootRank) {
                ::c10d::ScatterOptions opts;
                opts.rootRank = rootRank;
                std::vector<std::vector<at::Tensor>> inputs = {input};
                std::vector<at::Tensor> outputs = {output};
                return self->scatter(outputs, inputs, opts);
              },
              py::arg("output_tensor"),
              py::arg("input_tensors"),
              py::arg("root"),
              py::call_guard<py::gil_scoped_release>(),
              R"(Scatters the input tensors from all processes across the process group.

              See :func:`torch.distributed.scatter` for more details.)")
          .def(
              "reduce_scatter",
              &::c10d::ProcessGroup::reduce_scatter,
              py::arg("output_tensors"),
              py::arg("input_tensors"),
              py::arg("opts") = ::c10d::ReduceScatterOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Reduces and scatters the input tensors from all processes across the process group.

              See :func:`torch.distributed.reduce_scatter` for more details.)")
          .def(
              "reduce_scatter",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 at::Tensor& output,
                 std::vector<at::Tensor>& input,
                 const ::c10d::ReduceOp& op) {
                std::vector<at::Tensor> outputs = {output};
                std::vector<std::vector<at::Tensor>> inputs = {input};
                ::c10d::ReduceScatterOptions opts;
                opts.reduceOp = op;
                return self->reduce_scatter(outputs, inputs, opts);
              },
              py::arg("output"),
              py::arg("input"),
              py::arg("op") = ::c10d::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>(),
              R"(Reduces and scatters the input tensors from all processes across the process group.

              See :func:`torch.distributed.reduce_scatter` for more details.)")
          .def(
              "_reduce_scatter_base",
              &::c10d::ProcessGroup::_reduce_scatter_base,
              py::arg("outputTensor"),
              py::arg("inputTensor"),
              py::arg("opts") = ::c10d::ReduceScatterOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "reduce_scatter_tensor_coalesced",
              &::c10d::ProcessGroup::reduce_scatter_tensor_coalesced,
              py::arg("outputs"),
              py::arg("inputs"),
              py::arg("opts") = ::c10d::ReduceScatterOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Reduces and scatters the input tensors from all processes across the process group.

              See :func:`torch.distributed.reduce_scatter` for more details.)")
          .def(
              "alltoall_base",
              &::c10d::ProcessGroup::alltoall_base,
              py::arg("output"),
              py::arg("input"),
              py::arg("output_split_sizes"),
              py::arg("input_split_sizes"),
              py::arg("opts") = ::c10d::AllToAllOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Alltoalls the input tensors from all processes across the process group.

              See :func:`torch.distributed.all_to_all for more details.)")
          .def(
              "alltoall",
              &::c10d::ProcessGroup::alltoall,
              py::arg("output_tensors"),
              py::arg("input_tensors"),
              py::arg("opts") = ::c10d::AllToAllOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Alltoalls the input tensors from all processes across the process group.

              See :func:`torch.distributed.all_to_all` for more details.)")
          .def(
              "send",
              &::c10d::ProcessGroup::send,
              py::arg("tensors"),
              py::arg("dstRank"),
              py::arg("tag"),
              py::call_guard<py::gil_scoped_release>(),
              R"(Sends the tensor to the specified rank.

              See :func:`torch.distributed.send` for more details.)")
          .def(
              "recv",
              &::c10d::ProcessGroup::recv,
              py::arg("tensors"),
              py::arg("srcRank"),
              py::arg("tag"),
              py::call_guard<py::gil_scoped_release>(),
              R"(Receives the tensor from the specified rank.

              See :func:`torch.distributed.recv` for more details.)")
          .def(
              "recv_anysource",
              &::c10d::ProcessGroup::recvAnysource,
              py::call_guard<py::gil_scoped_release>(),
              R"(Receives the tensor from any source.

              See :func:`torch.distributed.recv` for more details.)")
          .def(
              "barrier",
              &::c10d::ProcessGroup::barrier,
              py::arg("opts") = ::c10d::BarrierOptions(),
              py::call_guard<py::gil_scoped_release>(),
              R"(Blocks until all processes in the group enter the call, and
              then all leave the call together.

              See :func:`torch.distributed.barrier` for more details.)")
          .def(
              "_set_sequence_number_for_group",
              &::c10d::ProcessGroup::setSequenceNumberForGroup,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_get_sequence_number_for_group",
              &::c10d::ProcessGroup::getSequenceNumberForGroup,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "monitored_barrier",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 const std::chrono::milliseconds& timeout,
                 bool waitAllRanks) {
                ::c10d::BarrierOptions opts;
                opts.timeout = timeout;
                return self->monitoredBarrier(opts, waitAllRanks);
              },
              py::arg("timeout") = ::c10d::kUnsetTimeout,
              py::arg("wait_all_ranks") = false,
              py::call_guard<py::gil_scoped_release>(),
              R"(Blocks until all processes in the group enter the call, and
              then all leave the call together.

              See :func:`torch.distributed.monitored_barrier` for more details.)")
          .def_property_readonly(
              "_device_types", &::c10d::ProcessGroup::getDeviceTypes)
          .def(
              "_get_backend_name",
              &::c10d::ProcessGroup::getBackendName,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_start_coalescing",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 const c10::Device& device) {
                self->startCoalescing(device.type());
              },
              py::arg("device_type"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_end_coalescing",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 const c10::Device& device) {
                return self->endCoalescing(device.type());
              },
              py::arg("device_type"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_register_backend",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 const c10::Device& device,
                 const ::c10d::ProcessGroup::BackendType& backendType,
                 const std::optional<c10::intrusive_ptr<::c10d::Backend>>&
                     backend) {
                self->setBackend(device.type(), backendType, backend);
              },
              py::arg("device"),
              py::arg("backend_type"),
              py::arg("backend") =
                  std::optional<c10::intrusive_ptr<::c10d::Backend>>(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_get_backend",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 const c10::Device& device) {
                return self->getBackend(device.type());
              },
              py::arg("device"),
              py::call_guard<py::gil_scoped_release>())
           .def(
              "_set_default_backend",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 const ::c10d::ProcessGroup::BackendType& backendType) {
                return self->setDefaultBackend(backendType);
              },
              py::arg("backend_type"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_register_on_completion_hook",
              [](const c10::intrusive_ptr<::c10d::ProcessGroup>& self,
                 py::object hook) {
                // We need to wrap a py::object hook with a wrapper to hold
                // GIL before dereferencing the py::object.
                // This needs to happen here instead of in ProcessGroup
                // backend implementations and the latter cannot depend on
                // python-related libs.
                self->registerOnCompletionHook(
                    [hookWrapper = ::c10d::PythonOnCompletionHook(std::move(
                         hook))](const std::shared_ptr<::c10d::WorkInfo>& workInfo) {
                      hookWrapper(workInfo);
                    });
              },
              py::arg("hook"),
              // Intentionally holding GIL as we move hook py::object. This
              // should be OK as register a hook is cheap.
              py::call_guard<py::gil_scoped_acquire>(),
              R"(
Register a hook function which is fired on every ``ProcessGroup::Work`` completion.
The hook must have the following signature:

>>> def hook(work_info: torch._C._distributed_c10d.WorkInfo) -> None:
>>>     # custom code
>>>     # work_info.op_type: type of collective of this work
>>>     # work_info.seq: sequence number of collective of this work
>>>     # work_info.time_started: system time when user code called this collective
>>>     # work_info.time_finished: system time when the watchdog thread detected
>>>     #     completion of this work. Note that, there can be delays between the
>>>     #     actual completion time and the detection time.
>>>     # work_info.active_duration: duration of this collective measured by CUDAEvents
>>>     #     which can accurately represent the duration between when the collective
>>>     #     is launched and when the collective completes.

