1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
#include <torch/csrc/dynamo/python_compiled_autograd.h>
#include <torch/csrc/autograd/engine.h>
#include <torch/csrc/autograd/functions/accumulate_grad.h>
#include <torch/csrc/autograd/python_function.h>
#include <torch/csrc/dynamo/compiled_autograd.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/pythoncapi_compat.h>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
/*
[Note: Compiled Autograd]
Compiled autograd replaces the standard autograd engine by converting
the autograd graph to an FX graph that can be torch.compiled. It caches
this conversion using a shadow graph. We compare the new graph to the
shadow graph by walking the two graphs simultaneously and computing a
CacheKey for each original node to find the next edge in the shadow graph.
Two different graphs might have a shared common prefix in the shadow
graph, but then diverge at the first difference. Tensors, SavedVariables,
and SymInt found stored on the nodes in the autograd graph are lifted to
become inputs to the graph. All other properties (ints, floats, types,
etc.) are specialized using the CacheKey and will result in landing on
a different cache node in the shadow graph if some property differs.
To interact with the (hundreds) of different autograd::Node types,
we use a visitor pattern that walks each Node structure recursively.
- The first pass, compiled_args/collect, extracts all the inputs to the
graph and builds a CacheKey for us to specialize on. On a cache hit,
we stop here and this is the only pass.
- On a cache miss, a second pass kicks in to extract the FX graph using
apply_with_saved, which uses another visitor pattern. The before()
visitor swaps out all the Tensors, SavedVariables, and SymInt for
fake/symbolic versions to allow tracing. We then run the standard apply()
method, and after() restores things to how we found them.
When we see tensor hooks, we record them directly in the output graph
without tracing into them. We do this to avoid executing unsafe code
at trace time.
Notes:
- We require hooks to not change shapes of tensors.
- We require non-hook autograd nodes to be tracable.
*/
namespace torch::dynamo::autograd {
using c10::SymInt;
static PyObject* wrap_int_list(const std::vector<int64_t>& inputs) {
PyObject* pyinput = PyTuple_New(static_cast<Py_ssize_t>(inputs.size()));
for (const auto i : c10::irange(inputs.size())) {
PyTuple_SET_ITEM(pyinput, i, PyLong_FromSsize_t(inputs[i]));
}
return pyinput;
}
static PyObject* convert_hook_list(std::vector<c10::SafePyObject>& inputs) {
// inplace, consumes the input hooks
PyObject* pyinput = PyTuple_New(static_cast<Py_ssize_t>(inputs.size()));
for (const auto i : c10::irange(inputs.size())) {
PyTuple_SET_ITEM(pyinput, i, inputs[i].release());
}
return pyinput;
}
// see https://github.com/pytorch/pytorch/pull/34845
static void throw_python_error() {
python_error err;
err.persist();
// NOLINTNEXTLINE(misc-throw-by-value-catch-by-reference)
throw err;
}
static PyObject* check(PyObject* pyresult) {
if (C10_UNLIKELY(pyresult == nullptr)) {
throw_python_error();
}
return pyresult;
}
static void check(bool result) {
if (C10_UNLIKELY(!result))
check(nullptr);
}
// snapshot of python verbose logging toggle
static PyObject* python_verbose_logger = nullptr;
struct PythonLogger {
PythonLogger() = delete;
