1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
#pragma once
#include <algorithm>
#include <condition_variable>
#include <deque>
#include <mutex>
#include <shared_mutex>
// WARNING: Be careful when adding new includes here. This header will be used
// in model.so, and should not refer to any aten/c10 headers except the stable
// C ABI defined in torch/csrc/inductor/aoti_torch/c/shim.h. The same rule
// applies to other files under torch/csrc/inductor/aoti_runtime/.
#include <torch/csrc/inductor/aoti_runtime/model.h>
namespace torch::aot_inductor {
class AOTInductorModelContainer {
public:
AOTInductorModelContainer(
size_t num_models,
const std::string& device_str,
const std::optional<std::string>& cubin_dir = std::nullopt) {
constants_map_ = std::make_shared<ConstantMap>();
constants_array_ = std::make_shared<std::vector<ConstantHandle>>();
models_.reserve(num_models);
available_models_.reserve(num_models);
for (size_t i = 0; i < num_models; ++i) {
models_.push_back(AOTInductorModel::Create(
constants_map_, constants_array_, device_str, cubin_dir));
available_models_.push_back(models_.back().get());
}
// Note that the all following fields (input_names_, output_names,
// etc) can be filled in by the AOT
// codegen. However, we choose to query such information from
// the owned AOTInductorModel for a couple of reasons:
// * simplify the codegen templates
// * reduce information fragmentation and duplication
// * the initialization process below is done only once when the container
// is constructed, so it would have little performance impact
auto* model = available_models_[0];
size_t num_inputs = model->num_inputs();
input_names_.reserve(num_inputs);
for (size_t i = 0; i < num_inputs; i++) {
input_names_.emplace_back(model->input_name(static_cast<int64_t>(i)));
}
size_t num_outputs = model->num_outputs();
output_names_.reserve(num_outputs);
for (size_t i = 0; i < num_outputs; i++) {
output_names_.emplace_back(model->output_name(static_cast<int64_t>(i)));
}
model->load_constants();
#if defined(USE_CUDA) || defined(USE_XPU)
constant_blob_ = model->release_constant_blob();
constants_internal_offset_.resize(model->num_constants());
model->compute_gpu_constant_blob(blob_size_, constants_internal_offset_);
#endif
for (auto& model : models_) {
model->update_constants_map(constants_map_);
}
in_spec_ = model->get_in_spec();
out_spec_ = model->get_out_spec();
}
void run(
AtenTensorHandle*
input_handles, // array of input AtenTensorHandle; handles
// are stolen; the array itself is borrowed
AtenTensorHandle*
output_handles, // array for writing output AtenTensorHandle; handles
// will be stolen by the caller; the array itself is
// borrowed
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor) {
std::shared_lock model_lk(model_exec_mutex_);
auto* model = get_available_model();
if (!constant_folded_) {
// At this point, constant is not ready yet. We need to call constant
// folding before we execute the model. We obtain a unique lock at this
// point to make sure constant is ready for all.
model_lk.unlock();
std::unique_lock constants_folding_lk(model_exec_mutex_);
// Double locking to make sure constant folding is only ran once.
if (!constant_folded_) {
auto folded_const_map = model->run_const_fold(
stream, proxy_executor, /* initialization = */ true);
update_constant_buffer(
folded_const_map,
/* use_inactive = */ false,
/* validate_full_update = */ false);
constant_folded_ = true;
}
constants_folding_lk.unlock();
model_lk.lock();
}
try {
model->run(input_handles, output_handles, stream, proxy_executor);
} catch (...) {
std::lock_guard lk(models_mutex_);
available_models_.push_back(model);
throw;
}
{
std::lock_guard lk(models_mutex_);
pending_models_.push_back(model);
}
pending_models_available_.notify_one();
}
size_t num_constants() const {
if (this->num_models() == 0) {
throw std::runtime_error("No available models in container!");
}
return models_[0]->num_constants();
}
// retrieve the constant name of constants_info_[idx]
const char* constant_name(size_t idx) const {
if (this->num_models() == 0) {
throw std::runtime_error("No available models in container!");
}
return models_[0]->constant_name(static_cast<int64_t>(idx));
}
// retrieve original FQN of constants_info_[idx]
const char* constant_original_fqn(size_t idx) const {
if (this->num_models() == 0) {
throw std::runtime_error("No available models in container!");
}
return models_[0]->constant_original_fqn(static_cast<int64_t>(idx));
}
// retrieve whether constant is from folded of constants_info_[idx]
bool constant_from_folded(size_t idx) const {
if (this->num_models() == 0) {
throw std::runtime_error("No available models in container!");
}
return models_[0]->constant_from_folded(static_cast<int64_t>(idx));
}
// retrieve type of constants_info_[idx]
int32_t constant_type(size_t idx) const {
if (this->num_models() == 0) {
throw std::runtime_error("No available models in container!");
}
return models_[0]->constant_type(static_cast<int64_t>(idx));
}
// retrieve dtype of constants_info_[idx]
int32_t constant_dtype(size_t idx) const {
if (this->num_models() == 0) {
throw std::runtime_error("No available models in container!");
}
return models_[0]->constant_dtype(static_cast<int64_t>(idx));
}
void run_const_fold(
bool inactive_buffer,
DeviceStreamType stream,
AOTIProxyExecutorHandle proxy_executor) {
std::shared_lock model_lk(model_exec_mutex_);
auto* model = get_available_model();
if (!inactive_buffer) {
// We would need to acquire a unique lock if we want to run constant
// folding on the active buffer.