.. warning ::
    This only works for NCCL backend for now. All hooks are fired on the cpp watch dog
    thread. Firing the Python hook and acquiring GIL requires Python interpreter to be
    alive. Therefore, users need to make sure calling ``destroy_process_group(pg)`` on
    every active ProcessGroup ``pg`` before exiting.

.. warning ::
    Note that ``Work`` object passed to the hook is a partially copied version without
    the output objects. So accessing the output tensors from ``Work`` will not work.


Arguments:
    hook (Callable): hook function.
              )")
          .def(
              "_wait_for_pending_works",
              &::c10d::ProcessGroup::waitForPendingWorks,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_has_hooks",
              &::c10d::ProcessGroup::hasHooks,
              py::call_guard<py::gil_scoped_acquire>())
          .def(
              "_enable_collectives_timing",
              &::c10d::ProcessGroup::enableCollectivesTiming,
              py::call_guard<py::gil_scoped_acquire>(),
              "Enable timing of collectives by all backends. This might incur in additional overhead.")
          .def(
              "_set_group_name",
              &::c10d::ProcessGroup::setGroupName,
              py::call_guard<py::gil_scoped_acquire>(),
              "Sets the process group name. This is an internal C10D method, do not use.")
          .def_property_readonly(
              "group_name",
              &::c10d::ProcessGroup::getGroupName,
              "(Gets this process group name. It's cluster unique)")
          .def(
              "_set_group_desc",
              &::c10d::ProcessGroup::setGroupDesc,
              py::call_guard<py::gil_scoped_acquire>(),
              "Sets the process group description. This is an internal C10D method, do not use.")
          .def_property_readonly(
              "group_desc",
              &::c10d::ProcessGroup::getGroupDesc,
              "Gets this process group description")
          .def_property(
              "bound_device_id",
              &::c10d::ProcessGroup::getBoundDeviceId,
              &::c10d::ProcessGroup::setBoundDeviceId)
          .def("boxed", [](c10::intrusive_ptr<::c10d::ProcessGroup> self) {
            return torch::jit::toPyObject(c10::IValue(std::move(self)));
          })
          .def_static("unbox", [](py::object obj) {
              auto typePtr = torch::getCustomClass("__torch__.torch.classes.c10d.ProcessGroup");
              auto ivalue = torch::jit::toIValue(std::move(obj), typePtr);
              return ivalue.toCustomClass<::c10d::ProcessGroup>();
          });

  py::enum_<::c10d::ProcessGroup::BackendType>(
      processGroup,
      "BackendType",
      R"(The type of the backend used for the process group.)")
      .value("UNDEFINED", ::c10d::ProcessGroup::BackendType::UNDEFINED)
      .value("GLOO", ::c10d::ProcessGroup::BackendType::GLOO)
      .value("NCCL", ::c10d::ProcessGroup::BackendType::NCCL)
      .value("XCCL", ::c10d::ProcessGroup::BackendType::XCCL)
      .value("UCC", ::c10d::ProcessGroup::BackendType::UCC)
      .value("MPI", ::c10d::ProcessGroup::BackendType::MPI)
      .value("CUSTOM", ::c10d::ProcessGroup::BackendType::CUSTOM)
      .export_values();

