1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
|
#pragma once
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/qualified_name.h>
#include <ATen/core/stack.h>
#include <pybind11/complex.h>
#include <pybind11/pybind11.h>
#include <pybind11/pytypes.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/python/module_python.h>
#include <torch/csrc/jit/python/python_custom_class.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/jit/resource_guard.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/six.h>
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/rpc/py_rref.h>
#include <torch/csrc/distributed/rpc/rref_impl.h>
#endif
#include <ATen/core/function_schema.h>
#include <c10/core/Stream.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <optional>
#include <algorithm>
#include <cstddef>
#include <string>
#include <utility>
#include <vector>
// The visibility attribute is to avoid a warning about storing a field in the
// struct that has a different visibility (from pybind) than the struct.
#ifdef _WIN32
#define VISIBILITY_HIDDEN
#else
#define VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#endif
namespace torch::jit {
using ResolutionCallback = std::function<py::object(std::string)>;
void clear_registered_instances(void* ptr);
TORCH_PYTHON_API IValue toIValue(
py::handle obj,
const TypePtr& type,
std::optional<int32_t> N = std::nullopt);
TORCH_PYTHON_API py::object toPyObject(IValue ivalue);
// Hack to overload the behavior of toIValue to accept Python
// numbers in places where a Tensor is expected
// See also torch::should_allow_numbers_as_tensors
class ToIValueAllowNumbersAsTensors {
bool old_;
public:
ToIValueAllowNumbersAsTensors(bool enable);
~ToIValueAllowNumbersAsTensors();
};
// Wrap Python function to guard deref
// NB: Need VISIBILITY_HIDDEN for silencing compiler error,
// 'torch::jit::PythonFunctionGuard' declared with greater visibility than the
// type of its field 'torch::jit::PythonFunctionGuard::func_'
struct VISIBILITY_HIDDEN PythonFunctionGuard {
explicit PythonFunctionGuard(py::function func) : func_(std::move(func)) {}
~PythonFunctionGuard() {
pybind11::gil_scoped_acquire ag;
func_.dec_ref();
// explicitly setting PyObject* to nullptr to prevent py::object's dtor to
// decref on the PyObject again.
// See Note [Destructing py::object] in python_ivalue.h
func_.ptr() = nullptr;
}
py::function func_;
};
// The PythonFutureWrapper for ivalue::Future
//
// NB: VISIBILITY_HIDDEN is for silencing compiling error,
// "error: 'torch::jit::PythonFutureWrapper' declared with greater visibility
// than the type of its field 'torch::jit::PythonFutureWrapper::unwrap_func'
// [-Werror=attributes]"
//
// NB: inherit from enable_shared_from_this because then(py::function) needs to
// get a shared_ptr from this pointer.
struct VISIBILITY_HIDDEN PythonFutureWrapper
: std::enable_shared_from_this<PythonFutureWrapper> {
using UnwrapFunc = std::function<void(py::object)>;
explicit PythonFutureWrapper(
c10::intrusive_ptr<c10::ivalue::Future> fut,
std::optional<UnwrapFunc> unwrap_func = std::nullopt)
: fut(std::move(fut)), unwrap_func(std::move(unwrap_func)) {}
explicit PythonFutureWrapper(const PythonFutureWrapper&) = delete;
PythonFutureWrapper& operator=(const PythonFutureWrapper&) = delete;
bool done() {
return fut->completed();
}
py::object value() {
// acquiring GIL as toPyObject creates new py::object
// without grabbing the GIL.
py::gil_scoped_acquire acquire;
py::object py_obj = toPyObject(fut->value());
// unwrap_func is a general compositional function that takes in a
// py::object and executes some python function. It is currently mostly used
// to throw python exceptions.
if (unwrap_func) {
(*unwrap_func)(py_obj);
}
return py_obj;
}
py::object wait() {
fut->wait();
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
Value* fut_val = jit::tracer::getValueTrace(fut);
auto output = graph->insert(aten::wait, {fut_val});
jit::tracer::setValueTrace(fut->value(), output);
}
return value();
}
// The py::function cb arg must take a std::shared_ptr<PythonFutureWrapper>
// (i.e., torch._C.Future) as the only argument. If the type mismatches, an
// error will be thrown when waiting for the value of this returned Future.
