File: insert_quant_dequant.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (44 lines) | stat: -rw-r--r-- 1,425 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#pragma once

#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/quantization/quantization_type.h>

namespace torch::jit {

/** Replicate quantize node for prim::If blocks, so that we can match
 *  quantization patterns in prim::If blocks
 */
TORCH_API void ReplicateQuant(std::shared_ptr<Graph>& graph);

/** Replicate dequantize node for each use, so that we can match
 *  quantization patterns
 */
TORCH_API void ReplicateDeQuant(std::shared_ptr<Graph>& graph);

/** \brief Insert quantize - dequantize calls to the Tensors
 *  that are observed in insert_observers pass
 *
 * For each Tensor that is observed, get the observer module and call
 * calculate_qparam on the observer module to get quantization parameters
 * and add quantize - int_repr - dequantize function calls using these
 * parameters we also have special handling for quantizing "bias" right now.
 *
 * \param module the input module
 * \param method_name the method we want to insert quantization calls for
 */
TORCH_API Module InsertQuantDeQuant(
    Module& module,
    const std::string& method_name,
    bool inplace,
    bool debug,
    QuantType quant_type = QuantType::STATIC);

TORCH_API Module InsertQuantDeQuantOnDevicePTQ(
    Module& module,
    const std::string& method_name,
    bool inplace,
    bool debug,
    QuantType quant_type = QuantType::STATIC);

} // namespace torch::jit