1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
#pragma once
#include <dlfcn.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <unistd.h>
#include <optional>
#include <regex>
#include <stdexcept>
#include <unordered_map>
#include <utility>
// WARNING: Be careful when adding new includes here. This header will be used
// in model.so, and should not refer to any aten/c10 headers except the stable
// C ABI defined in torch/csrc/inductor/aoti_torch/c/shim.h. The same rule
// applies to other files under torch/csrc/inductor/aoti_runtime/.
#include <torch/csrc/inductor/aoti_runtime/device_utils.h>
#ifdef USE_XPU
#include <torch/csrc/inductor/aoti_runtime/utils_xpu.h>
#else
#include <torch/csrc/inductor/aoti_runtime/utils.h>
#endif
#define AOTI_RUNTIME_CHECK(EXPR, MSG) \
do { \
bool ok = EXPR; \
if (!ok) { \
throw std::runtime_error(MSG); \
} \
} while (0)
// At codegen time, we write out a binary file called constants.bin.
// We then turn the raw binary to an object file that exposes this
// symbol and link it into the final .so.
// For information on the binary format, see `man objcopy`, under
// the "binary-architecture" flag:
// https://man7.org/linux/man-pages/man1/objcopy.1.html
// todo: use #embed in C++ 23 once available
// The constants are NOT readonly because they may be mutated.
// NOLINTNEXTLINE(*array*)
extern uint8_t _binary_constants_bin_start[];
// NOLINTNEXTLINE(*array*)
extern uint8_t _binary_constants_bin_end[];
#define AOTI_CONST_GPU_ALIGNMENT 64
namespace {
#ifdef USE_CUDA
using GPUPtr = std::unique_ptr<void, std::function<void(void*)>>;
GPUPtr RAII_gpuMalloc(size_t num_bytes) {
void* data_ptr;
AOTI_RUNTIME_DEVICE_CHECK(cudaMalloc((void**)&data_ptr, num_bytes));
auto deleter = [](void* ptr) { AOTI_RUNTIME_DEVICE_CHECK(cudaFree(ptr)); };
return GPUPtr(data_ptr, deleter);
}
#endif // USE_CUDA
#ifdef USE_XPU
using GPUPtr = std::unique_ptr<void, std::function<void(void*)>>;
GPUPtr RAII_gpuMalloc(size_t num_bytes) {
sycl::queue* queue_ptr = nullptr;
aoti_torch_get_current_sycl_queue((void**)&queue_ptr);
void* data_ptr = sycl::malloc_device(num_bytes, *queue_ptr);
auto deleter = [queue_ptr](void* ptr) { sycl::free(ptr, *queue_ptr); };
return GPUPtr(data_ptr, deleter);
}
#endif // USE_CUDA
} // anonymous namespace
namespace torch::aot_inductor {
enum ConstantType : uint8_t {
Unknown = 0,
Parameter = 1,
Buffer = 2,
TensorConstant = 3,
FoldedConstant = 4,
};
using ConstantMap = std::unordered_map<std::string, RAIIAtenTensorHandle>;
// valid device strs are: cpu, cuda, cuda:0, cuda:1, ...
// Update the list here if more devices are supported in the future
inline void parse_device_str(
const std::string& device_str,
int32_t& device_type,
int32_t& device_idx) {
std::regex re("(cpu|cuda|xpu)(:([0-9]+))?");
std::smatch sm;
bool matched = std::regex_match(device_str, sm, re);
AOTI_RUNTIME_CHECK(matched, "Invalid device: " + device_str);
if (sm[1].str() == "cpu") {
device_type = aoti_torch_device_type_cpu();
} else if (sm[1].str() == "cuda") {
device_type = aoti_torch_device_type_cuda();
#ifdef USE_XPU
} else if (sm[1].str() == "xpu") {
device_type = aoti_torch_device_type_xpu();
#endif
} else {
AOTI_RUNTIME_CHECK(false, "Invalid device: " + device_str);
}
if (sm[3].matched) {
device_idx = stoi(sm[3].str());
} else {
device_idx = -1;
}
}
// Defines the base class for AOTInductorModel, which is generated by the
// AOTInductor cpp codegen. Since we do not need dynamic dispatch, we rely
// on curiously recurring template pattern (CRTP) to save some runtime
// v-table overhead. The generated AOTInductorModel is specialized with
// methods such as run_impl.