std::shared_ptr<PythonFutureWrapper> then(py::function cb) {
// We need this an additional layer of wrapper here to guard the
// destruction of the py::function object. Because, the
// Future owns a reference to the py::function in its callback
// vector, but Future does not acquire GIL on destruction.
auto pf = std::make_shared<PythonFunctionGuard>(std::move(cb));
return std::make_shared<jit::PythonFutureWrapper>(fut->then(
// Capture a copy of the ivalue::Future instead of the `this` pointer
// because the PythonFutureWrapper object could have been deleted
// when the callbacks are fired. For example, RPC only captures the
// ivalue::Future instead of PythonFutureWrapper in JitFuture's
// callback functions. Hence, if user code does not hold a reference to
// this PythonFutureWrapper object, there is no guarantee that the
// PythonFutureWrapper is still valid when running the callback.
[pyFut(this->getPtr()),
pf(std::move(pf))](c10::ivalue::Future& /* unused */) -> IValue {
try {
pybind11::gil_scoped_acquire ag;
return toIValue(pf->func_(pyFut), PyObjectType::get());
} catch (py::error_already_set& e) {
auto err = std::runtime_error(c10::str(
"Got the following error when running the callback: ",
e.what()));
{
pybind11::gil_scoped_acquire ag;
// Release ownership on py::objects and also restore Python
// Error Indicator.
e.restore();
// Clear the Python Error Indicator as we has recorded the
// exception in the response message.
PyErr_Clear();
}
throw std::runtime_error(err);
}
},
PyObjectType::get()));
}
void add_done_callback(py::function cb) {
auto pf = std::make_shared<PythonFunctionGuard>(std::move(cb));
// NOLINTNEXTLINE(modernize-avoid-bind)
fut->addCallback(std::bind(
[pyFut(this->getPtr())](
const std::shared_ptr<PythonFunctionGuard>& pf) {
try {
pybind11::gil_scoped_acquire ag;
pf->func_(pyFut);
} catch (py::error_already_set& e) {
{
pybind11::gil_scoped_acquire ag;
// Release ownership on py::objects and also restore Python
// Error Indicator.
e.restore();
// Clear the Python Error Indicator as we has recorded the
// exception in the response message.
PyErr_Clear();
}
// Log and ignore exceptions raised through the callback
LOG(ERROR) << "Got the following error when running the callback: "
<< e.what();
} catch (const std::exception& e) {
// Log and ignore exceptions raised through the callback
LOG(ERROR) << "Got the following error when running the callback: "
<< e.what();
}
},
std::move(pf)));
}
void markCompleted(const py::object& pyValue) {
DCHECK(PyGILState_Check());
IValue value = toIValue(pyValue, PyObjectType::get());
py::gil_scoped_release release;
fut->markCompleted(std::move(value));
}
c10::intrusive_ptr<c10::ivalue::Future> fut;
// unwrap_func works like a callback for the value returned by
// PythonFutureWrapper::wait().
std::optional<UnwrapFunc> unwrap_func;
private:
std::shared_ptr<PythonFutureWrapper> getPtr() {
return shared_from_this();
}
};
// The PythonAwaitWrapper for ivalue::Await
//
// Expresses delayed function execution with Lazy semantic.
// i.e. Await[W] in eager mode can be used as W.
// When the attribute of W type is requested, Await[W] will return the
// attribute of W, transparently calling wait() beforehand.
// No Lazy semantic for script, explicit wait(Await[W]) -> W must be called to
// convert to type W.
//
// The Await object takes shared ownership of specified function and the
// arguments. After first call for wait() it owns the result. Deliberately no
// type inference for eager mode.