model_lk.unlock();
std::unique_lock constants_folding_lk(model_exec_mutex_);
try {
auto folded_const_map = model->run_const_fold(stream, proxy_executor);
update_constant_buffer(
folded_const_map,
/* use_inactive = */ false,
/* validate_full_update = */ false);
} catch (...) {
std::lock_guard lk(models_mutex_);
available_models_.push_back(model);
throw;
}
constants_folding_lk.unlock();
model_lk.lock();
} else {
// We swap the constant mapping to the inactive buffer in the model to run
// const run.
auto constants_map = get_constants_map(/* get_inactive= */ true);
auto constants_array = get_constants_array(/* get_inactive= */ true);
try {
model->update_constants_map(
constants_map, /* remap_constants_array= */ false);
model->update_constants_array(constants_array);
auto folded_const_map = model->run_const_fold(stream, proxy_executor);
update_constant_buffer(
folded_const_map,
/* use_inactive = */ true,
/* validate_full_update = */ false);
// Swap back the model's constants mapping
constants_map = get_constants_map(/* get_inactive= */ false);
constants_array = get_constants_array(/* get_inactive= */ false);
model->update_constants_map(
constants_map, /* remap_constants_array= */ false);
model->update_constants_array(constants_array);
} catch (...) {
std::lock_guard lk(models_mutex_);
available_models_.push_back(model);
throw;
}
}
{
std::lock_guard lk(models_mutex_);
pending_models_.push_back(model);
}
pending_models_available_.notify_one();
}
bool _should_skip_update(const size_t idx) const {
auto constant_type = models_[0]->constant_type(static_cast<int64_t>(idx));
return constant_type == ConstantType::TensorConstant;
}
// This function updates the buffer for storing constants.
// It will update the buffer, the mapping and the array mapping.
void update_constant_buffer(
const std::unordered_map<std::string, AtenTensorHandle>& constants_map,
bool use_inactive,
bool validate_full_update) {
if (this->num_models() == 0) {
throw std::runtime_error("No model available in container!");
}
auto num_constants = models_[0]->num_constants();
if (validate_full_update) {
for (size_t idx = 0; idx < num_constants; idx++) {
if (models_[0]->constant_from_folded(static_cast<int64_t>(idx))) {
continue;
}
auto constant_name =
std::string(models_[0]->constant_name(static_cast<int64_t>(idx)));
auto it = constants_map.find(constant_name);
if (it == constants_map.end()) {
if (_should_skip_update(idx)) {
// tracing sometimes creates tensors that are non-existent in
// original graph. We could skip those and do a direct copy.