template <typename Model>
class AOTInductorModelBase {
public:
AOTInductorModelBase(
size_t num_inputs,
size_t num_outputs,
size_t num_constants,
const std::string& device_str,
std::optional<std::string> cubin_dir,
bool include_weights = true)
: inputs_info_(num_inputs),
outputs_info_(num_outputs),
constants_info_(num_constants),
cubin_dir_(std::move(cubin_dir)),
include_weights(include_weights) {
parse_device_str(device_str, device_type_, device_idx_);
#ifdef USE_CUDA
if (device_idx_ == -1) {
AOTI_RUNTIME_DEVICE_CHECK(cudaGetDevice(&device_idx_));
} else {
// If device_idx_ is passed in, we need to set the current device to it
AOTI_RUNTIME_DEVICE_CHECK(cudaSetDevice(device_idx_));
}
#endif // USE_CUDA
#ifdef USE_XPU
if (device_idx_ == -1) {
aoti_torch_get_current_xpu_device(&device_idx_);
} else {
aoti_torch_set_current_xpu_device(device_idx_);
}
#endif // USE_XPU
}
// NOLINTNEXTLINE(modernize-use-equals-default)
~AOTInductorModelBase() {
#ifdef USE_CUDA
if (run_finished_) {
auto code = cudaEventDestroy(*run_finished_);
if (code != cudaSuccess) {
std::cerr << "Failed to destroy CUDA event in AOTInductor model: "
<< cudaGetErrorString(code) << std::endl;
}
}
#endif // USE_CUDA
#ifdef USE_XPU
if (run_finished_) {
(*run_finished_)->wait_and_throw();
delete *run_finished_;
}
#endif // USE_XPU
}
AOTInductorModelBase(AOTInductorModelBase&&) = delete;
AOTInductorModelBase& operator=(AOTInductorModelBase&&) = delete;
AOTInductorModelBase(const AOTInductorModelBase&) = delete;
AOTInductorModelBase& operator=(const AOTInductorModelBase&) = delete;
void run(
AtenTensorHandle*
input_handles, // array of input AtenTensorHandle; handles
// are stolen; the array itself is borrowed
AtenTensorHandle*
output_handles, // array for writing output AtenTensorHandle; handles
// will be stolen by the caller; the array itself is
// borrowed
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor) {
#ifdef USE_CUDA
if (!run_finished_) {
cudaEvent_t run_finished;
AOTI_RUNTIME_DEVICE_CHECK(cudaEventCreate(&run_finished));
run_finished_.emplace(run_finished);
}
#elif defined(USE_XPU)
if (run_finished_) {
(*run_finished_)->wait_and_throw();
delete *run_finished_;
run_finished_.reset();
}
#else // !USE_CUDA && !USE_XPU
run_finished_ = false;
#endif
auto* model = static_cast<Model*>(this);
model->run_impl(input_handles, output_handles, stream, proxy_executor);
#ifdef USE_CUDA
AOTI_RUNTIME_DEVICE_CHECK(cudaEventRecord(*run_finished_, stream));
#elif defined(USE_XPU)
run_finished_ = std::make_optional<sycl::event*>(new sycl::event(
static_cast<sycl::queue*>(stream)->ext_oneapi_submit_barrier()));
#else // !USE_CUDA && !USE_XPU
run_finished_ = true;
#endif // USE_CUDA
}
std::unordered_map<std::string, AtenTensorHandle> run_const_fold(
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor,
bool initialization = false) {
#ifdef USE_CUDA
if (!run_finished_) {
cudaEvent_t run_finished;
AOTI_RUNTIME_DEVICE_CHECK(cudaEventCreate(&run_finished));
run_finished_.emplace(run_finished);
}
#elif defined(USE_XPU)
if (run_finished_) {
(*run_finished_)->wait_and_throw();
delete *run_finished_;
run_finished_.reset();
}
#else // !USE_CUDA && !USE_XPU
run_finished_ = false;
#endif
auto* model = static_cast<Model*>(this);
auto folded_constants =
model->const_run_impl(stream, proxy_executor, initialization);