explicit PythonLogger(PyObject* logger) : logger_(logger) {
TORCH_INTERNAL_ASSERT(logger_ != nullptr);
}
enum Level : unsigned int {
DEBUG = 0,
INFO = 1,
WARNING = 2,
ERROR = 3,
CRITICAL = 4,
COUNT // Keep this as the last enum
};
// must be called while GIL is held
void log(Level level, std::string_view msg) const {
THPObjectPtr pymethod(PyUnicode_FromString(levelNames_[level].data()));
TORCH_INTERNAL_ASSERT(pymethod != nullptr);
THPObjectPtr pyfunc(PyObject_GetAttr(logger_, pymethod.get()));
if (pyfunc == nullptr) {
throw_python_error();
}
PyObject* result = PyObject_CallFunction(pyfunc.get(), "s", msg.data());
if (result == nullptr) {
throw_python_error();
}
}
private:
static constexpr std::array<std::string_view, COUNT> levelNames_ = {
"debug", // Level::DEBUG
"info", // Level::INFO
"warning", // Level::WARNING
"error", // Level::ERROR
"critical" // Level::CRITICAL
};
// Note: logger_ must stay valid for the lifetime of this object
PyObject* logger_;
};
struct VerboseLogger : public PythonLogger {
static std::optional<VerboseLogger> maybe_create() {
if (python_verbose_logger == nullptr) {
return std::nullopt;
}
return VerboseLogger(python_verbose_logger);
}
VerboseLogger(PyObject* vlogger) : PythonLogger(vlogger) {}
void log_node_check(
const Node& fn,
size_t size_inputs_num,
std::unordered_set<CacheKey> cached_keys,
const CacheKey& key,
size_t node_idx) {
std::string node_name =
fn.name() + " (NodeCall " + std::to_string(node_idx) + ")";
if (size_inputs_num > 0) {
cumulative_sizes_per_node[size_inputs_num] = node_name;
}
if (!logged_node_miss && cached_keys.find(key) == cached_keys.end()) {
_log_node_miss(typeid(fn), cached_keys, key, node_name);
logged_node_miss = true;
}
}
void _log_node_miss(
const std::type_info& node_type,
std::unordered_set<CacheKey> cached_keys,
const CacheKey& key,
const std::string& node_name) const {
std::ostringstream oss;
oss << "Cache miss due to new autograd node: " << node_name
<< " with key size " << std::to_string(key.key_size)
<< ", previous key sizes=[";
for (auto it = cached_keys.begin(); it != cached_keys.end(); it++) {
if (it->node_type != node_type) {
continue;
}
oss << it->key_size;
if (std::next(it) != cached_keys.end()) {
oss << ",";
}
}
oss << "]";
log(PythonLogger::DEBUG, oss.str());
}
void log_dynamic_shapes_check(size_t size_idx) const {
if (cumulative_sizes_per_node.empty()) {
return;
}
auto it = cumulative_sizes_per_node.lower_bound(size_idx);
TORCH_CHECK(it != cumulative_sizes_per_node.end());
size_t start_idx =
it == cumulative_sizes_per_node.begin() ? 0 : std::prev(it)->first;
log(PythonLogger::DEBUG,
"Cache miss due to changed shapes: marking size idx " +
std::to_string(size_idx - start_idx) + " of " + it->second +
" as dynamic");
}
// track which size index belongs to which node
std::map<size_t, std::string> cumulative_sizes_per_node;
// only log cache miss due to node key once
bool logged_node_miss = false;
};
struct CacheNode {
// A node in the shadow graph, we follow next edges until we reach the end of
// the graph
static CacheNode* root() {
static CacheNode _root;
return &_root;
}
CacheNode* lookup(const CacheKey& key, bool create = true) {
auto it = next.find(key);
if (it == next.end()) {
if (!create)
return nullptr;
// caller's key is in temporary memory, must copy it
CacheKeyBuffer buffer(key.key, key.key_size);