struct VISIBILITY_HIDDEN PythonAwaitWrapper
: std::enable_shared_from_this<PythonAwaitWrapper> {
explicit PythonAwaitWrapper(c10::intrusive_ptr<c10::ivalue::Await> aw)
: aw_(std::move(aw)) {}
explicit PythonAwaitWrapper(py::handle input) {
args_ = py::tuple(1u);
args_[0] = input;
auto type = PyObjectType::get();
aw_ = c10::make_intrusive<c10::ivalue::Await>(type);
aw_->markCompleted(toIValue(input, type));
}
explicit PythonAwaitWrapper(py::function pf, py::tuple args)
: args_(std::move(args)) {
pyfg_ = std::make_shared<torch::jit::PythonFunctionGuard>(std::move(pf));
std::function<IValue()> f = [fg(pyfg_), &args(args_)]() {
pybind11::gil_scoped_acquire ag;
return toIValue(fg->func_(*args), PyObjectType::get());
};
aw_ = c10::make_intrusive<c10::ivalue::Await>(
PyObjectType::get(), std::move(f));
}
explicit PythonAwaitWrapper(const PythonAwaitWrapper&) = delete;
PythonAwaitWrapper& operator=(const PythonAwaitWrapper&) = delete;
py::object wait() {
py::gil_scoped_acquire acquire;
return toPyObject(aw_->wait());
}
// Nowait semantic means trivial case when Await is constructed from the
// result
bool is_nowait() {
return pyfg_ == nullptr;
}
const py::function fn() {
TORCH_CHECK(
pyfg_, "Await constructed as awaitable_nowait does not have fn");
return pyfg_->func_;
}
const py::tuple args() {
return args_;
}
TypePtr type() {
return aw_->type();
}
c10::intrusive_ptr<c10::ivalue::Await> aw_;
std::shared_ptr<torch::jit::PythonFunctionGuard> pyfg_;
py::tuple args_;
private:
std::shared_ptr<PythonAwaitWrapper> getPtr() {
return shared_from_this();
}
};
// error reporting: when reporting user-caused errors, these functions should
// not use AT_ERROR macros, since these macros add stack trace information
// that is confusing to display to the end user since it always reports
// locations in libtorch code rather than user code.
inline std::shared_ptr<CompilationUnit> get_python_cu() {
return py::module::import("torch.jit._state")
.attr("_python_cu")
.cast<std::shared_ptr<CompilationUnit>>();
}
struct TypedIValue : public std::pair<IValue, TypePtr> {
using pair::pair;
IValue& ivalue() {
return this->first;
}
TypePtr& type() {
return this->second;
}
};
inline TypedIValue toDictKeyIValue(py::handle key) {
if (py::isinstance<py::str>(key)) {
return TypedIValue(
ConstantString::create(py::cast<std::string>(key)), StringType::get());
} else if (py::isinstance<py::int_>(key)) {
return TypedIValue(py::cast<int64_t>(key), IntType::get());
} else if (py::isinstance<py::float_>(key)) {
return TypedIValue(py::cast<double>(key), FloatType::get());
} else {
TORCH_CHECK(
false, "Dictionary inputs may only have string, int, or float keys");
}
}
inline std::optional<TypePtr> unifyOrInitializeType(
const TypePtr& accum,
const TypePtr& unify) {
if (!accum) {
return unify;
}
return unifyTypes(accum, unify);
}
using InferredType = c10::InferredType;
InferredType tryToInferContainerType(py::handle input, bool primitiveTypeOnly);
// Try to infer the type of a Python object
// The type cannot be inferred if:
// input is an empty container (list, dict)
// input is an list with element types that cannot be unified
// input is an dict with key or value types that cannot be unified
inline InferredType tryToInferType(py::handle input) {
// Try tensor types
if (THPVariable_Check(input.ptr())) {
return InferredType(TensorType::get());
}
if (input.is_none()) {
return InferredType(NoneType::get());
}
if (py::isinstance<StrongFunctionPtr>(input)) {
auto fn = py::cast<StrongFunctionPtr>(input).function_;
return InferredType(FunctionType::create(fn));
}
// Try basic types first
if (py::isinstance<py::bool_>(input)) {
return InferredType(BoolType::get());
// NOLINTNEXTLINE(bugprone-branch-clone)
} else if (py::isinstance<py::int_>(input)) {
return InferredType(IntType::get());
} else if (py::isinstance<py::float_>(input)) {
return InferredType(FloatType::get());
} else if (PyComplex_CheckExact(input.ptr())) {
return InferredType(ComplexType::get());
} else if (py::isinstance<py::bytes>(input)) {
// NOTE: We may need a ByteType in the future
return InferredType(StringType::get());
} else if (py::isinstance<py::str>(input)) {
return InferredType(StringType::get());
} else if (THPLayout_Check(input.ptr())) {
return InferredType(IntType::get());
} else if (THPDevice_Check(input.ptr())) {
return InferredType(DeviceObjType::get());
} else if (THPGenerator_Check(input.ptr())) {
return InferredType(GeneratorType::get());
} else if (THPStream_Check(input.ptr())) {
return InferredType(StreamObjType::get());
} else if (THPDtype_Check(input.ptr())) {
return InferredType(IntType::get());
} else if (THPQScheme_Check(input.ptr())) {
return InferredType(IntType::get());
} else if (THPLayout_Check(input.ptr())) {
return InferredType(IntType::get());
}
auto enum_type = py::module::import("enum").attr("Enum");
py::bool_ isEnumValue = py::isinstance(input, enum_type);
if (py::cast<bool>(isEnumValue)) {
auto enum_class = input.attr("__class__");
auto enum_type = py::cast<TypePtr>(
py::module::import("torch.jit.annotations")
.attr("try_ann_to_type")(enum_class, SourceRange()));
return InferredType(std::move(enum_type));
}
py::bool_ isClass =
py::module::import("inspect").attr("isclass")(input.get_type());
if (py::cast<bool>(isClass)) {
// Assume that the class is compiled already or will compile. Invalidate
// this later if needed.