#ifdef USE_CUDA
AOTI_RUNTIME_DEVICE_CHECK(cudaEventRecord(*run_finished_, stream));
#elif defined(USE_XPU)
// sycl::queue* queue_ptr = nullptr;
// aoti_torch_get_current_sycl_queue((void**)&queue_ptr);
run_finished_ = std::make_optional<sycl::event*>(new sycl::event(
static_cast<sycl::queue*>(stream)->ext_oneapi_submit_barrier()));
#else // !USE_CUDA && !USE_XPU
run_finished_ = true;
#endif // USE_CUDA
return folded_constants;
}
void load_constants() {
size_t num_constants = this->num_constants();
constants_map_->reserve(num_constants);
std::vector<size_t> constants_internal_offset(num_constants);
if (device_type_ != aoti_torch_device_type_cpu()) {
size_t blob_size = 0;
compute_gpu_constant_blob(blob_size, constants_internal_offset);
#if defined(USE_CUDA) || defined(USE_XPU)
constant_blob_ = RAII_gpuMalloc(blob_size);
#endif
}
if (!include_weights) {
return;
}
size_t bytes_read = 0;
for (size_t i = 0; i < num_constants; i++) {
bool from_folded = this->constant_from_folded(i);
#if not defined(USE_XPU) && not defined(USE_CUDA)
if (from_folded) {
// We do not reallocate and copy for CPU.
continue;
}
#endif // USE_CUDA
std::string name = this->constant_name(i);
size_t data_size = this->constant_data_size(i);
uint8_t* internal_ptr = (data_size != 0)
? constant_ptr(
constants_internal_offset[i],
bytes_read,
data_size,
from_folded)
: nullptr;
bytes_read += data_size;
// Create at::Tensor from copied memory.
auto dtype = this->constant_dtype(i);
auto ndim = this->constant_ndim(i);
auto size = this->constant_shape(i);
auto stride = this->constant_stride(i);
auto offset = this->constant_offset(i);
auto layout = this->constant_layout(i);
auto opaque_metadata_ptr = this->opaque_metadata(i);
auto opaque_metadata_size = this->opaque_metadata_size(i);
AtenTensorHandle tensor_handle = nullptr;
#ifdef AOTI_USE_CREATE_TENSOR_FROM_BLOB_V1
// When opaque_metadata_size is not 0, we need to have the
// aoti_torch_create_tensor_from_blob_v2 available
AOTI_RUNTIME_CHECK(
opaque_metadata_size == 0,
"Expect opaque_metadata_size to be 0 when AOTI_USE_CREATE_TENSOR_FROM_BLOB_V1 is defined");
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_create_tensor_from_blob(
internal_ptr,
ndim,
size,
stride,
offset,
dtype,
device_type_,
device_idx_,
&tensor_handle));
#else
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_create_tensor_from_blob_v2(
internal_ptr,
ndim,
size,
stride,
offset,
dtype,
device_type_,
device_idx_,
&tensor_handle,
layout,
opaque_metadata_ptr,
opaque_metadata_size));
#endif // AOTI_USE_CREATE_TENSOR_FROM_BLOB_V1
constants_map_->emplace(std::move(name), tensor_handle);
}
if (constants_map_) {
this->update_constants_array_from_map();
}
}
#if defined(USE_CUDA) || defined(USE_XPU)
GPUPtr&& release_constant_blob() {
return std::move(constant_blob_);
}
#endif
std::shared_ptr<std::vector<ConstantHandle>> get_constants_array() {
return constants_;
}
int32_t get_device_idx() const {
return device_idx_;
}
uint8_t* constant_ptr(
size_t constant_offset,
size_t bytes_read,
size_t data_size,
bool skip_copy) {
#if defined(USE_CUDA) || defined(USE_XPU)
auto* constants_ptr = static_cast<uint8_t*>(constant_blob_.get());
uint8_t* internal_ptr = constants_ptr + constant_offset;
// Copy data to GPU memory
// TODO: Handle shared storage case.
