File: update_differentiable_graph_requires_grad.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (38 lines) | stat: -rw-r--r-- 1,111 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include <torch/csrc/jit/passes/update_differentiable_graph_requires_grad.h>

#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>

namespace torch::jit {

static void UpdateDifferentiableGraphRequiresGrad(
    Block* block,
    std::optional<bool> new_requires_grad) {
  for (Node* n : block->nodes()) {
    for (Value* v : n->inputs()) {
      auto ty = v->type()->cast<TensorType>();
      if (ty) {
        v->setType(ty->withRequiresGrad(new_requires_grad));
      }
    }
    if (n->kind() == prim::profile) {
      n->ty_(
          attr::profiled_type,
          n->ty(attr::profiled_type)
              ->expectRef<TensorType>()
              .withRequiresGrad(new_requires_grad));
    }
    for (Block* b : n->blocks()) {
      UpdateDifferentiableGraphRequiresGrad(b, new_requires_grad);
    }
  }
}

void UpdateDifferentiableGraphRequiresGrad(
    std::shared_ptr<Graph>& diff_forward_graph,
    std::optional<bool> new_requires_grad) {
  UpdateDifferentiableGraphRequiresGrad(
      diff_forward_graph->block(), new_requires_grad);
}

} // namespace torch::jit