  // TODO: The collection definitions handles direct instantiation of
  // ProcessGroup subclasses (e.g. dist.ProcessGroupGloo). This is not supported
  // and should be removed once all tests are transitioned
  auto backend =
      py::class_<::c10d::Backend, c10::intrusive_ptr<::c10d::Backend>>(
          module, "Backend")
          .def("rank", &::c10d::Backend::getRank)
          .def("size", &::c10d::Backend::getSize)
          .def("name", &::c10d::Backend::getBackendName)
          .def_property_readonly(
              "supports_splitting",
              &::c10d::Backend::supportsSplitting,
              "(test whether the backend supports splitting)")
          .def(
              "broadcast",
              &::c10d::Backend::broadcast,
              py::arg("tensors"),
              py::arg("opts") = ::c10d::BroadcastOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "broadcast",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 at::Tensor& x,
                 int rootRank) {
                ::c10d::BroadcastOptions opts;
                opts.rootRank = rootRank;
                std::vector<at::Tensor> xs = {x};
                return self->broadcast(xs, opts);
              },
              py::arg("tensor"),
              py::arg("root"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "allreduce",
              &::c10d::Backend::allreduce,
              py::arg("tensors"),
              py::arg("opts") = ::c10d::AllreduceOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "allreduce",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 std::vector<at::Tensor>& xs,
                 const ::c10d::ReduceOp& op) {
                ::c10d::AllreduceOptions opts;
                opts.reduceOp = op;
                return self->allreduce(xs, opts);
              },
              py::arg("tensors"),
              py::arg("op") = ::c10d::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "allreduce",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 at::Tensor& x,
                 const ::c10d::ReduceOp& op) {
                ::c10d::AllreduceOptions opts;
                opts.reduceOp = op;
                std::vector<at::Tensor> xs = {x};
                return self->allreduce(xs, opts);
              },
              py::arg("tensor"),
              py::arg("op") = ::c10d::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "allreduce_coalesced",
              &::c10d::Backend::allreduce_coalesced,
              py::arg("tensors"),
              py::arg("opts") = ::c10d::AllreduceCoalescedOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "reduce",
              &::c10d::Backend::reduce,
              py::arg("tensors"),
              py::arg("opts") = ::c10d::ReduceOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "reduce",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 at::Tensor& x,
                 int rootRank,
                 const ::c10d::ReduceOp& op) {
                ::c10d::ReduceOptions opts;
                opts.reduceOp = op;
                opts.rootRank = rootRank;
                std::vector<at::Tensor> xs = {x};
                return self->reduce(xs, opts);
              },
              py::arg("tensor"),
              py::arg("root"),
              py::arg("op") = ::c10d::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "allgather",
              &::c10d::Backend::allgather,
              py::arg("output_tensors"),
              py::arg("input_tensors"),
              py::arg("opts") = ::c10d::AllgatherOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_allgather_base",
              &::c10d::Backend::_allgather_base,
              py::arg("output"),
              py::arg("input"),
              py::arg("opts") = ::c10d::AllgatherOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "allgather",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 std::vector<at::Tensor>& output,
                 at::Tensor& input) {
                std::vector<std::vector<at::Tensor>> outputs = {output};
                std::vector<at::Tensor> inputs = {input};
                return self->allgather(
                    outputs, inputs, ::c10d::AllgatherOptions());
              },
              py::arg("output_tensors"),
              py::arg("input_tensor"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "allgather_coalesced",
              &::c10d::Backend::allgather_coalesced,
              py::arg("output_lists"),
              py::arg("input_list"),
              py::arg("opts") = ::c10d::AllgatherOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "gather",
              &::c10d::Backend::gather,
              py::arg("output_tensors"),
              py::arg("input_tensors"),
              py::arg("opts") = ::c10d::GatherOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "gather",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 std::vector<at::Tensor>& output,
                 at::Tensor& input,
                 int rootRank) {
                ::c10d::GatherOptions opts;
                opts.rootRank = rootRank;
                std::vector<std::vector<at::Tensor>> outputs = {output};
                std::vector<at::Tensor> inputs = {input};
                return self->gather(outputs, inputs, opts);
              },
              py::arg("output_tensors"),
              py::arg("input_tensor"),
              py::arg("root"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "scatter",
              &::c10d::Backend::scatter,
              py::arg("output_tensors"),
              py::arg("input_tensors"),
              py::arg("opts") = ::c10d::ScatterOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "scatter",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 at::Tensor& output,
                 std::vector<at::Tensor>& input,
                 int rootRank) {
                ::c10d::ScatterOptions opts;
                opts.rootRank = rootRank;
                std::vector<std::vector<at::Tensor>> inputs = {input};
                std::vector<at::Tensor> outputs = {output};
                return self->scatter(outputs, inputs, opts);
              },
              py::arg("output_tensor"),
              py::arg("input_tensors"),
              py::arg("root"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "reduce_scatter",
              &::c10d::Backend::reduce_scatter,
              py::arg("output_tensors"),
              py::arg("input_tensors"),
              py::arg("opts") = ::c10d::ReduceScatterOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "reduce_scatter",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 at::Tensor& output,
                 std::vector<at::Tensor>& input,
                 const ::c10d::ReduceOp& op) {
                std::vector<at::Tensor> outputs = {output};
                std::vector<std::vector<at::Tensor>> inputs = {input};
                ::c10d::ReduceScatterOptions opts;
                opts.reduceOp = op;
                return self->reduce_scatter(outputs, inputs, opts);
              },
              py::arg("output_tensors"),
              py::arg("input_tensor"),
              py::arg("op") = ::c10d::ReduceOp::SUM,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_reduce_scatter_base",
              &::c10d::Backend::_reduce_scatter_base,
              py::arg("outputTensor"),
              py::arg("inputTensor"),
              py::arg("opts") = ::c10d::ReduceScatterOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "alltoall_base",
              &::c10d::Backend::alltoall_base,
              py::arg("output_tensor"),
              py::arg("input_tensor"),
              py::arg("output_split_sizes"),
              py::arg("input_split_sizes"),
              py::arg("opts") = ::c10d::AllToAllOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "alltoall_base",
              [](::c10d::Backend& self,
                 at::Tensor& output,
                 at::Tensor& input,
                 std::vector<int64_t> outputSplitSizes,
                 std::vector<int64_t> inputSplitSizes) {
                return self.alltoall_base(
                    output,
                    input,
                    outputSplitSizes,
                    inputSplitSizes,
                    ::c10d::AllToAllOptions());
              },
              py::arg("output"),
              py::arg("input"),
              py::arg("output_split_sizes"),
              py::arg("input_split_sizes"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "alltoall",
              &::c10d::Backend::alltoall,
              py::arg("output_tensor"),
              py::arg("input_tensor"),
              py::arg("opts") = ::c10d::AllToAllOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "send",
              &::c10d::Backend::send,
              py::arg("tensors"),
              py::arg("dstRank"),
              py::arg("tag"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "recv",
              &::c10d::Backend::recv,
              py::arg("tensors"),
              py::arg("srcRank"),
              py::arg("tag"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "recv_anysource",
              &::c10d::Backend::recvAnysource,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "barrier",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 const ::c10d::BarrierOptions& opts) {
                return self->barrier(opts);
              },
              py::arg("opts") = ::c10d::BarrierOptions(),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_set_sequence_number_for_group",
              &::c10d::Backend::setSequenceNumberForGroup,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_get_sequence_number_for_group",
              &::c10d::Backend::getSequenceNumberForGroup,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "monitored_barrier",
              [](const c10::intrusive_ptr<::c10d::Backend>& self,
                 const std::chrono::milliseconds& timeout,
                 bool waitAllRanks) {
                ::c10d::BarrierOptions opts;
                opts.timeout = timeout;
                return self->monitoredBarrier(opts, waitAllRanks);
              },
              py::arg("timeout") = ::c10d::kUnsetTimeout,
              py::arg("wait_all_ranks") = false,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "eager_connect_single_device",
              &::c10d::Backend::eagerConnectSingleDevice,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_get_backend_name",
              &::c10d::Backend::getBackendName,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_start_coalescing",
              &::c10d::Backend::startCoalescing,
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_end_coalescing",
              &::c10d::Backend::endCoalescing,
              py::call_guard<py::gil_scoped_release>());

  // base Backend::Options binding
  // TODO: Maybe we can consider how to merge this with
  // `DistributedBackendOptions`.
  auto backendOptions =
      intrusive_ptr_class_<::c10d::Backend::Options>(
          backend,
          "Options",
          R"(
Base class for all backend options implementations, such as the nccl
options :class:`~torch.distributed.ProcessGroupNCCL.Options`).
)")
          .def(
              py::init([](const std::string& backend,
                          const std::chrono::milliseconds& timeout) {
                return c10::make_intrusive<::c10d::Backend::Options>(
                    backend, timeout);
              }),
              py::arg("backend"),
              py::arg("timeout") = kProcessGroupDefaultTimeout,
              py::call_guard<py::gil_scoped_release>())
          .def_readonly("backend", &::c10d::Backend::Options::backend)
          .def_readwrite("_timeout", &::c10d::Backend::Options::timeout);

#ifdef USE_C10D_GLOO
  static const std::string GLOO_SOCKET_IFNAME_ENV = "GLOO_SOCKET_IFNAME";

  auto processGroupGloo =
      intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupGloo>(
          module, "ProcessGroupGloo", backend);