if (!skip_copy) {
#ifdef USE_XPU
sycl::queue* queue_ptr = nullptr;
aoti_torch_get_current_sycl_queue((void**)&queue_ptr);
queue_ptr
->memcpy(internal_ptr, _get_constants_start() + bytes_read, data_size)
.wait();
#else
AOTI_RUNTIME_DEVICE_CHECK(cudaMemcpy(
internal_ptr,
_get_constants_start() + bytes_read,
data_size,
cudaMemcpyHostToDevice));
#endif
}
return internal_ptr;
#else
// get pointer to constant which is packed in model during compile time.
AOTI_RUNTIME_CHECK(!skip_copy, "pure cpu mode doesn't support skip copy");
return _get_constants_start() + bytes_read;
#endif // USE_CUDA
}
void compute_gpu_constant_blob(
size_t& blob_size,
std::vector<size_t>& constants_internal_offset) {
#if defined(USE_CUDA) || defined(USE_XPU)
size_t num_constants = this->num_constants();
// Compute required blob size with 64-alignment if on GPU.
blob_size = 0;
for (size_t i = 0; i < num_constants; i++) {
size_t data_size = this->constant_data_size(i);
if (data_size % AOTI_CONST_GPU_ALIGNMENT) {
data_size = AOTI_CONST_GPU_ALIGNMENT +
(data_size / AOTI_CONST_GPU_ALIGNMENT) * AOTI_CONST_GPU_ALIGNMENT;
}
constants_internal_offset[i] = blob_size;
blob_size += data_size;
}
#endif // USE_CUDA
}
size_t num_inputs() const {
return inputs_info_.size();
}
size_t num_outputs() const {
return outputs_info_.size();
}
size_t num_constants() const {
return constants_info_.size();
}
const char* input_name(int64_t idx) const {
return inputs_info_.at(idx).name;
}
const char* output_name(int64_t idx) const {
return outputs_info_.at(idx).name;
}
const char* constant_name(int64_t idx) const {
return constants_info_.at(idx).name;
}
size_t constant_ndim(int64_t idx) {
return constants_info_.at(idx).shape.size();
}
const int64_t* constant_shape(int64_t idx) const {
return constants_info_.at(idx).shape.data();
}
const int64_t* constant_stride(int64_t idx) const {
return constants_info_.at(idx).stride.data();
}
int32_t constant_dtype(int64_t idx) const {
return constants_info_.at(idx).dtype;
}
int32_t constant_layout(int64_t idx) const {
return constants_info_.at(idx).layout;
}
size_t constant_offset(int64_t idx) const {
return constants_info_.at(idx).offset;
}
size_t constant_data_size(int64_t idx) const {
return constants_info_.at(idx).data_size;
}
const char* constant_original_fqn(int64_t idx) const {
return constants_info_.at(idx).original_fqn;
}
const uint8_t* opaque_metadata(int64_t idx) const {
return constants_info_.at(idx).opaque_metadata.data();
}
size_t opaque_metadata_size(int64_t idx) {
return constants_info_.at(idx).opaque_metadata.size();
}
bool constant_from_folded(int64_t idx) const {
return constants_info_.at(idx).from_folded;
}
int32_t constant_type(int64_t idx) const {
return constants_info_.at(idx).type;
}
const char* get_in_spec() const {
return in_spec_.c_str();
}
const char* get_out_spec() const {
return out_spec_.c_str();
}
void update_constants_array_from_map() {
if (!constants_map_) {
throw std::runtime_error{
"constants_map_ was not ready when constants_ is trying to be constructed from it!"};
}
if (!constants_) {
constants_ =
std::make_shared<std::vector<ConstantHandle>>(constants_info_.size());
} else {
constants_->resize(constants_info_.size());
}
int idx = 0;