std::cerr << "[WARNING] Found constant " << constant_name
<< " in model, but not provided by user!\n";
continue;
}
throw std::runtime_error(
std::string("Cannot find constants ") + constant_name +
std::string(" in constants_map!"));
}
}
}
auto original_constants_map = get_constants_map(!use_inactive);
auto constants_map_to_update = get_constants_map(use_inactive);
for (size_t idx = 0; idx < num_constants; idx++) {
auto constant_name =
std::string(models_[0]->constant_name(static_cast<int64_t>(idx)));
auto it = constants_map.find(constant_name);
if (it == constants_map.end() &&
!(_should_skip_update(idx) && use_inactive)) {
continue;
}
#if defined(USE_CUDA) || defined(USE_XPU)
AtenTensorHandle tensor;
if (_should_skip_update(idx) && use_inactive) {
tensor = original_constants_map->find(constant_name)->second.get();
} else {
tensor = it->second;
}
auto* constants_blob_ptr =
static_cast<uint8_t*>(get_constant_blob_ptr(use_inactive));
// Move the data to container handled blob.
uint8_t* internal_constants_ptr =
constants_blob_ptr + constants_internal_offset_[idx];
void* user_constant_ptr;
int64_t constant_size;
aoti_torch_get_data_ptr(tensor, &user_constant_ptr);
aoti_torch_get_storage_size(tensor, &constant_size);
#ifdef USE_XPU
sycl::queue* queue_ptr = nullptr;
aoti_torch_get_current_sycl_queue((void**)&queue_ptr);
queue_ptr
->memcpy(internal_constants_ptr, user_constant_ptr, constant_size)
.wait();
#else
AOTI_RUNTIME_DEVICE_CHECK(cudaMemcpy(
internal_constants_ptr,
user_constant_ptr,
constant_size,
cudaMemcpyDefault));
#endif
// Generate Tensor from container handled blob.
// We extract stride and offset from provided Tensor since we do not
// guarantee that the tensor is contiguous.
AtenTensorHandle tensor_handle;
int64_t* stride;
int64_t offset;
int device_idx = models_[0]->get_device_idx();
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_strides(tensor, &stride));
AOTI_TORCH_ERROR_CODE_CHECK(
aoti_torch_get_storage_offset(tensor, &offset));
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_create_tensor_from_blob(
internal_constants_ptr,
models_[0]->constant_ndim(idx),
models_[0]->constant_shape(idx),
stride,
offset,
models_[0]->constant_dtype(idx),
#ifdef USE_XPU
aoti_torch_device_type_xpu(),
#else
aoti_torch_device_type_cuda(),
#endif
device_idx,
&tensor_handle));
#else // USE_CUDA
AtenTensorHandle tensor_handle = it->second;
#endif // USE_CUDA
// Now place the tensor to constants_map. Note at this point the ownership
// of the tensor_handle will be taken over.
constants_map_to_update->emplace(constant_name, tensor_handle);
}
// Update the inactive constant array.
update_array_from_map(
get_constants_array(use_inactive), constants_map_to_update);
}
void update_array_from_map(
const std::shared_ptr<std::vector<ConstantHandle>>& constants_array,
const std::shared_ptr<ConstantMap>& constants_map) {
auto num_constants = models_[0]->num_constants();
for (size_t idx = 0; idx < num_constants; idx++) {
if (constants_map->find(models_[0]->constant_name(
static_cast<int64_t>(idx))) != constants_map->end()) {
constants_array->at(idx) = ConstantHandle(
constants_map
->find(models_[0]->constant_name(static_cast<int64_t>(idx)))
->second);
}
}
}
void swap_constant_buffer() {
std::lock_guard unique_lk(model_exec_mutex_);
auto constants_map = get_constants_map(/* get_inactive= */ true);
auto constants_array = get_constants_array(/* get_inactive= */ true);
for (auto& model : models_) {
model->update_constants_map(
constants_map, /* remap_constants_array = */ false);
model->update_constants_array(constants_array);
}
use_secondary_ = !use_secondary_;
}
size_t num_inputs() const {
return input_names_.size();
}
size_t num_outputs() const {
return output_names_.size();
}
const char* input_name(size_t idx) const {
return input_names_.at(idx).c_str();
}
const char* output_name(size_t idx) const {
return output_names_.at(idx).c_str();
}
size_t num_models() const {
return models_.size();
}
const char* get_in_spec() const {
return in_spec_;
}
const char* get_out_spec() const {
return out_spec_;
}
private:
std::vector<std::string> input_names_;
std::vector<std::string> output_names_;
const char* in_spec_;
const char* out_spec_;
#if defined(USE_CUDA) || defined(USE_XPU)
// Holds the blob storage for constants' at::Tensor for CUDA.