  // NOLINTNEXTLINE(bugprone-unused-raii)
  shared_ptr_class_<::gloo::transport::Device>(processGroupGloo, "Device");

  intrusive_ptr_class_<::c10d::ProcessGroupGloo::Options>(
      processGroupGloo, "_Options", backendOptions)
      .def(py::init<>())
      .def_readwrite("_devices", &::c10d::ProcessGroupGloo::Options::devices)
      .def_readwrite("_threads", &::c10d::ProcessGroupGloo::Options::threads);

  processGroupGloo
      .def_static(
          "create_device",
          [](const std::string& hostname, const std::string& interface)
              -> std::shared_ptr<::gloo::transport::Device> {
            if (!hostname.empty()) {
              return ::c10d::ProcessGroupGloo::createDeviceForHostname(
                  hostname);
            }
            if (!interface.empty()) {
              return ::c10d::ProcessGroupGloo::createDeviceForInterface(
                  interface);
            }
            throw std::invalid_argument(
                "Specify either `hostname` or `interface` argument.");
          },
          py::arg("hostname") = "",
          py::arg("interface") = "")
      .def_static(
          "create_default_device",
          &::c10d::ProcessGroupGloo::createDefaultDevice);

  processGroupGloo
      .def(
          py::init<
              const c10::intrusive_ptr<::c10d::Store>&,
              int,
              int,
              c10::intrusive_ptr<::c10d::ProcessGroupGloo::Options>>(),
          py::call_guard<py::gil_scoped_release>(),
          py::arg("store"),
          py::arg("rank"),
          py::arg("size"),
          py::arg("options"),
          R"(Create a new ProcessGroupGloo instance.)")
      .def(
          py::init([](const c10::intrusive_ptr<::c10d::Store>& store,
                      int rank,
                      int size,
                      std::chrono::milliseconds timeout) {
            auto options = ::c10d::ProcessGroupGloo::Options::create();

            // Use interfaces listed in "GLOO_SOCKET_IFNAME", if set.
            char* ifnameEnv = getenv(GLOO_SOCKET_IFNAME_ENV.c_str());
            if (ifnameEnv && strlen(ifnameEnv) > 1) {
              for (const auto& iface : ::c10d::split(',', ifnameEnv)) {
                options->devices.push_back(
                    ::c10d::ProcessGroupGloo::createDeviceForInterface(iface));
              }
            } else {
              // If no hostname is specified, this function looks up
              // the machine's hostname and returns a device instance
              // associated with the address that the hostname resolves to.
              options->devices.push_back(
                  ::c10d::ProcessGroupGloo::createDefaultDevice());
            }

            options->timeout = timeout;
            // NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
            options->threads = options->devices.size() * 2;
            return c10::make_intrusive<::c10d::ProcessGroupGloo>(
                store, rank, size, options);
          }),
          py::arg("store"),
          py::arg("rank"),
          py::arg("size"),
          py::arg("timeout") = kProcessGroupDefaultTimeout,
          py::call_guard<py::gil_scoped_release>(),
          R"(Create a new ProcessGroupGloo instance.)")
      .def(
          "_set_default_timeout",
          [](const c10::intrusive_ptr<::c10d::ProcessGroupGloo>& self,
             std::chrono::milliseconds timeout) {
            self->getOptions()->timeout = timeout;
          },
          py::arg("timeout"),
          py::call_guard<py::gil_scoped_release>())
      .def_property_readonly(
          "options",
          &::c10d::ProcessGroupGloo::getOptions,
          R"(Return the options used to create this ProcessGroupGloo instance.)");

  // ProcessGroupWrapper is a wrapper pg that includes a helper gloo process
  // group. It can be used to validate collective calls across processes by
  // checking the op type and input tensor shapes.
  auto processGroupWrapper =
      intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupWrapper>(
          module, "_ProcessGroupWrapper", backend)
          .def(
              py::init(
                  [](const c10::intrusive_ptr<::c10d::Backend>& backend,
                     const c10::intrusive_ptr<::c10d::Backend>& gloo_backend) {
                    return c10::make_intrusive<::c10d::ProcessGroupWrapper>(
                        backend, gloo_backend);
                  }),
              py::arg("backend"),
              py::arg("gloo_backend"),
              py::call_guard<py::gil_scoped_release>())
          .def_property_readonly(
              "wrapped_pg", &::c10d::ProcessGroupWrapper::getWrappedPg);
#endif

#ifdef USE_C10D_NCCL
  auto processGroupNCCL =
      intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupNCCL>(
          module, "ProcessGroupNCCL", backend)
          .def(
              py::init<
                  const c10::intrusive_ptr<::c10d::Store>&,
                  int,
                  int,
                  c10::intrusive_ptr<::c10d::ProcessGroupNCCL::Options>>(),
              py::call_guard<py::gil_scoped_release>(),
              py::arg("store"),
              py::arg("rank"),
              py::arg("size"),
              py::arg("options"),
              R"(Create a new ProcessGroupNCCL instance.)")
          .def(
              py::init([](const c10::intrusive_ptr<::c10d::Store>& store,
                          int rank,
                          int size,
                          const std::chrono::milliseconds& timeout) {
                auto options = ::c10d::ProcessGroupNCCL::Options::create();
                options->is_high_priority_stream = false;
                options->timeout = timeout;
                return c10::make_intrusive<::c10d::ProcessGroupNCCL>(
                    store, rank, size, options);
              }),
              py::arg("store"),
              py::arg("rank"),
              py::arg("size"),
              py::arg("timeout") = ::c10d::kProcessGroupNCCLDefaultTimeout,
              py::call_guard<py::gil_scoped_release>(),
              R"(Create a new ProcessGroupNCCL instance.)")
          .def(
              "_shutdown",
              [](const c10::intrusive_ptr<::c10d::ProcessGroupNCCL>& self) {
                return self->shutdown();
              },
              py::call_guard<py::gil_scoped_release>())
          .def("_group_start", &::c10d::ProcessGroupNCCL::groupStart)
          .def("_group_end", &::c10d::ProcessGroupNCCL::groupEnd)
          .def(
              "comm_split_count",
              &::c10d::ProcessGroupNCCL::getCommSplitCounter)
          .def(
              "_set_default_timeout",
              [](const c10::intrusive_ptr<::c10d::ProcessGroupNCCL>& self,
                 std::chrono::milliseconds timeout) {
                self->getOptions()->timeout = timeout;
              },
              py::arg("timeout"),
              py::call_guard<py::gil_scoped_release>())
          .def(
              "_add_ephemeral_timeout",
              [](const c10::intrusive_ptr<::c10d::ProcessGroupNCCL>& self,
                 const std::chrono::milliseconds& timeout) {
                self->addEphemeralTimeout(timeout);
              },
              py::arg("timeout"))
          .def(
              "_verify_work_timeout",
              [](const c10::intrusive_ptr<::c10d::ProcessGroupNCCL>& self,
                 const c10::intrusive_ptr<::c10d::Work>& work,
                 const std::chrono::milliseconds& timeout) {
                return self->verifyWorkTimeoutForTest(work, timeout);
              },
              py::arg("work"),
              py::arg("timeout"))
          .def_property_readonly(
              "options",
              &::c10d::ProcessGroupNCCL::getOptions,
              R"(Return the options used to create this ProcessGroupNCCL instance.)")
          .def_property_readonly(
              "uid", &::c10d::ProcessGroupNCCL::getUid, R"(Return the uid.)")
          .def_property(
              "bound_device_id",
              &::c10d::ProcessGroupNCCL::getBoundDeviceId,
              &::c10d::ProcessGroupNCCL::setBoundDeviceId,
              R"(Return the bound device id.)")
          .def(
              "perform_nocolor_split",
              &::c10d::ProcessGroupNCCL::performNocolorSplit)
          .def("register_mem_pool", &::c10d::ProcessGroupNCCL::registerMemPool)
          .def(
              "deregister_mem_pool",
              &::c10d::ProcessGroupNCCL::deregisterMemPool)
          .def(
              "abort",
              &::c10d::ProcessGroupNCCL::abort,
              py::call_guard<py::gil_scoped_release>(),
              R"(Abort the process group.)")
          .def(
              "_is_initialized",
              &::c10d::ProcessGroupNCCL::isInitialized,
              py::call_guard<py::gil_scoped_release>());