bool class_compiled = true;
// Check if the type is already compiled.
py::object existing_ty = py::module::import("torch.jit._state")
.attr("_get_script_class")(input.get_type());
if (existing_ty.is_none()) {
// If not, try to compile it.
py::bool_ can_compile = py::module::import("torch._jit_internal")
.attr("can_compile_class")(input.get_type());
if (py::cast<bool>(can_compile)) {
// Try to compile the class. This is wrapped in a try-catch because
// compilation of class types can raise an Exception and in that case,
// we want to defer to other attempts at type inference below rather
// than fail compilation altogether.
try {
py::module::import("torch.jit._script")
.attr("_recursive_compile_class")(
input.get_type(), SourceRange());
} catch (...) {
// Invalidate the assumption that the class compiled so that we don't
// look up and return its JIT type as the type for the input.
class_compiled = false;
}
}
}
// If the class compiled successfully, look up the existing JIT type by
// qualified name and return it.
if (class_compiled) {
auto script_class = py::module::import("torch.jit._state")
.attr("_get_script_class")(input.get_type());
if (!script_class.is_none()) {
auto class_type = py::cast<ClassTypePtr>(script_class);
if (class_type && !class_type->is_module()) {
return InferredType(std::move(class_type));
}
}
}
}
if (py::isinstance<Object>(input)) {
auto object = py::cast<Object>(input);
return InferredType(object.type());
#ifdef USE_RPC
} else if (py::isinstance<torch::distributed::rpc::PyRRef>(input)) {
auto rref_ivalue = input.cast<torch::distributed::rpc::PyRRef>().toIValue();
return InferredType(rref_ivalue.type());
#endif
}
auto await_type = py::module::import("torch._awaits").attr("_Await");
py::bool_ is_await = py::isinstance(input, await_type);
if (py::cast<bool>(is_await)) {
auto awptr = input.cast<std::shared_ptr<PythonAwaitWrapper>>();
return InferredType(AwaitType::create(awptr->aw_->elementType()));
}
if (as_module(py::cast<py::object>(input))) {
return InferredType("Cannot infer type of ScriptModule");
}
auto module_type = py::module::import("torch.nn").attr("Module");
py::bool_ is_module = py::isinstance(input, module_type);
if (py::cast<bool>(is_module)) {
return InferredType("Cannot infer concrete type of torch.nn.Module");
}
// Try container types
return tryToInferContainerType(input, false);
}
// This function is similar to tryToInferType, but it only tries to infer
// primitive types (int, float, bool, complex) or nested container of primitive
// types.