GPUPtr constant_blob_;
GPUPtr constant_blob_secondary_;
// Let's place this within USE_CUDA at the moment before we fully support
// update for CPU cases.
size_t blob_size_;
std::vector<size_t> constants_internal_offset_;
#endif // USE_CUDA
// Determine which constants is being used for the model.
// If true,
// constants_map_secondary/constant_blob_secondary/constants_array_secondary
// is being used.
bool use_secondary_{false};
// Determine whether we have ran constant folding
bool constant_folded_{false};
// Holds the mapping of constants to at::Tensor.
// The underlying data of at::Tensor is in either constant_blob_ (for CUDA).
// or _binary_constants_bin_start (for CPU).
std::shared_ptr<ConstantMap> constants_map_;
std::shared_ptr<ConstantMap> constants_map_secondary_;
// Holds the indexed array of constant for faster lookup during runtime.
std::shared_ptr<std::vector<ConstantHandle>> constants_array_;
std::shared_ptr<std::vector<ConstantHandle>> constants_array_secondary_;
// Holds all the AOTInductorModel instances owned by this container.
std::vector<std::unique_ptr<AOTInductorModel>> models_;
// Holds the AOTInductorModel instances available for inference.
std::vector<AOTInductorModel*> available_models_;
// Holds the AOTInductorModel instances that have started running
// inference and can be placed onto available_models_ upon their
// completion.
std::deque<AOTInductorModel*> pending_models_;
// Protects available_models_ and pending_models_.
std::mutex models_mutex_;
// Notified whenever a model is placed onto pending_models_.
std::condition_variable pending_models_available_;
AOTInductorModel* get_available_model() {
std::unique_lock lk(models_mutex_);
if (available_models_.empty()) {
reclaim_finished_models(lk);
}
auto* result = available_models_.back();
available_models_.pop_back();
return result;
}
// This mutex is used to protect execution of model.
// We acquire the mutex in shared mode if we allow concurrent execution.
// We acquire the mutex in unique mode when we want exclusive access of the
// model. One such case is when we want to do a weight swapping. We want to
// make sure no one is executing the model.
std::shared_mutex model_exec_mutex_;
#if defined(USE_CUDA) || defined(USE_XPU)
void* get_constant_blob_ptr(bool get_inactive) {
if ((get_inactive && use_secondary_) ||
(!get_inactive && !use_secondary_)) {
return constant_blob_.get();
} else {
if (!constant_blob_secondary_) {
constant_blob_secondary_ = RAII_gpuMalloc(blob_size_);
}
return constant_blob_secondary_.get();
}
}
#endif // USE_CUDA
std::shared_ptr<ConstantMap> get_constants_map(bool get_inactive) {
if ((get_inactive && use_secondary_) ||
(!get_inactive && !use_secondary_)) {
return constants_map_;
} else {
if (!constants_map_secondary_) {
constants_map_secondary_ = std::make_shared<ConstantMap>();
}
return constants_map_secondary_;
}
}
std::shared_ptr<std::vector<ConstantHandle>> get_constants_array(
bool get_inactive) {
if ((get_inactive && use_secondary_) ||
(!get_inactive && !use_secondary_)) {
return constants_array_;
} else {
if (!constants_array_secondary_) {
constants_array_secondary_ =
std::make_shared<std::vector<ConstantHandle>>(
models_[0]->num_constants());
}
return constants_array_secondary_;
}
}
void reclaim_finished_models(std::unique_lock<std::mutex>& lk) {
// push finished model instances to the end of pending_models_
auto it = std::stable_partition(
pending_models_.begin(),
pending_models_.end(),
[](AOTInductorModel* m) { return !m->is_finished(); });
if (it != pending_models_.end()) {
// We have finished model instances that can be pushed into
// available_models_ so that we don't have to be blocked on waiting
// the pending_models_available_ condition.
available_models_.insert(
available_models_.end(), it, pending_models_.end());
pending_models_.erase(it, pending_models_.end());
return;
}
pending_models_available_.wait(
lk, [this]() { return !pending_models_.empty(); });
// Let's make the schedule simple first. We always wait on the first
// pending_models_ to be complete.
auto* model = pending_models_.front();
pending_models_.pop_front();
lk.unlock();
try {
model->wait_for_completion();
} catch (...) {
lk.lock();
available_models_.push_back(model);
throw;
}
lk.lock();
available_models_.push_back(model);
}
};
} // namespace torch::aot_inductor
|