1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
// NOLINT
#pragma once
#ifdef USE_XPU
#include <c10/xpu/XPUFunctions.h>
#include <level_zero/ze_api.h>
#include <sycl/sycl.hpp>
#include <fstream>
#include <iostream>
#include <string>
#define ZE_CHECK(status) \
{ \
if (status != ZE_RESULT_SUCCESS) { \
std::stringstream ss; \
ss << "L0 runtime error: " << std::hex << std::uppercase << status; \
throw std::runtime_error(ss.str()); \
} \
}
static ze_module_handle_t create_module(
ze_context_handle_t context,
ze_device_handle_t device,
const uint8_t* binary_ptr,
size_t binary_size) {
const char* build_flags = "";
const ze_module_format_t format = ZE_MODULE_FORMAT_IL_SPIRV;
ze_module_desc_t module_description = {};
module_description.stype = ZE_STRUCTURE_TYPE_MODULE_DESC;
module_description.format = format;
module_description.inputSize = binary_size;
module_description.pInputModule = (uint8_t*)binary_ptr;
module_description.pBuildFlags = build_flags;
ze_module_build_log_handle_t buildlog = nullptr;
ze_module_handle_t module = nullptr;
auto context_initial = context;
auto device_initial = device;
auto error_no = ZE_RESULT_SUCCESS;
error_no =
zeModuleCreate(context, device, &module_description, &module, &buildlog);
if (error_no != ZE_RESULT_SUCCESS) {
size_t szLog = 0;
ZE_CHECK(zeModuleBuildLogGetString(buildlog, &szLog, nullptr));
char* strLog = (char*)malloc(szLog);
ZE_CHECK(zeModuleBuildLogGetString(buildlog, &szLog, strLog));
std::cerr << "L0 build module failed. Log: " << strLog << std::endl;
free(strLog);
}
if (buildlog) {
ZE_CHECK(zeModuleBuildLogDestroy(buildlog));
}
ZE_CHECK(error_no);
return module;
}
ze_kernel_handle_t create_function(
ze_module_handle_t module,
ze_kernel_flags_t flag,
const std::string& func_name) {
ze_kernel_handle_t kernel = nullptr;
ze_kernel_desc_t kernel_description = {};
kernel_description.stype = ZE_STRUCTURE_TYPE_KERNEL_DESC;
kernel_description.pNext = nullptr;
kernel_description.flags = flag;
kernel_description.pKernelName = func_name.c_str();
assert(module);
ZE_CHECK(zeKernelCreate(module, &kernel_description, &kernel));
return kernel;
}
static ze_module_handle_t loadModule(std::string& spv_path) {
sycl::device& sycl_device =
c10::xpu::get_raw_device(c10::xpu::current_device());
auto sycl_context =
sycl_device.get_platform().ext_oneapi_get_default_context();
auto l0_device =
sycl::get_native<sycl::backend::ext_oneapi_level_zero>(sycl_device);
auto l0_context =
sycl::get_native<sycl::backend::ext_oneapi_level_zero>(sycl_context);
std::ifstream IFS(spv_path.c_str(), std::ios::binary);
std::ostringstream OSS;
OSS << IFS.rdbuf();
std::string data(OSS.str());
return create_module(
l0_context,
l0_device,
reinterpret_cast<const uint8_t*>(data.c_str()),
data.size());
}
static std::unique_ptr<sycl::kernel> getKernel(
ze_module_handle_t l0_module,
const char* kernel_name) {
assert(l0_module);
assert(kernel_name);
auto l0_kernel =
create_function(l0_module, ZE_KERNEL_FLAG_FORCE_RESIDENCY, kernel_name);
sycl::device& sycl_device =
c10::xpu::get_raw_device(c10::xpu::current_device());
auto sycl_context =
sycl_device.get_platform().ext_oneapi_get_default_context();
auto mod = sycl::make_kernel_bundle<
sycl::backend::ext_oneapi_level_zero,
sycl::bundle_state::executable>(
{l0_module, sycl::ext::oneapi::level_zero::ownership::transfer},
sycl_context);
auto fun = sycl::make_kernel<sycl::backend::ext_oneapi_level_zero>(
{mod, l0_kernel, sycl::ext::oneapi::level_zero::ownership::transfer},
sycl_context);
return std::make_unique<sycl::kernel>(fun);
}
[[maybe_unused]] static std::unique_ptr<sycl::kernel> loadKernel(
std::string filePath,
const std::string& funcName,
uint32_t sharedMemBytes,
const std::optional<std::string>& binDir = std::nullopt) {
if (binDir) {
std::filesystem::path p1{*binDir};
std::filesystem::path p2{filePath};
filePath = (p1 / p2.filename()).string();
}
auto mod = loadModule(filePath);
return getKernel(mod, funcName.c_str());
}
[[maybe_unused]] static void launchKernel(
std::unique_ptr<sycl::kernel>& kernel_ptr,
uint32_t grid_x,
uint32_t grid_y,
uint32_t grid_z,
uint32_t num_warps,
uint32_t shared_memory,
void** params,
sycl::queue* queue_ptr) {
std::string kernel_name =
kernel_ptr->get_info<sycl::info::kernel::function_name>();
// Currently threads_per_warp is hard code to 32 from torch.compile to triton
// stack.
int threads_per_warp = 32;
uint32_t num_params = kernel_ptr->get_info<sycl::info::kernel::num_args>();
size_t global_range_x = grid_x * threads_per_warp * num_warps;
size_t global_range_y = grid_y;
size_t global_range_z = grid_z;
size_t local_range_x = num_warps * threads_per_warp;
size_t local_range_y = 1;
size_t local_range_z = 1;
sycl::range<3> global_range(global_range_z, global_range_y, global_range_x);
sycl::range<3> local_range(local_range_z, local_range_y, local_range_x);
sycl::nd_range<3> parallel_work_size(global_range, local_range);
if (shared_memory) {
// num_params from sycl info = user provided args + shared_memroy_buffer
num_params -= 1;
}
// Submit the imported kernel.
auto cgf = [&](sycl::handler& cgh) {
for (uint32_t i = 0; i < num_params; ++i) {
cgh.set_arg(i, *(static_cast<void**>(params[i])));
}
if (shared_memory > 0) {
constexpr int dimensions = 1;
using share_mem_t = sycl::local_accessor<int8_t, dimensions>;
share_mem_t local_buffer = share_mem_t(shared_memory, cgh);
cgh.set_arg(num_params, local_buffer);
cgh.parallel_for(parallel_work_size, *kernel_ptr);
} else {
cgh.parallel_for(parallel_work_size, *kernel_ptr);
}
};
auto event = queue_ptr->submit(cgf);
}
#endif
|