inline InferredType tryToInferPrimitiveType(py::handle input) {
if (input.is_none()) {
return InferredType(NoneType::get());
}
// Only primitive data type
if (py::isinstance<py::bool_>(input)) {
return InferredType(BoolType::get());
// NOLINTNEXTLINE(bugprone-branch-clone)
} else if (py::isinstance<py::int_>(input)) {
return InferredType(IntType::get());
} else if (py::isinstance<py::float_>(input)) {
return InferredType(FloatType::get());
} else if (PyComplex_CheckExact(input.ptr())) {
return InferredType(ComplexType::get());
}
// Try container types
return tryToInferContainerType(input, true);
}
inline InferredType tryToInferContainerType(
py::handle input,
bool primitiveTypeOnly = false) {
if (six::isTuple(input)) {
py::tuple tuple = py::cast<py::tuple>(input);
std::vector<TypePtr> element_types;
element_types.reserve(tuple.size());
for (py::handle elem : tuple) {
auto type_match = primitiveTypeOnly ? tryToInferPrimitiveType(elem)
: tryToInferType(elem);
if (type_match.success()) {
element_types.push_back(type_match.type());
} else {
// Forward error message along
return type_match.reason();
}
}
return InferredType(TupleType::create(std::move(element_types)));
} else if (PyDict_Check(input.ptr())) {
// Check to make sure we can generate useful input/output types
auto dict = py::cast<py::dict>(input);
size_t len = py::len(dict);
if (!len) {
return InferredType("Dictionary inputs must have entries");
}
TypePtr key_type = nullptr;
TypePtr value_type = nullptr;
for (auto entry : dict) {
// Try to infer the key type and unify it with the existing one
auto entry_key_type_match = primitiveTypeOnly
? tryToInferPrimitiveType(entry.first)
: tryToInferType(entry.first);
if (!entry_key_type_match.success()) {
return entry_key_type_match.reason();
}
auto unified_key =
unifyOrInitializeType(key_type, entry_key_type_match.type());
if (!unified_key) {
return InferredType(c10::str(
"Dictionary inputs to traced functions must have consistent type. Found ",
key_type->repr_str(),
" and ",
(entry_key_type_match.type())->repr_str()));
}
// Try to infer the value type and unify it with the existing one
auto entry_value_type_match = primitiveTypeOnly
? tryToInferPrimitiveType(entry.second)
: tryToInferType(entry.second);
if (!entry_value_type_match.success()) {
return entry_value_type_match.reason();
}
auto unified_value =
unifyOrInitializeType(value_type, entry_value_type_match.type());
if (!unified_value) {
return InferredType(c10::str(
"Dictionary inputs to traced functions must have consistent type. Found ",
value_type->repr_str(),
" and ",
(entry_value_type_match.type())->repr_str()));
}
key_type = *unified_key;
value_type = *unified_value;
}
return InferredType(
DictType::create(std::move(key_type), std::move(value_type)));
} else if (PyList_Check(input.ptr())) {
auto list = py::cast<py::list>(input);
size_t len = py::len(list);
if (!len) {
return InferredType("List trace inputs must have elements");
}
TypePtr element_type = nullptr;
for (auto elem : list) {
auto element_type_match = primitiveTypeOnly
? tryToInferPrimitiveType(elem)
: tryToInferType(elem);
if (!element_type_match.success()) {
return InferredType(c10::str(
"Could not infer type of list element: ",
element_type_match.reason()));
}
auto unified_type =
unifyOrInitializeType(element_type, element_type_match.type());
if (!unified_type) {
return InferredType(c10::str(
"List inputs to traced functions must have consistent element type. Found ",
element_type->repr_str(),
" and ",
(element_type_match.type())->repr_str()));
}
element_type = *unified_type;
}
return InferredType(ListType::create(element_type));
} else {
if (primitiveTypeOnly) {
return InferredType(c10::str(
"Only tuple, list, or dict (possibly nested) of primitive types (bool, float, int, complex)",
"are supported ",
"as inputs or outputs of traced functions",
", but instead got value of type ",
py::str(input.get_type().attr("__name__")),
"."));
} else {
// TODO: this message is not correct anymore, since this InferredType is
// used from a bunch of circumstances unrelated to tracing. We can re-use
// this instead of the attribute_failure stuff in concreteType
return InferredType(c10::str(
"Only tensors and (possibly nested) tuples of tensors, lists, or dicts ",
"are supported ",
"as inputs or outputs of traced functions",
", but instead got value of type ",
py::str(input.get_type().attr("__name__")),
"."));
}
}
}
inline bool isTraceableType(const TypePtr& type) {
if (type->isSubtypeOf(*TensorType::get())) {
return true;
}
if (auto list_type = type->cast<ListType>()) {
return isTraceableType(list_type->getElementType());
}
if (auto tuple_type = type->cast<TupleType>()) {
return std::all_of(
tuple_type->elements().begin(),
tuple_type->elements().end(),
[](const TypePtr& element_type) {
return isTraceableType(element_type);
});
}
if (auto dict_type = type->cast<DictType>()) {
return isTraceableType(dict_type->getValueType());
}
return false;
}
inline IValue toTypeInferredIValue(py::handle input) {
auto match = tryToInferType(input);
if (!match.success()) {
auto object = py::cast<py::object>(input);
if (auto mod = as_module(object)) {
// if obj is already a ScriptModule, just return its ivalue
auto ptr = mod.value()._ivalue();
// explict copy semantics for strong ownership of the resource.