CacheKey key_with_storage(key.node_type, buffer.get(), key.key_size);
it = next.emplace(key_with_storage, std::make_unique<CacheNode>()).first;
key_storage.emplace_back(std::move(buffer));
}
return it->second.get();
}
void clear() {
next.clear();
key_storage.clear();
expected_sizes.clear();
runtime_wrapper = nullptr;
compiled_fn = nullptr;
}
bool is_empty() const {
return next.empty() && !compiled_fn;
}
CacheNode() : runtime_wrapper(nullptr), compiled_fn(nullptr) {}
~CacheNode() {
if (!Py_IsInitialized()) {
// leak on shutdown
runtime_wrapper.release();
compiled_fn.release();
}
}
CacheNode(CacheNode&&) = delete;
CacheNode(const CacheNode&) = delete;
CacheNode& operator=(const CacheNode&) = delete;
CacheNode& operator=(CacheNode&&) = delete;
bool check_dynamic_sizes(
AutogradCompilerCall& call,
const std::optional<VerboseLogger>& vlogger) {
/*
We start off by assuming everything is static, then we mark things
as dynamic when we see them change. This function:
1) Checks for a cache hit
2) Updates expected_sizes to track what is dynamic
3) Populates call.dyn_size_inputs by filtering call.all_size_inputs
*/
bool cache_hit = compiled_fn.get() != nullptr;
auto len = call.all_size_inputs.size();
const SizeInput* data = call.all_size_inputs.data();
if (expected_sizes.empty()) {
expected_sizes.reserve(len);
for (const auto i : c10::irange(len)) {
expected_sizes.emplace_back(data[i]);
}
}
TORCH_INTERNAL_ASSERT(expected_sizes.size() == call.all_size_inputs.size());
if (!call.size_input_origins.empty()) {
TORCH_INTERNAL_ASSERT(
call.all_size_inputs.size() == call.size_input_origins.size());
}
std::vector<uint32_t> dynamic_size_input_origins;
dynamic_size_input_origins.reserve(len);
for (const auto i : c10::irange(len)) {
auto& expected = expected_sizes[i];
bool was_dynamic = expected.dyn_type == SizeInput::DYNAMIC;
bool changed_value = expected.value != data[i].value;
if (changed_value) {
if (!was_dynamic) {
cache_hit = false;
if (vlogger.has_value()) {
vlogger->log_dynamic_shapes_check(i);
}
}
expected = SizeInput(SizeInput::DYNAMIC, data[i].value);
}
if (changed_value || was_dynamic) {
if (call.dyn_size_inputs.empty()) {
call.dyn_size_inputs.reserve(len);
}
call.dyn_size_inputs.emplace_back(data[i].value);
if (!call.size_input_origins.empty()) {
dynamic_size_input_origins.emplace_back(call.size_input_origins[i]);
}
}
}
call.size_input_origins = std::move(dynamic_size_input_origins);
if (!cache_hit) {
// we missed cache because static size inputs didn't match; force
// recompilation with the varying size input as dynamic
runtime_wrapper = nullptr;
compiled_fn = nullptr;
}
return cache_hit;
}
PyObject* wrap_dynamic_inputs() const {
size_t dynamic_count = 0;
size_t idx = 0;
for (const auto& i : expected_sizes) {
if (i.dyn_type == SizeInput::DYNAMIC) {
++dynamic_count;
}
}
PyObject* pyinput = PyTuple_New(static_cast<Py_ssize_t>(dynamic_count));
for (const auto& i : expected_sizes) {
if (i.dyn_type == SizeInput::DYNAMIC) {
PyTuple_SET_ITEM(pyinput, idx++, PyLong_FromSsize_t(i.value));
}
}
TORCH_INTERNAL_ASSERT(idx == dynamic_count);
return pyinput;
}
std::vector<std::optional<SymInt>> unwrap_dynamic_inputs(
PyObject* pyresult) const {
TORCH_INTERNAL_ASSERT(PyList_CheckExact(pyresult));
size_t idx = 0;
size_t result_len = PyList_GET_SIZE(pyresult);
std::vector<std::optional<SymInt>> result;
result.reserve(expected_sizes.size());