  module.def(
      "_get_intra_node_comm_usage_counter",
      &::c10d::intra_node_comm::getIntraNodeCommUsageCounter);

#ifdef NCCL_HAS_COMM_CTA_CGA
  py::class_<ncclConfig_t>(
      processGroupNCCL,
      "NCCLConfig",
      R"(
ncclConfig_t data type for configuring NCCL communicators.
See https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/types.html#ncclconfig-t
for details.
)")
      .def(py::init<>())
      .def_readwrite("blocking", &ncclConfig_t::blocking)
      .def_readwrite("cga_cluster_size", &ncclConfig_t::cgaClusterSize)
      .def_readwrite("min_ctas", &ncclConfig_t::minCTAs)
      .def_readwrite("max_ctas", &ncclConfig_t::maxCTAs)
#ifdef NCCL_HAS_COMM_SPLIT
      .def_readwrite("split_share", &ncclConfig_t::splitShare)
#endif
      .def_property(
          "net_name",
          [](const ncclConfig_t& self) { return self.netName; },
          // Note: NCCL calls free on the netName pointer
          // when destroying the communicator. So memory
          // shouldn't leak because of allocation in strdup.
          [](ncclConfig_t& self, const char* tmp) {
            self.netName = strdup(tmp);
          });
#endif

  intrusive_ptr_class_<::c10d::ProcessGroupNCCL::Options>(
      processGroupNCCL,
      "Options",
      backendOptions,
      R"(
ProcessGroup options for the NCCL backend

Arguments:
    is_high_priority_stream (bool, optional): flag to enable/disable process
            group to pick up high priority cuda streams. It lets CUDA driver
            to prioritize NCCL kernels when there are compute kernels waiting.
            Default is False.

Attributes:
    config (NCCLConfig): configures NCCL communicators (only avaiable for
            builds using NCCL 2.17+). This can be used to improve
            communication-computation overlap for NCCL kernels by tuning
            available parameters in the config. See
            https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/types.html#ncclconfig-t
            for details.

Example::
    >>> import torch.distributed as dist
    >>>
    >>> nccl_options = dist.ProcessGroupNCCL.Options(is_high_priority_stream=True)
    >>> # For builds using NCCL 2.17+, configure communicators
    >>> nccl_options.config.cga_cluster_size = 2
    >>> nccl_options.config.max_ctas = 4
    >>> nccl_options.config.min_ctas = 2
    >>> nccl_options.config.split_share = 1
    >>> # initialize a nccl process group with the options just created
    >>> dist.init_process_group("nccl", pg_options=nccl_options)
      )")
      .def(py::init<bool>(), py::arg("is_high_priority_stream") = false)
#ifdef NCCL_HAS_COMM_CTA_CGA
      .def_readwrite("config", &::c10d::ProcessGroupNCCL::Options::config)
#endif
      .def_readwrite(
          "is_high_priority_stream",
          &::c10d::ProcessGroupNCCL::Options::is_high_priority_stream)
      .def_readwrite(
          "split_from", &::c10d::ProcessGroupNCCL::Options::split_from)
      .def_readwrite(
          "split_color", &::c10d::ProcessGroupNCCL::Options::split_color)
      .def_readwrite(
          "global_ranks_in_group",
          &::c10d::ProcessGroupNCCL::Options::global_ranks_in_group)
      .def_readwrite(
          "group_name", &::c10d::ProcessGroupNCCL::Options::group_name);
#endif

#ifdef USE_C10D_MPI
  auto processGroupMPI =
      intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupMPI>(
          module, "ProcessGroupMPI", backend);

  // Define static create function instead of a constructor, because
  // this function may return null. This happens if this process is not
  // part of a sub group that is to be created.
  processGroupMPI.def_static(
      "create",
      [](std::vector<int> ranks) {
        return ::c10d::ProcessGroupMPI::createProcessGroupMPI(std::move(ranks));
      },
      py::call_guard<py::gil_scoped_release>());
#endif

#ifdef USE_C10D_XCCL
  auto processGroupXCCL =
      intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupXCCL>(
          module, "ProcessGroupXCCL", backend)
          .def(
              py::init([](const c10::intrusive_ptr<::c10d::Store>& store,
                          int rank,
                          int size) {
                return c10::make_intrusive<::c10d::ProcessGroupXCCL>(
                    store, rank, size);
              }),
              py::arg("store"),
              py::arg("rank"),
              py::arg("size"),
              py::call_guard<py::gil_scoped_release>());
#endif

#ifdef USE_C10D_UCC
  auto processGroupUCC =
      intrusive_ptr_no_gil_destructor_class_<::c10d::ProcessGroupUCC>(
          module, "ProcessGroupUCC", backend)
          .def(
              py::init([](const c10::intrusive_ptr<::c10d::Store>& store,
                          int rank,
                          int size,
                          const std::chrono::milliseconds& timeout) {
                return c10::make_intrusive<::c10d::ProcessGroupUCC>(
                    store, rank, size, timeout);
              }),
              py::arg("store"),
              py::arg("rank"),
              py::arg("size"),
              py::arg("timeout") = kProcessGroupDefaultTimeout,
              py::call_guard<py::gil_scoped_release>());
#endif