for (const auto& info : constants_info_) {
const auto it = constants_map_->find(info.name);
if (it != constants_map_->end()) {
constants_->at(idx) = ConstantHandle(it->second);
}
idx++;
}
}
void update_constants_map(
std::shared_ptr<ConstantMap> constants_map,
bool remap_constants_array = true) {
constants_map_ = std::move(constants_map);
if (remap_constants_array) {
update_constants_array_from_map();
}
}
// This function allows us to update the constants_ that is used to look up
// the corresponding constant tensor during runtime.
void update_constants_array(
std::shared_ptr<std::vector<ConstantHandle>> constants_array) {
constants_ = std::move(constants_array);
}
/// Returns true if the model is complete.
bool is_finished() {
#ifdef USE_CUDA
if (!run_finished_) {
throw std::runtime_error{"Model CUDA event was not initialized"};
}
auto event_status = cudaEventQuery(*run_finished_);
if (event_status == cudaSuccess) {
return true;
} else if (event_status == cudaErrorNotReady) {
return false;
}
throw std::runtime_error(
std::string("The model did not finish successfully. Error: ") +
cudaGetErrorString(cudaGetLastError()));
#elif defined(USE_XPU)
if (!run_finished_) {
throw std::runtime_error{"Model XPU event was not initialized"};
}
using namespace sycl::info;
return (*run_finished_)->get_info<event::command_execution_status>() ==
event_command_status::complete;
#else // !USE_CUDA && !USE_XPU
return run_finished_;
#endif // USE_CUDA
}
/// Synchronizes completion event.
void wait_for_completion() {
#ifdef USE_CUDA
if (!run_finished_) {
throw std::runtime_error{"Model event was not initialized"};
}
AOTI_RUNTIME_DEVICE_CHECK(cudaEventSynchronize(*run_finished_));
#endif // USE_CUDA
#ifdef USE_XPU
if (!run_finished_) {
throw std::runtime_error{"Model event was not initialized"};
}
(*run_finished_)->wait_and_throw();
#endif
}
protected:
uint8_t* _get_constants_start() {
#ifndef USE_MMAP_SELF
// NOLINTNEXTLINE(*const-cast*)
return const_cast<uint8_t*>(_binary_constants_bin_start);
#else
if (self_mmap) {
return self_mmap;
}
Dl_info dl_info;
// get pointer to constant which are appended to the binary
AOTI_RUNTIME_CHECK(
dladdr(__func__, &dl_info), "Can't find shared library name");
int fd = open(dl_info.dli_fname, O_RDONLY);
AOTI_RUNTIME_CHECK(fd >= 0, "Shared library file cannot be opened");
auto fsize = lseek(fd, 0, SEEK_END);
auto weights_size =
reinterpret_cast<const uint64_t*>(_binary_constants_bin_start)[0];
auto magic_number =
reinterpret_cast<const uint64_t*>(_binary_constants_bin_start)[1];
auto weights_offset = fsize - weights_size;
AOTI_RUNTIME_CHECK(
(weights_offset & 0x3fff) == 0,
"weights_offset must be aligned to 16K boundary");
auto ptr = mmap(
NULL,
weights_size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE,
fd,
weights_offset);
close(fd);
AOTI_RUNTIME_CHECK(ptr != MAP_FAILED, "mmap() failed");
self_mmap = static_cast<uint8_t*>(ptr);
AOTI_RUNTIME_CHECK(
reinterpret_cast<uint64_t*>(
self_mmap + weights_size - sizeof(uint64_t))[0] == magic_number,
"Weigths data seems corrupt");
return self_mmap;
#endif
}
struct ParamInfo {
const char* name = nullptr;
};
struct ConstInfo {
const char* name = nullptr;
std::vector<int64_t> shape;