return c10::intrusive_ptr<c10::ivalue::Object>::reclaim_copy(
ptr.release());
}
// Check if the obj is a ScriptObject.
if (auto script_obj = as_object(object)) {
auto ptr = script_obj.value()._ivalue();
return c10::intrusive_ptr<c10::ivalue::Object>::reclaim_copy(
ptr.release());
}
TORCH_CHECK(
false,
"Tracer cannot infer type of ",
py::str(input),
"\n:",
match.reason());
}
return toIValue(input, match.type());
}
inline Stack toTraceableStack(const py::tuple& inputs) {
auto info = toTypeInferredIValue(inputs);
TORCH_CHECK(
isTraceableType(info.type()),
"Type '",
info.type()->repr_str(),
"' cannot be traced. Only Tensors and (possibly nested) Lists, Dicts, and"
" Tuples of Tensors can be traced");
return info.toTupleRef().elements().vec();
}
// Serialize the python dictionary into a traceable stack.
inline Stack toTraceableStack(const py::dict& inputs) {
Stack res;
for (auto it = inputs.begin(); it != inputs.end(); it++) {
if (THPVariable_Check(it->second.ptr())) {
res.push_back(toIValue(it->second, tryToInferType(it->second).type()));
}
}
return res;
}
inline IValue createGenericList(py::handle obj, const TypePtr& elem_type) {
auto elems = c10::impl::GenericList(elem_type);
for (auto elem : obj) {
elems.push_back(toIValue(elem, elem_type));
}
return IValue(elems);
}
inline IValue createGenericDict(
const py::dict& obj,
const TypePtr& key_type,
const TypePtr& value_type) {
c10::impl::GenericDict elems(key_type, value_type);
elems.reserve(py::len(obj));
for (auto& entry : obj) {
elems.insert(
toIValue(entry.first, key_type), toIValue(entry.second, value_type));
}
return IValue(elems);
}
template <class T>
inline void guardAgainstNamedTensor(const T& var) {
TORCH_CHECK(
!var.has_names(),
"NYI: Named tensors are currently unsupported in TorchScript. As a "
"workaround please drop names via `tensor = tensor.rename(None)`.");
}
// Extract custom class registered with torchbind
template <typename T>
c10::intrusive_ptr<T> toCustomClass(py::handle obj) {
static_assert(
std::is_base_of_v<CustomClassHolder, T>, "T is not a CustomClass");
const auto& type = c10::getCustomClassType<c10::intrusive_ptr<T>>();
c10::IValue ivalue = toIValue(obj, type);
return std::move(ivalue).toCustomClass<T>();
}
// Small wrapper around getting the type name string from Python to make
// types easier to interpret, e.g. give the structural type for a NamedTuple
inline std::string friendlyTypeName(py::handle obj) {
if (py::isinstance<py::tuple>(obj) && py::hasattr(obj, "_fields")) {
auto field_names =
py::cast<std::vector<std::string>>(py::getattr(obj, "_fields"));
std::stringstream ss;
ss << py::str(obj.get_type().attr("__name__"));
ss << " (aka NamedTuple(";
bool first = true;
for (auto& field_name : field_names) {
if (!first) {
ss << ", ";
}
ss << field_name;
first = false;
}
ss << "))";
return ss.str();
} else {
return py::str(obj.get_type().attr("__name__"));
}
}
// Thrown when trying to create a schema for a list of python
// arguments that cannot be converted.