for (const auto& i : expected_sizes) {
if (i.dyn_type == SizeInput::DYNAMIC) {
TORCH_INTERNAL_ASSERT(idx < result_len);
result.emplace_back(
py::cast<c10::SymInt>(PyList_GET_ITEM(pyresult, idx++)));
} else {
result.emplace_back();
}
}
TORCH_INTERNAL_ASSERT(
idx == result_len && result.size() == expected_sizes.size());
return result;
}
std::unordered_map<CacheKey, std::unique_ptr<CacheNode>> next;
std::vector<CacheKeyBuffer> key_storage;
std::vector<SizeInput> expected_sizes;
THPObjectPtr runtime_wrapper;
THPObjectPtr compiled_fn;
};
struct InputBuffers : public std::unordered_map<Node*, InputBuffer> {
InputBuffer& lookup(Node* function) {
auto it = emplace(function, InputBuffer(function->num_inputs())).first;
return it->second;
}
};
static PyObject* the_autograd_compiler = nullptr;
static int default_dyn_type_int = 0;
static PyObject* set_autograd_compiler(PyObject* dummy, PyObject* args);
static PyObject* clear_cache(PyObject* dummy, PyObject* args) {
HANDLE_TH_ERRORS;
CacheNode::root()->clear();
Py_RETURN_NONE;
END_HANDLE_TH_ERRORS;
}
static PyObject* is_cache_empty(PyObject* dummy, PyObject* args) {
HANDLE_TH_ERRORS;
if (CacheNode::root()->is_empty()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
END_HANDLE_TH_ERRORS;
}
static PyObject* set_verbose_logger(PyObject* dummy, PyObject* args) {
HANDLE_TH_ERRORS;
PyObject* logger = nullptr;
if (!PyArg_ParseTuple(args, "O", &logger)) {
throw_python_error();
}
if (logger == Py_None) {
python_verbose_logger = nullptr;
} else {
python_verbose_logger = logger;
}
Py_RETURN_TRUE;
END_HANDLE_TH_ERRORS;
}
// NOLINTNEXTLINE(*array*)
static PyMethodDef _methods[] = {
{"set_autograd_compiler", set_autograd_compiler, METH_VARARGS, nullptr},
{"clear_cache", clear_cache, METH_NOARGS, nullptr},
{"is_cache_empty", is_cache_empty, METH_NOARGS, nullptr},
{"set_verbose_logger", set_verbose_logger, METH_VARARGS, nullptr},
{nullptr, nullptr, 0, nullptr}};
static struct PyModuleDef _module = {
PyModuleDef_HEAD_INIT,
"torch._C._dynamo.autograd_compiler",
"Hooks for compiling autograd",
-1,
_methods};
PyObject* wrap_lifted_ivalue_args(
const std::vector<LiftedIValueArg>& lifted_ivalue_args) {
PyObject* pyivalueargs =
PyList_New(static_cast<Py_ssize_t>(lifted_ivalue_args.size()));
size_t idx = 0;
for (const auto& arg : lifted_ivalue_args) {
if (arg.actual_ptr->isInt() || arg.actual_ptr->isSymInt()) {
PyList_SET_ITEM(
pyivalueargs, idx++, PyLong_FromSsize_t(arg.actual_ptr->toInt()));
} else if (arg.actual_ptr->isDouble() || arg.actual_ptr->isSymFloat()) {
PyList_SET_ITEM(
pyivalueargs, idx++, PyFloat_FromDouble(arg.actual_ptr->toDouble()));
} else {
TORCH_INTERNAL_ASSERT(false, "Unexpected lifted ivalue type");
}
}
return pyivalueargs;
}
PyObject* wrap_node_origins(
const AutogradCompilerCall& compiler,
size_t dynamic_sizes) {
TORCH_INTERNAL_ASSERT(
compiler.tensor_args.input_origins.empty() ||
(compiler.tensor_args.input_origins.size() ==
compiler.tensor_args.inputs.size()));
TORCH_INTERNAL_ASSERT(
compiler.size_input_origins.empty() ||
(compiler.size_input_origins.size() == dynamic_sizes));
TORCH_INTERNAL_ASSERT(
compiler.lifted_ivalue_args.args_origins.empty() ||
(compiler.lifted_ivalue_args.args_origins.size() ==
compiler.lifted_ivalue_args.args.size()));
PyObject* pyallorigins = PyList_New(3);
size_t next = 0;
for (const std::vector<uint32_t>& vec :
{compiler.tensor_args.input_origins,