  py::enum_<::c10d::OpType>(module, "OpType")
      .value("BROADCAST", ::c10d::OpType::BROADCAST)
      .value("ALLREDUCE", ::c10d::OpType::ALLREDUCE)
      .value("ALLREDUCE_COALESCED", ::c10d::OpType::ALLREDUCE_COALESCED)
      .value("REDUCE", ::c10d::OpType::REDUCE)
      .value("ALLGATHER", ::c10d::OpType::ALLGATHER)
      .value("_ALLGATHER_BASE", ::c10d::OpType::_ALLGATHER_BASE)
      .value("ALLGATHER_COALESCED", ::c10d::OpType::ALLGATHER_COALESCED)
      .value("GATHER", ::c10d::OpType::GATHER)
      .value("SCATTER", ::c10d::OpType::SCATTER)
      .value("REDUCE_SCATTER", ::c10d::OpType::REDUCE_SCATTER)
      .value("ALLTOALL_BASE", ::c10d::OpType::ALLTOALL_BASE)
      .value("ALLTOALL", ::c10d::OpType::ALLTOALL)
      .value("SEND", ::c10d::OpType::SEND)
      .value("RECV", ::c10d::OpType::RECV)
      .value("RECVANYSOURCE", ::c10d::OpType::RECVANYSOURCE)
      .value("BARRIER", ::c10d::OpType::BARRIER)
      .value("_REDUCE_SCATTER_BASE", ::c10d::OpType::_REDUCE_SCATTER_BASE)
      .value("COALESCED", ::c10d::OpType::COALESCED)
      .value("_ALLREDUCE_SPARSE", ::c10d::OpType::_ALLREDUCE_SPARSE)
      .value("UNKNOWN", ::c10d::OpType::UNKNOWN);

  py::enum_<::c10d::WorkResult>(module, "WorkResult")
      .value("SUCCESS", ::c10d::WorkResult::SUCCESS)
      .value("TIMEOUT", ::c10d::WorkResult::TIMEOUT)
      .value("COMM_ERROR", ::c10d::WorkResult::COMM_ERROR)
      .value("UNKNOWN", ::c10d::WorkResult::UNKNOWN);

  py::class_<::c10d::WorkInfo, std::shared_ptr<::c10d::WorkInfo>>(
      module, "WorkInfo")
      .def_readonly("op_type", &::c10d::WorkInfo::opType)
      .def_readonly("seq", &::c10d::WorkInfo::seq)
      .def_readonly("time_started", &::c10d::WorkInfo::timeStarted)
      .def_readonly("time_finished", &::c10d::WorkInfo::timeFinished)
      .def_readonly("active_duration", &::c10d::WorkInfo::activeDuration);

  py::class_<
      ::c10d::Work,
      c10::intrusive_ptr<::c10d::Work>,
      ::c10d::PyProcessGroup::PyWork>(module, "Work", R"(
A `Work` object represents the handle to a pending asynchronous operation in
PyTorch's distributed package. It is returned by non-blocking collective operations,
such as `dist.all_reduce(tensor, async_op=True)`.
)")
      .def(py::init<>())
      .def("is_completed", &::c10d::Work::isCompleted)
      .def(
          "is_success",
          [](::c10d::Work& work) -> bool {
            TORCH_WARN_ONCE(
                fmt::format(kDeprecationWarning, "Work::is_success"));
            return work.isSuccess();
          })
      .def(
          "exception",
          [](::c10d::Work& work) -> std::exception_ptr {
            TORCH_WARN_ONCE(
                fmt::format(kDeprecationWarning, "Work::exception"));
            return work.exception();
          })
      .def(
          "source_rank",
          [](::c10d::Work& work) -> int {
            TORCH_WARN_ONCE(
                fmt::format(kDeprecationWarning, "Work::source_rank"));
            return work.sourceRank();
          })
      .def("_source_rank", &::c10d::Work::sourceRank)
      .def(
          "result",
          [](::c10d::Work& work) -> std::vector<at::Tensor> {
            // Deprecation reason:
            // Work.result() returns a vector of tensors. This signature is
            // problematic as some collectives may just return one tensor
            // (e.g all-reduce), while some others may return multiple
            // tensors (e.g. all-gather).
            // Deprecating work.result() would
            // also allow us to remove the `outputs_` field in the Work
            // class, avoiding an "artificial" reference to the tensors,
            // which could potentially hold up the tensors' memory.
            TORCH_WARN_ONCE(fmt::format(kDeprecationWarning, "Work::result"));
            return work.result();
          })
      .def(
          "synchronize",
          [](::c10d::Work& work) -> void {
            TORCH_WARN_ONCE(
                fmt::format(kDeprecationWarning, "Work::synchronize"));
            work.synchronize();
          })
      .def(
          "wait",
          &::c10d::Work::wait,
          py::arg("timeout") = kNoTimeout,
          py::call_guard<py::gil_scoped_release>(),
          R"(
              Returns:
                  true/false.

              Example::
                 try:
                     work.wait(timeout)
                 except:
                     # some handling

              .. warning ::
                  In normal cases, users do not need to set the timeout.
                  calling wait() is the same as calling synchronize():
                  Letting the current stream block on the completion of the NCCL work.
                  However, if timeout is set, it will block the CPU thread until the NCCL work is completed
                  or timed out. If timeout, exception will be thrown.
            )")
      .def(
          "get_future_result",
          [](::c10d::Work& work) -> std::shared_ptr<jit::PythonFutureWrapper> {
            return std::make_shared<jit::PythonFutureWrapper>(
                work.getFutureResult());
          },
          R"(
            Returns:
                A ``torch.futures.Future`` object of int type which maps to the enum type of WorkResult
                As an example, a future object can be retrieved
                by ``fut = process_group.allreduce(tensor).get_future_result()``.

            Example::
                users can use ``fut.wait()`` to blocking wait for the completion of the work and
                get the WorkResult by ``fut.value()``.
                Also, users can use ``fut.then(call_back_func)`` to register a callback function to be called
                when the work is completed, without blocking the current thread.

            .. warning ::
                ``get_future_result`` API supports NCCL
           )")
      .def(
          "get_future",
          [](::c10d::Work& work) -> std::shared_ptr<jit::PythonFutureWrapper> {
            return std::make_shared<jit::PythonFutureWrapper>(work.getFuture());
          },
          R"(
            Returns:
                A ``torch.futures.Future`` object which is associated with the completion of
                the ``Work``. As an example, a future object can be retrieved
                by ``fut = process_group.allreduce(tensors).get_future()``.

            Example::
                Below is an example of a simple allreduce DDP communication hook that uses
                ``get_future` API to retrieve a Future associated with the completion of
                ``allreduce``.

                >>> def allreduce(process_group: dist.ProcessGroup, bucket: dist.GradBucket): -> torch.futures.Future
                >>>     group_to_use = process_group if process_group is not None else torch.distributed.group.WORLD
                >>>     tensor = bucket.buffer().div_(group_to_use.size())
                >>>     return torch.distributed.all_reduce(tensor, group=group_to_use, async_op=True).get_future()
                >>> ddp_model.register_comm_hook(state=None, hook=allreduce)

            .. warning ::
                ``get_future`` API supports NCCL, and partially GLOO and MPI backends
                (no support for peer-to-peer operations like send/recv) and will return a ``torch.futures.Future``.