// Can be caught by the caller to attempt to use other schema
// when there is an overloaded operator.
struct schema_match_error : public std::runtime_error {
using std::runtime_error::runtime_error;
};
inline IValue argumentToIValue(
const FunctionSchema& schema,
size_t argumentPosition,
py::handle object) {
const auto& argument = schema.arguments().at(argumentPosition);
try {
return toIValue(object, argument.real_type(), argument.N());
} catch (const py::cast_error& error) {
throw schema_match_error(c10::str(
schema.formatTypeMismatchMsg(
argument,
friendlyTypeName(object),
argumentPosition,
py::repr(object)),
"\nCast error details: ",
error.what()));
} catch (const py::error_already_set& error) {
throw schema_match_error(c10::str(
schema.formatTypeMismatchMsg(
argument,
friendlyTypeName(object),
argumentPosition,
py::repr(object)),
"\n Python error details: ",
error.what()));
}
}
inline IValue returnToIValue(const TypePtr& type, py::handle object) {
try {
return toIValue(object, type);
} catch (const py::cast_error& error) {
throw std::runtime_error(c10::str(
" expected value of type ",
type->str(),
" for return value but instead got value of type ",
py::str(object.get_type().attr("__name__")),
".",
"\nValue: ",
py::repr(object),
"\nCast error details: ",
error.what()));
}
}
inline py::object getScriptedClassOrError(const c10::NamedTypePtr& classType) {
auto py_class =
py::module::import("torch.jit._state")
.attr("_get_python_class")(classType->name()->qualifiedName());
if (py_class.is_none()) {
std::stringstream err;
err << "Unknown reference to ScriptClass ";
err << classType->name()->qualifiedName();
err << ". (Did you forget to import it?)";
throw std::runtime_error(err.str());
}
return py_class;
}
struct VISIBILITY_HIDDEN tuple_slice {
/*implicit*/ tuple_slice(py::tuple tup_)
: tup(std::move(tup_)), b(0), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_)
: tup(std::move(tup_)), b(b_), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_, int64_t e_)
: tup(std::move(tup_)), b(b_), e(e_) {}
py::detail::tuple_iterator begin() const {
return {tup, static_cast<pybind11::ssize_t>(b)};
}
py::detail::tuple_iterator end() const {
return {tup, static_cast<pybind11::ssize_t>(e)};
}
size_t size() const {
return e - b;
}
py::detail::tuple_accessor operator[](size_t index) const {
return {tup, static_cast<size_t>(b + index)};
}
private:
py::tuple tup;
int64_t b;
int64_t e;
};
inline bool validateFakeScriptObjectSchema(
const c10::FunctionSchema& schema,
size_t argumentPosition,
py::handle object) {
auto argument = schema.arguments().at(argumentPosition);
auto class_type = argument.real_type()->expect<c10::ClassType>();
auto fake_class_registry =
py::module::import("torch._library.fake_class_registry");
auto fake_class = fake_class_registry.attr("find_fake_class")(
class_type->name().value().qualifiedName());
if (!py::isinstance(object.attr("wrapped_obj"), fake_class)) {
throw schema_match_error(c10::str(
schema.formatTypeMismatchMsg(
argument,
friendlyTypeName(object),
argumentPosition,
py::repr(object.attr("wrapped_obj"))),
"\nCast error details: ",
argument.name(),
" is expected to be a FakeScriptObject of ",
class_type->name().value().qualifiedName()));
}
return true;
}
inline bool matchSchemaAllowFakeScriptObject(
const FunctionSchema& schema,
const tuple_slice& args,
const py::kwargs& kwargs) {
size_t all_arguments = args.size() + kwargs.size();
if (all_arguments > schema.arguments().size()) {
throw schema_match_error(c10::str(
schema.name(),
"() expected at most ",
schema.arguments().size(),
" argument(s) but received ",
all_arguments,
" argument(s). Declaration: ",
schema));
}
int64_t arg_idx = 0;
auto fake_class_registry =
py::module::import("torch._library.fake_class_registry");
// First push all positional args.
for (const auto& arg : args) {
// ...but refuse to do it if the schema says that this was supposed
// to be keyword only
if (schema.arguments()[arg_idx].kwarg_only()) {
throw schema_match_error(c10::str(
schema.name(),
"() takes ",
arg_idx,
" positional argument(s) but ",
args.size(),
" was/were given. Declaration: ",
schema));
}
// Use the type information from the schema to convert the PyObject.