compiler.size_input_origins,
compiler.lifted_ivalue_args.args_origins}) {
PyObject* pyorigins = PyList_New(static_cast<Py_ssize_t>(vec.size()));
for (const auto i : c10::irange(vec.size())) {
uint32_t node_id = vec[i];
PyObject* pyorigin = PyTuple_Pack(
2,
THPUtils_packUInt32(node_id),
PyUnicode_FromString(
compiler.node_calls.lookup(node_id).node->name().c_str()));
PyList_SET_ITEM(pyorigins, i, pyorigin);
}
PyList_SET_ITEM(pyallorigins, next++, pyorigins);
}
return pyallorigins;
}
void set_ivalue_proxies(
PyObject* fake_ivalue_args,
std::vector<LiftedIValueArg>& lifted_ivalue_args) {
TORCH_INTERNAL_ASSERT(PyList_Check(fake_ivalue_args));
TORCH_INTERNAL_ASSERT(
static_cast<size_t>(PyList_Size(fake_ivalue_args)) ==
lifted_ivalue_args.size());
for (const auto& i : c10::irange(lifted_ivalue_args.size())) {
auto& arg = lifted_ivalue_args[i];
if (arg.actual_ptr->isInt() || arg.actual_ptr->isSymInt()) {
arg.proxy = at::IValue(
py::cast<c10::SymInt>(PyList_GET_ITEM(fake_ivalue_args, i)));
TORCH_INTERNAL_ASSERT(arg.proxy.isSymInt());
} else if (arg.actual_ptr->isDouble() || arg.actual_ptr->isSymFloat()) {
arg.proxy = at::IValue(
py::cast<c10::SymFloat>(PyList_GET_ITEM(fake_ivalue_args, i)));
} else {
TORCH_INTERNAL_ASSERT(false, "Unexpected lifted ivalue type");
}
}
}
static TraceState call_begin_capture(
PyObject* self,
CacheNode& cache,
AutogradCompilerCall& compiler_call,
size_t num_outputs) {
static PyObject* method_name = PyUnicode_InternFromString("begin_capture");
THPObjectPtr pyinput(THPVariable_WrapList(compiler_call.tensor_args.inputs));
THPObjectPtr pysizeinput(cache.wrap_dynamic_inputs());
THPObjectPtr pyivalueargsinput(
wrap_lifted_ivalue_args(compiler_call.lifted_ivalue_args.args));
THPObjectPtr pynodeorigins(
wrap_node_origins(compiler_call, PyTuple_GET_SIZE(pysizeinput.get())));
THPObjectPtr pyresult(check(PyObject_CallMethodObjArgs(
self,
method_name,
pyinput.get(),
pysizeinput.get(),
pyivalueargsinput.get(),
pynodeorigins.get(),
nullptr)));
PyObject *fake_inputs{nullptr}, *fake_sizes{nullptr},
*fake_ivalue_args{nullptr};
check(PyArg_ParseTuple(
pyresult.get(), "OOO", &fake_inputs, &fake_sizes, &fake_ivalue_args));
variable_list proxy_inputs = THPVariable_UnpackList(fake_inputs);
TORCH_INTERNAL_ASSERT(
proxy_inputs.size() == compiler_call.tensor_args.inputs.size());
for (const auto i : c10::irange(proxy_inputs.size())) {
TensorArg& arg =
compiler_call.tensor_args.lookup(compiler_call.tensor_args.inputs[i]);
arg.proxy_tensor = proxy_inputs[i];
}
set_ivalue_proxies(fake_ivalue_args, compiler_call.lifted_ivalue_args.args);
return TraceState(cache.unwrap_dynamic_inputs(fake_sizes), num_outputs);
}
static PyObject* call_end_capture(PyObject* self, const variable_list& inputs) {
static PyObject* method_name = PyUnicode_InternFromString("end_capture");
THPObjectPtr pyinput(THPVariable_WrapList(inputs));
return check(
PyObject_CallMethodObjArgs(self, method_name, pyinput.get(), nullptr));
}
struct ClosingTHPObjectPtr : public THPObjectPtr {
ClosingTHPObjectPtr(PyObject* o) : THPObjectPtr(o) {}
ClosingTHPObjectPtr(ClosingTHPObjectPtr&& other) = default;
ClosingTHPObjectPtr(const ClosingTHPObjectPtr&) = delete;
ClosingTHPObjectPtr& operator=(const ClosingTHPObjectPtr&) = delete;
ClosingTHPObjectPtr& operator=(ClosingTHPObjectPtr&&) = default;
~ClosingTHPObjectPtr() {
if (PyErr_Occurred()) {