                In the example above, ``allreduce`` work will be done on GPU using NCCL backend,
                ``fut.wait()`` will return after synchronizing the appropriate NCCL streams
                with PyTorch's current device streams to ensure we can have asynchronous CUDA
                execution and it does not wait for the entire operation to complete on GPU. Note that
                ``CUDAFuture``  does not support ``TORCH_NCCL_BLOCKING_WAIT`` flag or NCCL's ``barrier()``.
                In addition, if a callback function was added by ``fut.then()``, it will wait until
                ``WorkNCCL``'s NCCL streams synchronize with ``ProcessGroupNCCL``'s dedicated callback
                stream and invoke the callback inline after running the callback on the callback stream.
                ``fut.then()`` will return another ``CUDAFuture`` that holds the return value of the
                callback and a ``CUDAEvent`` that recorded the callback stream.

                    1. For CPU work, ``fut.done()`` returns true when work has been completed and value()
                       tensors are ready.
                    2. For GPU work, ``fut.done()`` returns true only whether the operation has been enqueued.
                    3. For mixed CPU-GPU work (e.g. sending GPU tensors with GLOO), ``fut.done()`` returns
                       true when tensors have arrived on respective nodes, but not yet necessarily synched on
                       respective GPUs (similarly to GPU work).
           )")
      .def(
          "_get_op_type",
          [](::c10d::Work& work) -> int {
            return static_cast<int>(work.retrieveOpType());
          })
      .def(
          "_get_duration",
          &::c10d::Work::getDuration,
          py::call_guard<py::gil_scoped_release>(),
          R"(
              Returns:
                  Duration of the corresponding collective communication.

              .. warning ::
                  This API only works for NCCL backend for now and must set
                  TORCH_NCCL_ENABLE_TIMING environment variable.
            )")
      .def(
          "boxed",
          [](c10::intrusive_ptr<::c10d::Work> self) {
            return torch::jit::toPyObject(c10::IValue(std::move(self)));
          })
      .def_static("unbox", [](py::object obj) {
        auto typePtr =
            torch::getCustomClass("__torch__.torch.classes.c10d.Work");
        auto ivalue = torch::jit::toIValue(std::move(obj), typePtr);
        return ivalue.toCustomClass<::c10d::Work>();
      });

  auto fakeProcessGroup =
      intrusive_ptr_no_gil_destructor_class_<::c10d::FakeProcessGroup>(
          module, "FakeProcessGroup", backend)
          .def(
              py::init([](int rank, int size) {
                return c10::make_intrusive<::c10d::FakeProcessGroup>(
                    rank, size);
              }),
              py::arg("rank"),
              py::arg("world_size"));

  py::class_<c10::DDPLoggingData>(module, "DDPLoggingData")
      .def(py::init<>())
      .def_readwrite("strs_map", &c10::DDPLoggingData::strs_map)
      .def_readwrite("ints_map", &c10::DDPLoggingData::ints_map);

  module.def(
      "_compute_bucket_assignment_by_size",
      [](const std::vector<at::Tensor>& tensors,
         const std::vector<size_t>& bucket_size_limits,
         const std::vector<bool>& expect_sparse_gradient,
         const std::vector<int64_t>& tensor_indices,
         const std::optional<std::shared_ptr<::c10d::Logger>>& logger) {
        if (logger.has_value()) {
          std::weak_ptr<::c10d::Logger> logger_weakref = logger.value();
          return ::c10d::compute_bucket_assignment_by_size(
              tensors,
              bucket_size_limits,
              expect_sparse_gradient,
              tensor_indices,
              {logger_weakref});
        } else {
          return ::c10d::compute_bucket_assignment_by_size(
              tensors,
              bucket_size_limits,
              expect_sparse_gradient,
              tensor_indices,
              {});
        }
      },
      py::arg("tensors"),
      py::arg("bucket_size"),
      py::arg("expect_sparse_gradient") = std::vector<bool>(),
      py::arg("tensor_indices") = std::vector<int64_t>(),
      py::arg("logger") = std::optional<std::shared_ptr<::c10d::Logger>>{},
      py::call_guard<py::gil_scoped_release>());

  module.def(
      "_verify_params_across_processes",
      [](const c10::intrusive_ptr<::c10d::ProcessGroup>& process_group,
         const std::vector<at::Tensor>& params,
         const std::optional<std::shared_ptr<::c10d::Logger>>& logger) {
        if (logger.has_value()) {
          std::weak_ptr<::c10d::Logger> logger_weakref = logger.value();
          verify_params_across_processes(
              process_group, params, {logger_weakref});
        } else {
          verify_params_across_processes(process_group, params, {});
        }
      },
      py::arg("process_group"),
      py::arg("params"),
      py::arg("logger") = std::optional<std::shared_ptr<::c10d::Logger>>{},
      py::call_guard<py::gil_scoped_release>());

  module.def(
      "_broadcast_coalesced",
      // Define a lambda such that the pybind11 prototype can take a std::vector
      // for the tensor list argument, but still pass it to the underlying
      // function as a c10::ArrayRef.
      [](const c10::intrusive_ptr<::c10d::ProcessGroup>& process_group,
         const std::vector<at::Tensor>& tensors,
         size_t buffer_size,
         int rank) {
        broadcast_coalesced(process_group, tensors, buffer_size, rank);
      },
      py::arg("process_group"),
      py::arg("tensors"),
      py::arg("buffer_size"),
      // The source of truth rank to broadcast the tensors from.
      py::arg("src") = 0,
      py::call_guard<py::gil_scoped_release>());

  module.def(
      "_test_python_store",
      // Define a function that takes a c10d store and runs a few tests.
      // This is used by the PythonStore tests, which we cannot test from the
      // Python side of the world. Calling Python functions on a Python object
      // completely bypasses pybind11. We need to test that the overloaded
      // functions call into Python and behave like we expect.
      [](c10::intrusive_ptr<::c10d::Store> store) {
        auto add = [&store](const std::string& key, int64_t value) {
          store->add(key, value);
        };

        auto set = [&store](const std::string& key, const std::string& value) {
          store->set(key, value);
        };

        auto get = [&store](const std::string& key) {
          auto value = store->get(key);
          return std::string(value.begin(), value.end());
        };

        add("key", 1);
        add("key", 2);
        add("key", 3);
        set("key0", "value0");
        add("key3", 1);
        set("key1", "value1");
        add("key3", 2);
        set("key2", "value2");
        add("key3", 3);
        add("key3", 4);
        add("key3", 3);
        add("key3", 2);
        if (get("key") != "6") {
          TORCH_CHECK(false, "assertion failed");
        }
        if (get("key0") != "value0") {
          TORCH_CHECK(false, "assertion failed");
        }
        if (get("key1") != "value1") {
          TORCH_CHECK(false, "assertion failed");
        }
        if (get("key2") != "value2") {
          TORCH_CHECK(false, "assertion failed");
        }
        if (get("key3") != "15") {
          TORCH_CHECK(false, "assertion failed");
        }
      },
      py::call_guard<py::gil_scoped_release>());

