1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#pragma once
#include <torch/csrc/inductor/aoti_runtime/arrayref_tensor.h>
namespace torch::aot_inductor {
template <typename T>
struct ThreadLocalCachedOutputTensor;
template <>
struct ThreadLocalCachedOutputTensor<RAIIAtenTensorHandle> {
explicit ThreadLocalCachedOutputTensor(const RAIIAtenTensorHandle&) {}
void copy_data_from(const RAIIAtenTensorHandle& handle) {
throw std::runtime_error("can't happen");
}
AtenTensorHandle tensor() const {
throw std::runtime_error("can't happen");
}
};
template <>
struct ThreadLocalCachedOutputTensor<AtenTensorHandle> {
explicit ThreadLocalCachedOutputTensor(const AtenTensorHandle&) {}
void copy_data_from(const AtenTensorHandle& handle) {
throw std::runtime_error("can't happen");
}
AtenTensorHandle tensor() const {
throw std::runtime_error("can't happen");
}
};
template <>
struct ThreadLocalCachedOutputTensor<ConstantHandle> {
explicit ThreadLocalCachedOutputTensor(const ConstantHandle&) {}
void copy_data_from(const ConstantHandle& handle) {
throw std::runtime_error("can't happen");
}
AtenTensorHandle tensor() const {
throw std::runtime_error("can't happen");
}
};
template <typename T>
struct ThreadLocalCachedOutputTensor<ArrayRefTensor<T>> {
explicit ThreadLocalCachedOutputTensor(const ArrayRefTensor<T>& t) {
realloc(t);
}
void copy_data_from(const ArrayRefTensor<T>& t) {
if (t.numel() > capacity_) {
realloc(t);
}
std::copy(t.data(), t.data() + t.numel(), storage_.get());
}
AtenTensorHandle tensor() const {
return tensor_.get();
}
private:
void realloc(const ArrayRefTensor<T>& t) {
capacity_ = t.numel();
// NOLINTNEXTLINE(*arrays*)
storage_ = std::make_unique<T[]>(t.numel());
AtenTensorHandle handle = nullptr;
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_create_tensor_from_blob(
storage_.get(),
t.sizes().size(),
t.sizes().data(),
t.strides().data(),
0,
aoti_torch_dtype<std::remove_const_t<T>>(),
t.device_type(),
t.device_idx(),
&handle));
tensor_ = handle;
}
// NOLINTNEXTLINE(*arrays*)
std::unique_ptr<T[]> storage_;
int64_t capacity_ = 0;
RAIIAtenTensorHandle tensor_;
};
template <typename T>
struct ThreadLocalCachedOutputArray;
// Just needs to compile, doesn't need to do anything.
template <>
struct ThreadLocalCachedOutputArray<RAIIAtenTensorHandle> {
explicit ThreadLocalCachedOutputArray(const RAIIAtenTensorHandle&) {
throw std::runtime_error("can't happen");
}
// Not supported yet! We would need to put contiguous() or
// expect_contiguous() into the ABI.
void copy_data_from(const RAIIAtenTensorHandle&) {
throw std::runtime_error("can't happen");
}
template <typename U>
ArrayRefTensor<U> arrayref_tensor() const {
throw std::runtime_error("can't happen");
}
};
// Just needs to compile, doesn't need to do anything.
template <>
struct ThreadLocalCachedOutputArray<ConstantHandle> {
explicit ThreadLocalCachedOutputArray(const ConstantHandle&) {
throw std::runtime_error("can't happen");
}
// Not supported yet! We would need to put contiguous() or
// expect_contiguous() into the ABI.
void copy_data_from(const ConstantHandle&) {
throw std::runtime_error("can't happen");
}
template <typename U>
ArrayRefTensor<U> arrayref_tensor() const {
throw std::runtime_error("can't happen");
}
};
template <typename T>
struct ThreadLocalCachedOutputArray<ArrayRefTensor<T>> {
explicit ThreadLocalCachedOutputArray(const ArrayRefTensor<T>& t) {}
template <
typename U,
std::enable_if_t<
std::is_same_v<std::remove_const_t<T>, std::remove_const_t<U>>,
bool> = true>
ArrayRefTensor<T> arrayref_tensor() const {
return tensor_;
}
void copy_data_from(const ArrayRefTensor<T>& t) {
if (t.numel() > capacity_) {
capacity_ = t.numel();
// NOLINTNEXTLINE(*arrays*)
storage_ = std::make_unique<T[]>(capacity_);
}
std::copy(t.data(), t.data() + t.numel(), storage_.get());
tensor_ = t;
tensor_.set_arrayref(MiniArrayRef<T>(storage_.get(), t.numel()));
}
private:
// NOLINTNEXTLINE(*arrays*)
std::unique_ptr<T[]> storage_;
uint32_t capacity_ = 0;
ArrayRefTensor<T> tensor_;
};
} // namespace torch::aot_inductor
|