1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
#include <torch/csrc/jit/passes/utils/memory_dag.h>
#include <c10/util/flat_hash_map.h>
#include <algorithm>
#include <queue>
namespace torch::jit {
namespace {
void makePointerToImpl(Element* from, Element* to) {
from->pointsTo.set(to->index);
to->pointedFrom.set(from->index);
}
Element* makeFreshValueImpl(
const Value* v,
std::vector<std::unique_ptr<Element>>& indexToElementMap_) {
if (v == nullptr) {
// Create a wildcard element, with no corresponding value
indexToElementMap_.emplace_back(
std::make_unique<Element>(indexToElementMap_.size()));
return indexToElementMap_.back().get();
}
indexToElementMap_.emplace_back(
std::make_unique<Element>(v, indexToElementMap_.size()));
return indexToElementMap_.back().get();
}
} // namespace
Element::Element(const Value* value_, unsigned index_)
: index(index_), values({value_}) {}
Element::Element(unsigned index_) : index(index_), values({}) {}
const Element* MemoryDAG::fromIndex(unsigned x) const {
TORCH_INTERNAL_ASSERT(x < indexToElementMap_.size());
return indexToElementMap_[x].get();
}
Element* MemoryDAG::fromIndex(unsigned x) {
TORCH_INTERNAL_ASSERT(x < indexToElementMap_.size());
return indexToElementMap_[x].get();
}
bool MemoryDAG::mayAlias(const Element* a, const Element* b) const {
const auto& aMemLoc = getMemoryLocations(a);
const auto& bMemLoc = getMemoryLocations(b);
return aMemLoc.intersects(bMemLoc);
}
bool MemoryDAG::mayContainAlias(const Element* a, const Element* b) const {
return getAllContainedMemoryLocations(a).intersects(
getAllContainedMemoryLocations(b));
}
const MemoryLocations& MemoryDAG::getAllContainedMemoryLocations(
const Element* elem) const {
if (C10_UNLIKELY(!elem->cachedAllContainedMemoryLocations_.has_value())) {
MemoryLocations cache;
elem->cachedAllContainedMemoryLocations_ = MemoryLocations();
collectAllContainedMemoryLocationsImpl(
elem, *elem->cachedAllContainedMemoryLocations_);
}
return *elem->cachedAllContainedMemoryLocations_;
}
void MemoryDAG::collectAllContainedMemoryLocations(
const Element* elem,
MemoryLocations& cont) const {
// we have already recursed on this element
unsigned compIdx = elem->index;
if (cont.test(compIdx)) {
return;
}
if (C10_UNLIKELY(!elem->cachedAllContainedMemoryLocations_.has_value())) {
MemoryLocations cache;
collectAllContainedMemoryLocationsImpl(elem, cache);
elem->cachedAllContainedMemoryLocations_ = std::move(cache);
}
cont |= *elem->cachedAllContainedMemoryLocations_;
}
void MemoryDAG::collectAllContainedMemoryLocationsImpl(
const Element* elem,
MemoryLocations& cont) const {
unsigned compIdx = elem->index;
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!cont.test(compIdx));
cont.set(compIdx);
for (const auto& mem_loc : getMemoryLocations(elem)) {
collectAllContainedMemoryLocations(fromIndex(mem_loc), cont);
}
for (const auto& contained : elem->containedElements) {
collectAllContainedMemoryLocations(fromIndex(contained), cont);
}
}
bool MemoryDAG::mayContainAlias(
const Element* a,
const at::ArrayRef<Element*> b) const {
if (b.empty()) {
return false;
}
const auto& a_contained = getAllContainedMemoryLocations(a);
return std::any_of(b.begin(), b.end(), [this, &a_contained](Element* b_elem) {
return a_contained.intersects(this->getAllContainedMemoryLocations(b_elem));
});
}
bool MemoryDAG::mayContainAlias(
const at::ArrayRef<Element*> a,
const at::ArrayRef<Element*> b) const {
if (a.empty() || b.empty()) {
return false;
}
MemoryLocations all_a_mlocs;
for (const auto& elem : a) {
collectAllContainedMemoryLocations(elem, all_a_mlocs);
}
MemoryLocations all_b_mlocs;
for (const auto& elem : b) {
collectAllContainedMemoryLocations(elem, all_b_mlocs);
}
return all_a_mlocs.intersects(all_b_mlocs);
}
void MemoryDAGBuilder::makePointerTo(Element* from, Element* to) {
makePointerToImpl(from, to);
}
void MemoryDAGBuilder::addToContainedElements(
Element* elem,
Element* container) {
TORCH_INTERNAL_ASSERT(
elem != container, "Elements cannot contain themselves");
container->containedElements.set(elem->index);
}
// Give `v` a fresh alias (i.e. it does not point to any value)
Element* MemoryDAGBuilder::makeFreshValue(const Value* v) {
return makeFreshValueImpl(v, indexToElementMap_);
}
// This function builds up a bitset representing the "alias set" for
// `e` (`MemoryLocations` is just a typedef'd c10::SparseBitVector).
