File: kernel_meta_info.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (214 lines) | stat: -rw-r--r-- 7,020 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#if !defined(C10_MOBILE) && !defined(ANDROID)
#include <torch/csrc/inductor/aoti_eager/kernel_meta_info.h>
#include <iostream>
#include <utility>

namespace torch::inductor {

TensorMetadata::TensorMetadata(const at::Tensor& src_tensor)
    : is_symbolic_(false),
      dtype_(src_tensor.scalar_type()),
      device_(src_tensor.device()),
      dispatch_key_set_(src_tensor.key_set()),
      sizes_(src_tensor.sizes().vec()),
      strides_(src_tensor.strides().vec()),
      requires_grad_(src_tensor.requires_grad()) {}

TensorMetadata::TensorMetadata(
    bool is_symbolic,
    c10::ScalarType dtype,
    c10::Device device,
    c10::DispatchKeySet dispatch_key_set,
    std::vector<int64_t> sizes,
    std::vector<int64_t> strides,
    bool requires_grad)
    : is_symbolic_(is_symbolic),
      dtype_(dtype),
      device_(device),
      dispatch_key_set_(dispatch_key_set),
      sizes_(std::move(sizes)),
      strides_(std::move(strides)),
      requires_grad_(requires_grad) {
  TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
      !is_symbolic_, "Not support symbolic shape now");
}

void TensorMetadata::build_guard(const torch::dynamo::LocalState& local_state) {
  TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
      !is_symbolic_, "Not support symbolic shape now");
  std::vector<std::optional<c10::SymInt>> sym_sizes;
  std::vector<std::optional<c10::SymInt>> sym_strides;
  std::transform(
      sizes_.begin(),
      sizes_.end(),
      std::back_inserter(sym_sizes),
      [](int64_t size) { return std::optional<c10::SymInt>(size); });
  std::transform(
      strides_.begin(),
      strides_.end(),
      std::back_inserter(sym_strides),
      [](int64_t stride) { return std::optional<c10::SymInt>(stride); });
  tensor_check_ = torch::dynamo::TensorCheck(
      local_state,
      nullptr,
      dispatch_key_set_,
      dtype_,
      device_.index(),
      requires_grad_,
      sym_sizes,
      sym_strides);
}

bool TensorMetadata::operator==(const TensorMetadata& other) const {
  TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
      !is_symbolic_, "Not support symbolic shape now");

  if (tensor_check_.has_value()) {
    auto sizes_ = c10::IntArrayRef(other.sizes_);
    auto strides_ = c10::IntArrayRef(other.strides_);
    auto sym_sizes = c10::SymIntArrayRef(
        reinterpret_cast<const c10::SymInt*>(sizes_.data()), sizes_.size());
    auto sym_strides = c10::SymIntArrayRef(
        reinterpret_cast<const c10::SymInt*>(strides_.data()), strides_.size());

    torch::dynamo::LocalState local_state;
    local_state.overrideDispatchKeySet(dispatch_key_set_);
    auto _tensor_check = tensor_check_.value();
    auto res = _tensor_check.check(
        local_state,
        other.dispatch_key_set_,
        other.dtype_,
        other.device_,
        sym_sizes,
        sym_strides,
        other.requires_grad_ /* Should we need to care about grad requirement?*/);
    return res;
  } else {
    return this->is_symbolic_ == other.is_symbolic_ &&
        this->dtype_ == other.dtype_ && this->device_ == other.device_ &&
        this->dispatch_key_set_ == other.dispatch_key_set_ &&
        this->requires_grad_ == other.requires_grad_ &&
        this->sizes_ == other.sizes_ && this->strides_ == other.strides_;
  }
}

std::ostream& operator<<(
    std::ostream& stream,
    const TensorMetadata& tensor_metadata) {
  stream << "is_symbolic_: " << tensor_metadata.is_symbolic_ << '\n';
  stream << "dtype_: " << tensor_metadata.dtype_ << '\n';
  stream << "device_: " << tensor_metadata.device_ << '\n';
  stream << "sizes_: ";
  for (const auto& size : tensor_metadata.sizes_) {
    stream << size << " ";
  }
  stream << '\n';
  stream << "strides_: ";
  for (const auto& stride : tensor_metadata.strides_) {
    stream << stride << " ";
  }

  stream << "requires_grad_: " << tensor_metadata.requires_grad_ << '\n';
  stream << "dispatch_key_set_: " << tensor_metadata.dispatch_key_set_ << '\n';
  stream << "tensor_check_: " << tensor_metadata.tensor_check_.has_value()
         << '\n';
  stream << '\n';
  return stream;
}

