1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
#pragma once
#include <ATen/ATen.h>
#include <ATen/Config.h>
#include <oneapi/dnnl/dnnl_graph.hpp>
#include <torch/csrc/jit/ir/ir.h>
#include <utility>
namespace torch::jit::fuser::onednn {
// Engine represents a device and its context. From the device kind, the engine
// knows how to generate code for the target device and what kind of device
// object to be expected. The device id ensures that there is a unique engine
// being created for each device. The device handle passed from PyTorch allows
// oneDNN Graph implementation to work on the device specified by PyTorch, which
// is currently CPU, so we only have one engine.
// Ref: https://spec.oneapi.io/onednn-graph/latest/programming_model.html#engine
struct Engine {
// CPU engine singleton
static dnnl::engine& getEngine();
Engine(const Engine&) = delete;
void operator=(const Engine&) = delete;
};
// Stream is the logical abstraction for execution units. It is created on top
// of oneDNN Graph engine. A compiled oneDNN Graph partition is submitted to a
// stream for execution.
struct Stream {
// CPU stream singleton
static dnnl::stream& getStream();
Stream(const Stream&) = delete;
void operator=(const Stream&) = delete;
};
struct LlgaTensorDesc {
using desc = dnnl::graph::logical_tensor;
LlgaTensorDesc(
size_t tid,
std::vector<int64_t> sizes,
std::vector<int64_t> strides,
desc::data_type dtype,
desc::property_type property_type)
: tid_(tid),
sizes_(std::move(sizes)),
strides_(std::move(strides)),
dtype_(dtype),
property_type_(property_type),
layout_type_(desc::layout_type::strided),
layout_id_(-1) {}
LlgaTensorDesc(const desc& t)
: tid_(t.get_id()),
sizes_(t.get_dims()),
strides_({-1}),
dtype_(t.get_data_type()),
property_type_(t.get_property_type()),
layout_type_(t.get_layout_type()),
layout_id_(-1) {
if (is_opaque()) {
layout_id_ = t.get_layout_id();
}
if (is_strided()) {
strides_ = t.get_strides();
}
}
LlgaTensorDesc(const torch::jit::Value* v)
: LlgaTensorDesc(
v->unique(),
{},
{},
desc::data_type::f32,
get_property_type(v)) {
if (v->type()->isSubtypeOf(TensorType::get())) {
auto tt = v->type()->cast<TensorType>();
if (tt->scalarType()) {
dtype_ = getLlgaDataType(tt->scalarType().value());
}
auto sizes = tt->sizes();
if (sizes.sizes()) {
for (auto d : *sizes.sizes()) {
sizes_.push_back(d.value_or(DNNL_GRAPH_UNKNOWN_DIM));
}
}
auto strides = tt->strides();
if (strides.sizes()) {
for (auto d : *strides.sizes()) {
strides_.push_back(d.value_or(DNNL_GRAPH_UNKNOWN_DIM));
}
}
}
}
LlgaTensorDesc supplementTensorInfo(const at::Tensor& t) const;
desc::data_type getLlgaDataType(at::ScalarType dt) const;
at::ScalarType aten_scalar_type() const;
const std::vector<int64_t>& sizes() const {
return sizes_;
}
const std::vector<int64_t>& strides() const {
TORCH_CHECK(!is_opaque(), "Cannot get strides on opaque layout");
return strides_;
}
size_t tid() const {
return tid_;
}
LlgaTensorDesc tid(uint64_t new_id) const {
auto ret = *this;
ret.tid_ = new_id;
return ret;
}
desc::data_type dtype() const {
return dtype_;
}
LlgaTensorDesc dtype(desc::data_type new_dtype) const {
return LlgaTensorDesc(tid_, sizes_, strides_, new_dtype, property_type_);
}
desc::layout_type layout_type() const {
return layout_type_;
}
LlgaTensorDesc layout_type(desc::layout_type new_layout_type) {
auto ret = *this;
ret.layout_type_ = new_layout_type;
return ret;
}