const MemoryLocations& MemoryDAG::getMemoryLocations(const Element* e) const {
// Note on cache invalidation: all mutation should occur through
// MemoryDAGBuilder. Thus, once we consume the builder to create an
// immutable MemoryDAG, we can cache here without worrying that we
// might potentially get invalidated.
if (e->cachedMemoryLocations_) {
return *e->cachedMemoryLocations_;
}
MemoryLocations ret;
if (e->pointsTo.empty()) {
// Base case: if we don't point to anything, this element is a memory
// location. Return itself.
ret.set(e->index);
} else {
for (auto el : e->pointsTo) {
ret |= getMemoryLocations(fromIndex(el));
}
}
e->cachedMemoryLocations_ = std::move(ret);
return *e->cachedMemoryLocations_;
}
void MemoryDAG::setWildcards(
const std::unordered_set<const Value*>& wildcards,
const ska::flat_hash_map<const Value*, Element*>& elementMap,
const std::function<Element*(const Value*)>& getWildcardElement) {
std::unordered_map<Element*, MemoryLocations> cacheUpdates;
// If an element is set as a wildcard, that means that all its memory
// locations must point to the wildcard element.
for (const Value* v : wildcards) {
auto wildcardElement = getWildcardElement(v);
TORCH_INTERNAL_ASSERT(wildcardElement);
const MemoryLocations& pointeeSet = getMemoryLocations(elementMap.at(v));
for (const auto& pointee : pointeeSet) {
auto from = this->fromIndex(pointee);
// avoid cycles where the wildcard points to itself
if (from != wildcardElement) {
makePointerToImpl(from, wildcardElement);
}
}
// Track which memory locations we edited with a new pointer to the wildcard
// element.
cacheUpdates[wildcardElement] |= pointeeSet;
}
// Update caches in-place.
// We take advantage of the fact that we only edited memory locations.
//
// Say we added a pointer from `MemoryLocationFoo -> WildcardBar`.
// For every element, if the cache contains `MemoryLocationFoo`, then we must
// add `WildcardBar` to it.
for (const std::unique_ptr<Element>& e : this->indexToElementMap_) {
e->cachedAllContainedMemoryLocations_.reset();
if (e->values.empty()) {
// This element is a wildcard element, we can skip it.
continue;
}
auto wildcardElement = getWildcardElement(*(e->values.begin()));
if (!wildcardElement) {
// This value is not a wildcard.
continue;
}
auto it = cacheUpdates.find(wildcardElement);
if (it == cacheUpdates.end()) {
// We didn't rewrite any MemoryLocations to point to this element.
continue;
}
// If this element contains an edited memory location, update the cache to
// contain the pointed-to wildcard element as well.
if (getMemoryLocations(e.get()).intersects(it->second)) {
e->cachedMemoryLocations_->set(wildcardElement->index);
}
}
}
Element* MemoryDAG::unsafeMakeFreshValue(const Value* v) {
return makeFreshValueImpl(v, indexToElementMap_);
}
} // namespace torch::jit
|