std::vector<int64_t> stride;
int32_t dtype{};
int64_t offset{};
size_t data_size{};
int32_t layout{};
std::vector<uint8_t> opaque_metadata;
int64_t opaque_metadata_size{};
const char* original_fqn = nullptr;
bool from_folded{};
int32_t type{};
};
std::vector<ParamInfo> inputs_info_;
std::vector<ParamInfo> outputs_info_;
std::vector<ConstInfo> constants_info_;
std::string in_spec_;
std::string out_spec_;
std::shared_ptr<ConstantMap> constants_map_;
std::shared_ptr<std::vector<ConstantHandle>> constants_;
#if defined(USE_CUDA) || defined(USE_XPU)
// Holds the blob storage for constants' at::Tensor for CUDA.
GPUPtr constant_blob_;
#endif // USE_CUDA
#ifdef USE_MMAP_SELF
uint8_t* self_mmap = NULL;
#endif
// A directory with CUDA binary files, e.g. compiled kernels, etc.
const std::optional<std::string> cubin_dir_;
// This is the flag that implies whether the weight is included in the model.
// If True, we would prepare the weight when loading the model, otherwise the
// model will be loaded without weights, and need to be provided by the user.
bool include_weights;
// Record if the model finishes an inference run so that its owning
// AOTModelContainer can re-use this instance.
#ifdef USE_CUDA
std::optional<cudaEvent_t> run_finished_;
#elif defined(USE_XPU)
std::optional<sycl::event*> run_finished_;
#else // !USE_CUDA
bool run_finished_{};
#endif
// Generated model uses this device index to create CUDA guards.
int32_t device_type_{};
int32_t device_idx_{};
};
// Codegen-ed classes can derive from this to keep pointers to loaded kernels.
class AOTInductorModelKernelsBase {
public:
virtual ~AOTInductorModelKernelsBase() = default;
};
class AOTInductorModel : public AOTInductorModelBase<AOTInductorModel> {
public:
AOTInductorModel(
std::shared_ptr<ConstantMap> constants_map,
std::shared_ptr<std::vector<ConstantHandle>> constants_array,
const std::string& device_str,
std::optional<std::string> cubin_dir,
bool include_weights = true);
std::unordered_map<std::string, AtenTensorHandle> const_run_impl(
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor,
bool initialization = false);
void _const_run_impl(
std::vector<AtenTensorHandle>& output_handles,
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor);
void run_impl(
AtenTensorHandle*
input_handles, // array of input AtenTensorHandle; handles
// are stolen; the array itself is borrowed
AtenTensorHandle*
output_handles, // array for writing output AtenTensorHandle; handles
// will be stolen by the caller; the array itself is
// borrowed
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor);
template <typename Inputs, typename Outputs>
Outputs run_impl_minimal_arrayref_interface(
const Inputs& inputs,
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor);
static std::unique_ptr<AOTInductorModel> Create(
std::shared_ptr<ConstantMap> constants_map,
std::shared_ptr<std::vector<ConstantHandle>> constants_array,
const std::string& device_str,
std::optional<std::string> cubin_dir) {
return std::make_unique<AOTInductorModel>(
std::move(constants_map),
std::move(constants_array),
device_str,
std::move(cubin_dir));
}
private:
std::unique_ptr<AOTInductorModelKernelsBase> kernels_;
};
} // namespace torch::aot_inductor
|