desc::property_type get_property_type(const torch::jit::Value* v) {
switch (v->node()->kind()) {
case prim::Constant:
return desc::property_type::constant;
default:
return desc::property_type::variable;
}
}
LlgaTensorDesc any() {
return layout_type(desc::layout_type::any);
}
size_t storage_size() const {
return logical_tensor().get_mem_size();
}
desc logical_tensor() const {
if (is_dimensionality_unknown()) {
return desc(
tid_, dtype_, DNNL_GRAPH_UNKNOWN_NDIMS, layout_type_, property_type_);
} else if (is_opaque()) {
return desc(tid_, dtype_, sizes_, layout_id_, property_type_);
} else if (is_any()) {
return desc(tid_, dtype_, sizes_, layout_type_, property_type_);
} else {
return desc(tid_, dtype_, sizes_, strides_, property_type_);
}
}
bool is_strided() const {
return layout_type_ == desc::layout_type::strided;
}
bool is_any() const {
return layout_type_ == desc::layout_type::any;
}
bool is_opaque() const {
return layout_type_ == desc::layout_type::opaque;
}
bool operator==(const LlgaTensorDesc& desc) const {
return tid_ == desc.tid_ && sizes_ == desc.sizes_ &&
dtype_ == desc.dtype_ && layout_type_ == desc.layout_type_ &&
((is_opaque() && layout_id_ == desc.layout_id_) ||
strides_ == desc.strides_);
}
bool operator!=(const LlgaTensorDesc& desc) const {
return (tid_ != desc.tid_) || (sizes_ != desc.sizes_) ||
(dtype_ != desc.dtype_) || (layout_type_ != desc.layout_type_) ||
!((is_opaque() && (layout_id_ == desc.layout_id_)) ||
(strides_ == desc.strides_));
}
static size_t hash(const LlgaTensorDesc& desc) {
return c10::get_hash(
desc.tid_,
desc.sizes_,
desc.dtype_,
desc.layout_type_,
desc.layout_id_);
}
void set_compute_inplace() {
compute_inplace_ = true;
}
void set_input_tensor_index(size_t index) {
input_tensor_index_ = index;
}
bool reuses_input_tensor() {
return compute_inplace_;
}
size_t get_input_tensor_index() {
return input_tensor_index_;
}
private:
bool is_dimensionality_unknown() const {
return sizes_.empty();
}
size_t tid_;
std::vector<int64_t> sizes_;
std::vector<int64_t> strides_;
desc::data_type dtype_;
desc::property_type property_type_;
desc::layout_type layout_type_;
size_t layout_id_;
// If this is an output tensor, and querying the compiled partition would
// determine that this tensor would reuse its input tensor, then
// compute_inplace would be true, and input_tensor_index would be the index of
// the corresponding input tensor in inputSpecs_ of the LlgaKernel object.
bool compute_inplace_ = false;
size_t input_tensor_index_{};
};
// Initially, oneDNN Graph also used to have blocked layout for tensors between
// partitions, and the LlgaTensorImpl wrapper helped us bypass guard checks.
// oneDNN Graph has switched over to using strided tensors between partitions,
// but this wrapper still helps us bypass guard checks because the strides of
// tensors between partitions would be different from the ones the guard is
// otherwise expecting.
struct TORCH_API LlgaTensorImpl : public c10::TensorImpl {
LlgaTensorImpl(
at::Storage&& storage,
const caffe2::TypeMeta& data_type,
const LlgaTensorDesc& desc);
const LlgaTensorDesc& desc() const {
return desc_;
}
static at::Tensor llga_to_aten_tensor(LlgaTensorImpl* llgaImpl);
private:
LlgaTensorDesc desc_;
};
at::Tensor empty_llga(
const LlgaTensorDesc& desc,
const c10::TensorOptions& options);
dnnl::graph::tensor llga_from_aten_tensor(const at::Tensor& tensor);
} // namespace torch::jit::fuser::onednn
|