1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
#if !defined(C10_MOBILE) && !defined(ANDROID)
#include <ATen/DynamicLibrary.h>
#include <torch/csrc/inductor/aoti_runner/model_container_runner.h>
#include <torch/csrc/inductor/aoti_torch/oss_proxy_executor.h>
#include <torch/csrc/inductor/aoti_torch/tensor_converter.h>
#ifndef _WIN32
#include <sys/stat.h>
#else
#include <filesystem>
namespace fs = std::filesystem;
#endif
namespace {
bool file_exists(std::string& path) {
#ifdef _WIN32
return fs::exists(path);
#else
struct stat rc {};
return lstat(path.c_str(), &rc) == 0;
#endif
}
} // namespace
namespace torch::inductor {
AOTIModelContainerRunner::AOTIModelContainerRunner(
const std::string& model_so_path,
size_t num_models,
const std::string& device_str,
const std::string& cubin_dir) {
model_so_ = std::make_unique<at::DynamicLibrary>(model_so_path.c_str());
TORCH_CHECK(model_so_, "Failed to load model: ", model_so_path);
create_func_ = reinterpret_cast<decltype(create_func_)>(
model_so_->sym("AOTInductorModelContainerCreateWithDevice"));
delete_func_ = reinterpret_cast<decltype(delete_func_)>(
model_so_->sym("AOTInductorModelContainerDelete"));
get_num_outputs_func_ = reinterpret_cast<decltype(get_num_outputs_func_)>(
model_so_->sym("AOTInductorModelContainerGetNumOutputs"));
run_func_ = reinterpret_cast<decltype(run_func_)>(
model_so_->sym("AOTInductorModelContainerRun"));
get_num_constants_func_ = reinterpret_cast<decltype(get_num_constants_func_)>(
model_so_->sym("AOTInductorModelContainerGetNumConstants"));
get_constant_name_func_ = reinterpret_cast<decltype(get_constant_name_func_)>(
model_so_->sym("AOTInductorModelContainerGetConstantName"));
get_constant_original_fqn_func_ =
reinterpret_cast<decltype(get_constant_original_fqn_func_)>(
model_so_->sym("AOTInductorModelContainerGetConstantOriginalFQN"));
get_constant_dtype_func_ =
reinterpret_cast<decltype(get_constant_dtype_func_)>(
model_so_->sym("AOTInductorModelContainerGetConstantDtype"));
update_constant_buffer_func_ =
reinterpret_cast<decltype(update_constant_buffer_func_)>(
model_so_->sym("AOTInductorModelContainerUpdateConstantBuffer"));
update_inactive_constant_buffer_func_ =
reinterpret_cast<decltype(update_inactive_constant_buffer_func_)>(
model_so_->sym(
"AOTInductorModelContainerUpdateInactiveConstantBuffer"));
run_const_fold_func_ = reinterpret_cast<decltype(run_const_fold_func_)>(
model_so_->sym("AOTInductorModelContainerRunConstantFolding"));
swap_constant_buffer_func_ =
reinterpret_cast<decltype(swap_constant_buffer_func_)>(
model_so_->sym("AOTInductorModelContainerSwapConstantBuffer"));
get_call_spec_func_ = reinterpret_cast<decltype(get_call_spec_func_)>(
model_so_->sym("AOTInductorModelContainerGetCallSpec"));
// Hack to find the json file name from the model so file
size_t lastindex = model_so_path.find_last_of('.');
std::string json_filename = model_so_path.substr(0, lastindex) + ".json";
if (file_exists(json_filename)) {
proxy_executor_ = std::make_unique<torch::aot_inductor::OSSProxyExecutor>(
json_filename, device_str == "cpu");
proxy_executor_handle_ =
reinterpret_cast<AOTIProxyExecutorHandle>(proxy_executor_.get());
} else {
proxy_executor_handle_ = nullptr;
}
AOTI_RUNTIME_ERROR_CODE_CHECK(create_func_(
&container_handle_,
num_models,
device_str.c_str(),
cubin_dir.empty() ? nullptr : cubin_dir.c_str()));
}
AOTIModelContainerRunner::~AOTIModelContainerRunner() {
AOTIRuntimeError result = delete_func_(container_handle_);
TORCH_CHECK(
result == AOTI_RUNTIME_SUCCESS, "AOTInductorModelContainerDelete failed");
}
std::vector<at::Tensor> AOTIModelContainerRunner::run(
const std::vector<at::Tensor>& inputs,
void* stream_handle) {
auto input_handles =
torch::aot_inductor::unsafe_alloc_new_handles_from_tensors(inputs);