// do nothing, do not attempt to close
return;
}
static PyObject* method_name = PyUnicode_InternFromString("close");
if (PyObject_CallMethodObjArgs(get(), method_name, nullptr) == nullptr) {
PyErr_WriteUnraisable(get());
PyErr_Clear();
}
}
};
static SizeInput::DynType get_default_dyn_type() {
TORCH_INTERNAL_ASSERT(default_dyn_type_int >= 0 && default_dyn_type_int < 2);
return default_dyn_type_int == 0 ? SizeInput::STATIC : SizeInput::DYNAMIC;
}
// Only call this function while holding GIL
CacheNode* _compiled_autograd_impl(
const std::shared_ptr<Node>& graph_root,
GraphTask& graph_task,
bool accumulate_grad,
const edge_list& output_edges,
THPObjectPtr* graph_arg_inputs,
THPObjectPtr* graph_arg_sizes,
THPObjectPtr* graph_arg_ivalue_args,
THPObjectPtr* graph_arg_hooks) {
std::unordered_map<Node*, int>& dependencies = graph_task.dependencies_;
std::vector<std::shared_ptr<Node>> worklist{graph_root};
AutogradCompilerCall compiler_call(get_default_dyn_type());
for (const auto i : c10::irange(output_edges.size())) {
compiler_call.node_calls
.lookup(output_edges[i].function)
// NOLINTNEXTLINE(*-narrowing-conversions)
.mark_output(output_edges[i].input_nr, i);
}
const bool check_exec_info = !graph_task.exec_info_.empty();
CacheNode* cache = CacheNode::root();
std::vector<NodeCall*> calls;
calls.reserve(
check_exec_info ? graph_task.exec_info_.size() : dependencies.size() + 1);
int i = 0;
std::optional<VerboseLogger> vlogger = VerboseLogger::maybe_create();
while (!worklist.empty()) {
std::shared_ptr<Node> fn = std::move(worklist.back());
worklist.pop_back();
NodeCall& call = compiler_call.node_calls.lookup(fn);
calls.emplace_back(&call);
{ // update cache and gather args into `compiler_call`
CompiledNodeArgs node_args(compiler_call, call);
if (vlogger.has_value()) {
compiler_call.set_active_node_call_idx(i);
}
node_args.collect(call);
if (node_args.cond(call.needed)) {
fn->compiled_args(node_args);
node_args.collect(call.node->next_edges());
}
CacheKey key = node_args.key();
if (vlogger.has_value()) {
std::unordered_set<CacheKey> cached_keys;
for (const auto& [k, _] : cache->next) {
cached_keys.emplace(k);
}
vlogger->log_node_check(
*fn,
compiler_call.all_size_inputs.size(),
std::move(cached_keys),
key,
i);
}
cache = cache->lookup(key);
}
for (const auto& edge : fn->next_edges()) {
if (!edge.is_valid()) {
continue;
}
if (check_exec_info) {
auto it = graph_task.exec_info_.find(edge.function.get());
if (it == graph_task.exec_info_.end() || !it->second.should_execute()) {
continue;
}
if (!it->second.needed_) {
compiler_call.node_calls.lookup(edge.function).needed = false;
}
}
auto it = dependencies.find(edge.function.get());
TORCH_INTERNAL_ASSERT(it != dependencies.end());
if (--it->second == 0) {
dependencies.erase(it);
worklist.emplace_back(edge.function);
}
}
i++;
}
// TODO(jansel): some dynamic sizes seem to be ints not symints
if (!cache->check_dynamic_sizes(compiler_call, vlogger)) {
// cache miss, need to capture FX graph
ClosingTHPObjectPtr py_compiler(
check(PyObject_CallNoArgs((the_autograd_compiler))));
TraceState state = call_begin_capture(
py_compiler, *cache, compiler_call, output_edges.size());
InputBuffers input_buffers;
for (size_t i = 0; i < calls.size(); i++) {
NodeCall& call = *calls[i];
std::string _node_name = call.node->name();
THPObjectPtr node_name(PyUnicode_FromString(_node_name.data()));