  module.attr("_DEFAULT_FIRST_BUCKET_BYTES") = ::c10d::kDefaultFirstBucketBytes;
  module.attr("_DEFAULT_PG_TIMEOUT") = py::cast(kProcessGroupDefaultTimeout);
#ifdef USE_C10D_NCCL
  module.attr("_DEFAULT_PG_NCCL_TIMEOUT") =
      py::cast(::c10d::kProcessGroupNCCLDefaultTimeout);
#endif
  module.attr("_DEFAULT_NO_TIMEOUT") = py::cast(kNoTimeout);

  module.def(
      "_set_global_rank",
      [](int64_t rank) { c10::SetGlobalRank(rank); },
      py::arg("rank"),
      R"(
        Arguments:
          rank(int): The rank of the default process group
        Informs the C++ runtime what the default process group (a strictly Python
        notion) is.  This mostly ensures that C++ log messages are prefixed with
        rank information.  This is not meant to be called manually; it is
        called by _update_default_pg.
      )");

  module.def(
      "_create_work_from_future",
      [](const std::shared_ptr<jit::PythonFutureWrapper>& future) {
        return ::c10d::Work::create_from_future(future->fut);
      },
      py::arg("future"),
      R"(
        Arguments:
            future(str): The future to wrap.
        Returns:
            A ``Work`` object which is associated with the completion of
            the ``torch.futures.Future``.
        This is the preferred way of constructing Work objects when writing a custom ProcessGroup
        in python.
        Example::
            >>> class SingleRankProcessGroup(torch.distributed.ProcessGroup):
            >>>     def broadcast(self, tensor_list, opts):
            >>>         fut = torch.futures.Future()
            >>>         fut.set_result(tensor_list)
            >>>         return torch._C._distributed_c10d._create_work_from_future(fut)
        .. warning ::
            This API is experimental and subject to change.
            The returned Work object has multiple limitations:
            - synchronize() does nothing. Use ``torch.futures.Future`` based synchronization.
            - wait() ignored timeout argument.
            - sourceRank() raises.
            - abort() raises.
            The provided Future object result must be a Tensor or a list of Tensors.
           )");

#ifdef USE_C10D_NCCL
  module.def(
      "_hash_tensors",
      [](const std::vector<at::Tensor>& tensors) {
        return ::c10d::hashTensors(tensors);
      },
      py::arg("tensors"),
      R"(
        Arguments:
          tensors(List[torch.Tensor]): List of tensors we want to hash.
      )");
  module.def(
      "_dump_nccl_trace_json",
      [](std::optional<bool> includeCollectives,
         std::optional<bool> onlyActive) {
        return py::bytes(::c10d::dump_nccl_trace_json(
            includeCollectives.value_or(true), onlyActive.value_or(false)));
      },
      py::arg("includeCollectives") = std::optional<bool>(),
      py::arg("onlyActive") = std::optional<bool>(),
      R"(
      Arguments:
            includeCollectives(bool, optional): Whether to include collective work traces. Default is True.
            onlyActive (bool, optional): Whether to only include active collective work traces. Default is False.
      Returns:
            Stringified json work traces.
            Default settings return everything - i.e. contains NCCL comm dumps and collective traces.
      )");
  module.def(
      "_dump_nccl_trace",
      [](std::optional<bool> includeCollectives,
         std::optional<bool> includeStackTraces,
         std::optional<bool> onlyActive) {
        return py::bytes(::c10d::dump_nccl_trace(
            includeCollectives.value_or(true),
            includeStackTraces.value_or(true),
            onlyActive.value_or(false)));
      },
      py::arg("includeCollectives") = std::optional<bool>(),
      py::arg("includeStackTraces") = std::optional<bool>(),
      py::arg("onlyActive") = std::optional<bool>(),
      R"(
        Arguments:
            includeCollectives(bool, optional): Whether to include collective work traces. Default is True.
            includeStackTraces(bool, optional): Whether to include stacktraces in the collective work traces. Default is True.
            onlyActive (bool, optional): Whether to only include active collective work traces. Default is False.
        Returns:
            Stringified pickle work traces.
            Default settings return everything - i.e. contains NCCL comm dumps and collective traces.
      )");
#endif

  intrusive_ptr_class_<::c10d::control_plane::WorkerServer>(
      module, "_WorkerServer", R"(
)")
      .def(
          py::init([](const std::string& hostOrFile, int port) {
            return c10::make_intrusive<::c10d::control_plane::WorkerServer>(
                hostOrFile, port);
          }),
          py::arg("host_or_file"),
          py::arg("port") = -1)
      .def("shutdown", &::c10d::control_plane::WorkerServer::shutdown);

  module.def(
      "_get_handler",
      [](const std::string& name) -> py::cpp_function {
        return py::cpp_function(
            ::c10d::control_plane::getHandler(name),
            py::arg("request"),
            py::arg("response"),
            py::call_guard<py::gil_scoped_release>());
      },
      py::arg("name"),
      R"(
      Returns the handler with the specified name.
    )");

  module.def(
      "_get_handler_names",
      &::c10d::control_plane::getHandlerNames,
      R"(
      Returns the names of all handlers.
    )",
      py::call_guard<py::gil_scoped_release>());

  py::class_<::c10d::control_plane::Request, PythonRequest>(
      module,
      "_Request",
      R"(
      See c10d::control_plane::Request for docs.
)")
      // Default constructor.
      .def(py::init<>())
      .def("body", &::c10d::control_plane::Request::body)
      .def("params", &::c10d::control_plane::Request::params);

  py::class_<
      ::c10d::control_plane::Response,
      std::shared_ptr<::c10d::control_plane::Response>,
      PythonResponse>(
      module,
      "_Response",
      R"(
      See c10d::control_plane::Response for docs.
)")
      // Default constructor.
      .def(py::init<>())
      .def(
          "set_content",
          &::c10d::control_plane::Response::setContent,
          py::arg("content"),
          py::arg("content_type"))
      .def(
          "set_status",
          &::c10d::control_plane::Response::setStatus,
          py::arg("status"));

  Py_RETURN_TRUE;
}

#undef PROCESS_GROUP_DEPRECATION_WARNING

} // namespace

// c10d methods on torch._C
static PyMethodDef methods[] = { // NOLINT
    {"_c10d_init", c10d_init, METH_NOARGS, nullptr},
    {nullptr, nullptr, 0, nullptr}};

// NOLINTNEXTLINE(misc-use-internal-linkage)
PyMethodDef* python_functions() {
  return methods;
}

} // namespace torch::distributed::c10d