ParameterMetadata::ParameterMetadata(
    TensorMetadata tensor_metadata,
    uint64_t input_order)
    : tag_(TENSOR), value_(tensor_metadata), order_(input_order) {}

ParameterMetadata::ParameterMetadata(
    const at::Tensor& tensor,
    uint64_t input_order)
    : tag_(TENSOR), order_(input_order) {
  value_ = TensorMetadata(tensor);
}

ParameterMetadata::ParameterMetadata(
    const std::vector<TensorMetadata>& tensor_metadata_list,
    uint64_t input_order)
    : tag_(TENSOR_LIST), value_(tensor_metadata_list), order_(input_order) {}

ParameterMetadata::ParameterMetadata(
    const std::vector<at::Tensor>& tensor_list,
    uint64_t input_order)
    : tag_(TENSOR_LIST), order_(input_order) {
  std::vector<TensorMetadata> tensor_metadata_list;
  tensor_metadata_list.reserve(tensor_list.size());
  for (const auto& tensor : tensor_list) {
    tensor_metadata_list.emplace_back(tensor);
  }
  value_ = tensor_metadata_list;
}

ParameterMetadata::ParameterMetadata(
    const c10::Scalar& scalar,
    uint64_t input_order)
    : tag_(SCALAR), value_(scalar), order_(input_order) {}

ParameterMetadata::ParameterMetadata(
    const std::string& str,
    uint64_t input_order)
    : tag_(STRING), value_(str), order_(input_order) {}

ParameterMetadata::ParameterMetadata(
    const c10::Device& device,
    uint64_t input_order)
    : tag_(DEVICE), value_(device), order_(input_order) {}

bool ParameterMetadata::operator==(const ParameterMetadata& other) const {
  // Same type
  if (tag_ != other.tag_) {
    return false;
  }

  // Same order of the input parameters
  if (order_ != other.order_) {
    return false;
  }

  switch (tag_) {
    case TENSOR:
      return std::get<TensorMetadata>(value_) ==
          std::get<TensorMetadata>(other.value_);
    case TENSOR_LIST:
      return std::get<std::vector<TensorMetadata>>(value_) ==
          std::get<std::vector<TensorMetadata>>(other.value_);
    case SCALAR:
      TORCH_INTERNAL_ASSERT(
          std::get<c10::Scalar>(other.value_).isFloatingPoint() ||
          std::get<c10::Scalar>(other.value_).isIntegral(true /*includeBool*/));
      return equal_to(std::get<c10::Scalar>(other.value_));
    case STRING:
      return std::get<std::string>(value_) ==
          std::get<std::string>(other.value_);
    case DEVICE:
      return std::get<c10::Device>(value_) ==
          std::get<c10::Device>(other.value_);
    default:
      return false;
  }
}

bool ParameterMetadata::equal_to(const c10::Scalar& scalar) const {
  TORCH_INTERNAL_ASSERT(scalar.isFloatingPoint() || scalar.isIntegral(true));
  if (tag_ != SCALAR) {
    return false;
  }

  const auto& self_scalar = std::get<c10::Scalar>(value_);
  if (scalar.isFloatingPoint() && self_scalar.isFloatingPoint()) {
    return self_scalar.toDouble() == scalar.toDouble();
  } else if (scalar.isIntegral(true) && self_scalar.isIntegral(true)) {
    return self_scalar.toInt() == scalar.toInt();
  }

  return false;
}

} // namespace torch::inductor
#endif