1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
#include <ATen/Functions.h>
#include <ATen/Utils.h>
#include <c10/core/TensorImpl.h>
#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_exception.h>
#include <caffe2/torch/csrc/jit/backends/xnnpack/compiler/xnn_compiler.h>
#include <torch/csrc/jit/backends/xnnpack/serialization/schema_generated.h>
namespace torch {
namespace jit {
namespace xnnpack {
namespace delegate {
class XNNModelWrapper : public CustomClassHolder {
public:
XNNExecutor executor_;
XNNModelWrapper(XNNExecutor executor) : executor_(std::move(executor)){};
XNNModelWrapper() = delete;
XNNModelWrapper(const XNNModelWrapper& oldObject) = delete;
};
class XNNPackBackend : public PyTorchBackendInterface {
public:
// Constructor.
// NOLINTNEXTLINE(modernize-use-equals-default)
explicit XNNPackBackend() {}
virtual ~XNNPackBackend() override = default;
bool is_available() override {
return xnn_status_success == xnn_initialize(/*allocator=*/nullptr);
}
c10::impl::GenericDict compile(
c10::IValue processed,
c10::impl::GenericDict method_compile_spec) override {
auto dict = processed.toGenericDict();
// Compiling and wrapping exeuction object
const std::string& ser_model = dict.at("ser_model").toStringRef();
XNNExecutor executor;
XNNCompiler::compileModel(ser_model.data(), ser_model.length(), &executor);
auto model_ptr = c10::make_intrusive<XNNModelWrapper>(std::move(executor));
auto runtime_handle = IValue::make_capsule(model_ptr);
auto wrapper = c10::static_intrusive_pointer_cast<XNNModelWrapper>(
runtime_handle.toCapsule());
// Packing outputs into generic dict
c10::Dict<c10::IValue, c10::IValue> handles(
c10::StringType::get(), c10::AnyType::get());
c10::Dict<c10::IValue, c10::IValue> ret(
c10::StringType::get(), c10::AnyType::get());
ret.insert("runtime", runtime_handle);
ret.insert("output_shapes", dict.at("outputs"));
handles.insert("forward", ret);
return handles;
}
// Currently this is not implemented, and everything is computed a head of
// time the current implementation just takes the computed results from ahead
// of time and grabs them. The inputs are fed in through the compile spec for
// the sake of testing. In reality, the inputs will be fed in at this stage
// and ran here.
c10::impl::GenericList execute(
c10::IValue handle,
c10::impl::GenericList inputs) override {
auto dict = handle.toGenericDict();
auto output_shapes = dict.at("output_shapes").toList();
auto capsule = dict.at("runtime").toCapsule();
auto model_wrapper =
c10::static_intrusive_pointer_cast<XNNModelWrapper>(capsule);
XNNExecutor& executor = model_wrapper->executor_;
std::vector<float*> input_pointers;
for (int i = 0; i < inputs.size(); ++i) {
at::IValue val = inputs.get(i);
TORCH_CHECK(val.isTensor(), "Non-tensor inputs not supported");
input_pointers.push_back(val.toTensor().data_ptr<float>());
}
std::vector<at::Tensor> output_tensors;
std::vector<float*> output_pointers;
output_tensors.reserve(output_shapes.size());
for (int i = 0; i < output_shapes.size(); i++) {
auto o_shape = output_shapes.get(i).toIntVector();
auto output = at::empty(o_shape, c10::ScalarType::Float);
output_tensors.push_back(output);
output_pointers.push_back(output.data_ptr<float>());
}
TORCH_CHECK(
executor.set_inputs(input_pointers, output_pointers),
"Number of inputs/outputs does not match expected number of inputs/outputs");
TORCH_CHECK(executor.forward(), "Failed to invoke XNNPack runtime");
c10::List<at::Tensor> output_list(output_tensors);
return c10::impl::toList(output_list);
}
};
namespace {
constexpr auto backend_name = "xnnpack";
static auto cls = torch::jit::backend<XNNPackBackend>(backend_name);
} // namespace
} // namespace delegate
} // namespace xnnpack
} // namespace jit
} // namespace torch
|