// For outputs, we only allocate a vector to hold returned tensor handles,
// not allocating the actual output tensor storage here
size_t num_outputs = 0;
AOTI_RUNTIME_ERROR_CODE_CHECK(
get_num_outputs_func_(container_handle_, &num_outputs));
std::vector<AtenTensorHandle> output_handles(num_outputs);
AOTI_RUNTIME_ERROR_CODE_CHECK(run_func_(
container_handle_,
input_handles.data(),
input_handles.size(),
output_handles.data(),
output_handles.size(),
reinterpret_cast<AOTInductorStreamHandle>(stream_handle),
proxy_executor_handle_));
return torch::aot_inductor::alloc_tensors_by_stealing_from_handles(
output_handles.data(), output_handles.size());
}
std::unordered_map<std::string, std::string> AOTIModelContainerRunner::
getConstantNamesToOriginalFQNs() const {
std::unordered_map<std::string, std::string> result;
size_t num_constants{0};
AOTI_RUNTIME_ERROR_CODE_CHECK(
get_num_constants_func_(container_handle_, &num_constants));
for (size_t i = 0; i < num_constants; ++i) {
const char* name{nullptr};
const char* original_fqn{nullptr};
AOTI_RUNTIME_ERROR_CODE_CHECK(
get_constant_name_func_(container_handle_, i, &name));
AOTI_RUNTIME_ERROR_CODE_CHECK(
get_constant_original_fqn_func_(container_handle_, i, &original_fqn));
result.emplace(name, original_fqn);
}
return result;
}
std::unordered_map<std::string, int32_t> AOTIModelContainerRunner::
getConstantNamesToDtypes() const {
std::unordered_map<std::string, int32_t> result;
size_t num_constants{0};
AOTI_RUNTIME_ERROR_CODE_CHECK(
get_num_constants_func_(container_handle_, &num_constants));
for (size_t i = 0; i < num_constants; ++i) {
const char* name{nullptr};
int32_t dtype{0};
AOTI_RUNTIME_ERROR_CODE_CHECK(
get_constant_name_func_(container_handle_, i, &name));
AOTI_RUNTIME_ERROR_CODE_CHECK(
get_constant_dtype_func_(container_handle_, i, &dtype));
result.emplace(name, dtype);
}
return result;
}
void AOTIModelContainerRunner::update_constant_buffer(
const TensorConstantMap& const_map,
bool use_inactive,
bool check_full_update) {
AOTI_RUNTIME_ERROR_CODE_CHECK(update_constant_buffer_func_(
container_handle_,
(AOTInductorConstantMapHandle)&const_map,
use_inactive,
check_full_update));
}
void AOTIModelContainerRunner::update_constant_buffer(
std::unordered_map<std::string, at::Tensor>& tensor_map,
bool use_inactive,
bool check_full_update) {
TensorConstantMap const_map;
for (auto& [k, v] : tensor_map) {
const_map.emplace(k, &v);
}
AOTI_RUNTIME_ERROR_CODE_CHECK(update_constant_buffer_func_(
container_handle_,
(AOTInductorConstantMapHandle)&const_map,
use_inactive,
check_full_update));
}
void AOTIModelContainerRunner::update_inactive_constant_buffer(
const TensorConstantMap& const_map) {
AOTI_RUNTIME_ERROR_CODE_CHECK(update_inactive_constant_buffer_func_(
container_handle_, (AOTInductorConstantMapHandle)&const_map));
}
void AOTIModelContainerRunner::run_const_fold(
bool use_inactive,
AOTInductorStreamHandle cuda_stream_handle) {
AOTI_RUNTIME_ERROR_CODE_CHECK(run_const_fold_func_(
container_handle_,
use_inactive,
cuda_stream_handle,
proxy_executor_handle_));
}
void AOTIModelContainerRunner::swap_constant_buffer() {
AOTI_RUNTIME_ERROR_CODE_CHECK(swap_constant_buffer_func_(container_handle_));
}
std::vector<std::string> AOTIModelContainerRunner::get_call_spec() {
const char* in_spec = nullptr;
const char* out_spec = nullptr;
AOTI_RUNTIME_ERROR_CODE_CHECK(
get_call_spec_func_(container_handle_, &in_spec, &out_spec));
return {in_spec, out_spec};
}
std::unordered_map<std::string, CreateAOTIModelRunnerFunc>&
getAOTIModelRunnerRegistry() {
static std::unordered_map<std::string, CreateAOTIModelRunnerFunc>
aoti_model_runner_registry_;
return aoti_model_runner_registry_;
}
} // namespace torch::inductor
#endif
|