TORCH_INTERNAL_ASSERT(node_name != nullptr);
THPObjectPtr set_node_origin(
PyObject_GetAttrString(py_compiler.get(), "set_node_origin"));
PyObject* pyobj = Py_None;
if (auto pynode = std::dynamic_pointer_cast<PyNode>(call.node)) {
pyobj = pynode->obj;
}
check(PyObject_CallFunction(
set_node_origin, "OIO", node_name.get(), i, pyobj, nullptr));
// TODO(jansel): consider adding some of this stuff:
// guard(local_graph_task); NodeGuard ndguard(task.fn_); const auto
// opt_parent_stream = (*func).stream(c10::DeviceType::CUDA);
// c10::OptionalStreamGuard parent_stream_guard{opt_parent_stream};
// CheckpointValidGuard cpvguard(graph_task);
// at::getStepCallbacksUnlessEmpty(at::RecordScope::BACKWARD_FUNCTION);
// if (C10_UNLIKELY(step_callbacks.has_value())) { ... }
variable_list inputs =
std::move(input_buffers.lookup(call.node.get()).buffer);
input_buffers.erase(call.node.get());
if (!call.tensor_pre_hooks.empty()) {
THPObjectPtr pyinputs(THPVariable_WrapList(inputs));
for (const auto& hook : call.tensor_pre_hooks) {
pyinputs = check(PyObject_CallMethod(
py_compiler,
"tensor_pre_hook",
"Oii",
pyinputs.get(),
hook.first,
hook.second));
}
inputs = THPVariable_UnpackList(pyinputs);
}
for (const auto& graph_output : call.graph_output) {
int input_nr = graph_output.first;
int output_index = graph_output.second;
TORCH_INTERNAL_ASSERT(
output_index < static_cast<int>(state.outputs.size()));
TORCH_INTERNAL_ASSERT(!state.outputs[output_index].defined());
state.outputs[output_index] = inputs[input_nr];
}
if (!call.needed) {
continue;
}
if (!call.pre_hooks.empty()) {
THPObjectPtr pyinputs(THPVariable_WrapList(inputs));
for (const auto hook : call.pre_hooks) {
pyinputs = check(PyObject_CallMethod(
py_compiler.get(), "pre_hook", "Oi", pyinputs.get(), hook));
}
inputs = THPVariable_UnpackList(pyinputs);
}
SwapSavedVariables saved(compiler_call, state, py_compiler.get(), call);
variable_list outputs = call.node->apply_with_saved(inputs, saved);
saved.debug_asserts();
saved.before(call.node->next_edges());
validate_outputs(
call.node->next_edges(), outputs, [&](const std::string& msg) {
std::ostringstream ss;
ss << "[Compiled Autograd Tracing: " << call.node->name() << "] "
<< msg;
return ss.str();
});
saved.after(call.node->next_edges());
saved.debug_asserts();
if (!call.post_hooks.empty()) {
THPObjectPtr pyinputs(THPVariable_WrapList(inputs));
THPObjectPtr pyoutputs(THPVariable_WrapList(outputs));
for (const auto hook : call.post_hooks) {
pyoutputs = check(PyObject_CallMethod(
py_compiler.get(),
"post_hook",
"OOi",
pyoutputs.get(),
pyinputs.get(),
hook));
}
outputs = THPVariable_UnpackList(pyoutputs);
}
for (const auto i : c10::irange(outputs.size())) {
auto& output = outputs[i];
const auto& next = call.node->next_edge(i);
if (next.is_valid() && output.defined()) {
input_buffers.lookup(next.function.get())
.add(
next.input_nr, std::move(output), std::nullopt, std::nullopt);
}
}
}
PyObject* res = check(call_end_capture(py_compiler, state.outputs));
TORCH_CHECK(PyTuple_Check(res), "Expected end_capture to return tuple");
TORCH_CHECK(
PyTuple_Size(res) == 2,
"Expected end_capture to return tuple of size 2");
cache->runtime_wrapper = Py_NewRef(PyTuple_GetItem(res, 0));
TORCH_CHECK(
PyCallable_Check(cache->runtime_wrapper),
"Expected end_capture to return runtime_wrapper");
cache->compiled_fn = Py_NewRef(PyTuple_GetItem(res, 1));
