File: update_differentiable_graph_requires_grad.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (18 lines) | stat: -rw-r--r-- 715 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#pragma once

#include <torch/csrc/jit/ir/ir.h>

namespace torch::jit {

// Because differentiable graphs detach the gradients of input Tensors,
// creating and inlining differentiable graphs changes the requires_grad
// property of tensors in the graph. This pass updates prim::profiles
// requires_grad to keep profiled properties up to date, it does not update
// grad properties of other nodes like graph inputs bc the only downstream
// user of the grad property is the profiling executor, which just uses
// the types of prim::profiles
TORCH_API void UpdateDifferentiableGraphRequiresGrad(
    std::shared_ptr<Graph>& diff_forward_graph,
    std::optional<bool> new_requires_grad);

} // namespace torch::jit