TORCH_CHECK(
PyCallable_Check(cache->compiled_fn),
"Expected end_capture to return compiled_fn");
state.debug_asserts();
} // End cache miss region
// TODO(jansel): clear grads we will overwrite below
if (!graph_task.keep_graph_) {
for (auto& call : calls) {
call->node->release_variables();
}
}
*graph_arg_inputs = THPVariable_WrapList(compiler_call.tensor_args.inputs);
*graph_arg_sizes = wrap_int_list(compiler_call.dyn_size_inputs);
*graph_arg_ivalue_args =
wrap_lifted_ivalue_args(compiler_call.lifted_ivalue_args.args);
*graph_arg_hooks = convert_hook_list(compiler_call.hooks);
return cache;
}
// NOLINTNEXTLINE(cppcoreguidelines-special-member-functions)
struct LockGuardWithErrorLogs {
LockGuardWithErrorLogs(std::mutex& mtx) : mtx_(mtx) {
// Note: the standard allows try_lock to fail spuriously during races for
// performance reasons, but it shouldn't happen here since we:
// 1. disable multithreaded autograd
// 2. plenty of latency between backward calls
TORCH_INTERNAL_ASSERT(
mtx_.try_lock(),
"Trying to run compiled autograd within another compiled autograd call (e.g. reentrant checkpointing), this is not supported yet.");
}
~LockGuardWithErrorLogs() {
mtx_.unlock();
}
std::mutex& mtx_;
};
variable_list compiled_autograd(
const std::shared_ptr<Node>& graph_root,
GraphTask& graph_task,
bool accumulate_grad,
const edge_list& output_edges) {
TORCH_CHECK(
c10::impl::TorchDispatchModeTLS::stack_len() == 0,
"TorchDispatchMode not yet implemented for compiled autograd")
static std::mutex mtx;
LockGuardWithErrorLogs lock_guard(mtx);
pybind11::gil_scoped_acquire gil;
at::ThreadLocalStateGuard tls_guard(graph_task.thread_locals_);
THPObjectPtr inputs;
THPObjectPtr sizes;
THPObjectPtr ivalue_args;
THPObjectPtr hooks;
CacheNode* cache = _compiled_autograd_impl(
graph_root,
graph_task,
accumulate_grad,
output_edges,
&inputs,
&sizes,
&ivalue_args,
&hooks);
THPObjectPtr pyresult(check(PyObject_CallFunctionObjArgs(
cache->runtime_wrapper.get(),
cache->compiled_fn.get(),
inputs.get(),
sizes.get(),
ivalue_args.get(),
hooks.get(),
NULL)));
variable_list outputs = THPVariable_UnpackList(pyresult);
TORCH_INTERNAL_ASSERT(outputs.size() == output_edges.size());
return outputs;
}
static PyObject* set_autograd_compiler(PyObject* dummy, PyObject* args) {
HANDLE_TH_ERRORS;
PyObject* obj = nullptr;
int b = 0;
if (!PyArg_ParseTuple(args, "Op", &obj, &b)) {
return nullptr;
}
TORCH_INTERNAL_ASSERT(b >= 0 && b < 2);
PyObject* prior_compiler = the_autograd_compiler;
PyObject* prior_dynamic = default_dyn_type_int == 0 ? Py_False : Py_True;
default_dyn_type_int = b;
if (obj == Py_None) { // disable
the_autograd_compiler = nullptr; // decref not needed due to `prior`
Engine::set_compiled_autograd(nullptr);
} else { // enable
Py_INCREF(obj);
the_autograd_compiler = obj;
Engine::set_compiled_autograd(&compiled_autograd);
}
if (prior_compiler == nullptr) {
prior_compiler = Py_None;
}
PyObject* prior = PyTuple_New(2);
PyTuple_SET_ITEM(prior, 0, prior_compiler);
PyTuple_SET_ITEM(prior, 1, prior_dynamic);
return prior;
END_HANDLE_TH_ERRORS;
}
PyObject* torch_c_dynamo_compiled_autograd_init() {
PyObject* mod = PyModule_Create(&_module);
if (mod == nullptr) {
return nullptr;
}
#ifdef Py_GIL_DISABLED
PyUnstable_Module_SetGIL(mod, Py_MOD_GIL_NOT_USED);
#endif
return mod;
}
} // namespace torch::dynamo::autograd
|