const auto& argument = schema.arguments().at(arg_idx);
if (argument.real_type()->kind() == TypeKind::ClassType &&
py::isinstance(arg, fake_class_registry.attr("FakeScriptObject"))) {
validateFakeScriptObjectSchema(schema, arg_idx, arg);
} else {
argumentToIValue(schema, arg_idx, arg);
}
arg_idx++;
}
// Now for every remaining non-positional argument in the schema, look for it
// in the kwargs dict and push it if found, or use its default value if it
// has one.
size_t consumed_kwargs = 0;
for (size_t i = arg_idx; i < schema.arguments().size(); ++i) {
const auto& arg = schema.arguments()[i];
if (kwargs.contains(arg.name().c_str())) {
auto cur_kwarg = kwargs[arg.name().c_str()];
if (arg.real_type()->kind() == TypeKind::ClassType &&
py::isinstance(
cur_kwarg, fake_class_registry.attr("FakeScriptObject"))) {
validateFakeScriptObjectSchema(schema, i, cur_kwarg);
} else {
argumentToIValue(schema, i, cur_kwarg);
}
consumed_kwargs += 1;
} else if (arg.default_value()) {
continue;
} else {
throw schema_match_error(c10::str(
schema.name(),
"() is missing value for argument '",
arg.name(),
"'. Declaration: ",
schema));
}
}
if (consumed_kwargs != kwargs.size()) {
std::vector<std::string> names;
for (const auto& kwarg : kwargs) {
names.emplace_back(py::cast<std::string>(kwarg.first));
}
throw schema_match_error(schema.findErrorInKwargs(names));
}
return true;
}
inline Stack createStackForSchema(
const FunctionSchema& schema,
const tuple_slice& args,
const py::kwargs& kwargs,
std::optional<IValue> self) {
size_t all_arguments = (self ? 1 : 0) + args.size() + kwargs.size();
if (all_arguments > schema.arguments().size()) {
throw schema_match_error(c10::str(
schema.name(),
"() expected at most ",
schema.arguments().size(),
" argument(s) but received ",
all_arguments,
" argument(s). Declaration: ",
schema));
}
Stack stack;
stack.reserve(schema.arguments().size());
int64_t arg_idx = 0;
if (self) {
push(stack, std::move(*self));
arg_idx++;
}
// First push all positional args.
for (const auto& arg : args) {
// ...but refuse to do it if the schema says that this was supposed
// to be keyword only
if (schema.arguments()[arg_idx].kwarg_only()) {
throw schema_match_error(c10::str(
schema.name(),
"() takes ",
arg_idx,
" positional argument(s) but ",
self ? 1 + args.size() : args.size(),
" was/were given. Declaration: ",
schema));
}
// Use the type information from the schema to convert the PyObject.
push(stack, argumentToIValue(schema, stack.size(), arg));
arg_idx++;
}
// Now for every remaining non-positional argument in the schema, look for it
// in the kwargs dict and push it if found, or use its default value if it
// has one.
size_t consumed_kwargs = 0;
for (size_t i = stack.size(); i < schema.arguments().size(); ++i) {
const auto& arg = schema.arguments()[i];
if (kwargs.contains(arg.name().c_str())) {
push(stack, argumentToIValue(schema, i, kwargs[arg.name().c_str()]));
consumed_kwargs += 1;
} else if (arg.default_value()) {
push(stack, *arg.default_value());
} else {
throw schema_match_error(c10::str(
schema.name(),
"() is missing value for argument '",
arg.name(),
"'. Declaration: ",
schema));
}
}
if (consumed_kwargs != kwargs.size()) {
std::vector<std::string> names;
for (const auto& kwarg : kwargs) {
names.emplace_back(py::cast<std::string>(kwarg.first));
}
throw schema_match_error(schema.findErrorInKwargs(names));
}
return stack;
}
inline py::object createPyObjectForStack(Stack&& stack) {
if (stack.empty()) {
return py::none();
}
// Return a simple value and not a single-element tuple if there is only one
// return value.
if (stack.size() == 1) {
return toPyObject(std::move(stack[0]));
}
// If there is more than one return value, pop them into a py::tuple.
py::tuple return_values(stack.size());
for (const auto ret : c10::irange(return_values.size())) {
return_values[ret] = toPyObject(std::move(stack[ret]));
}
#if defined(__clang__)
return std::move(return_values);
#else
return return_values;
#endif
}
// TODO: Remove once we clean up the GraphExecutor usage.
inline Stack evilDeprecatedBadCreateStackDoNotUse(
const py::tuple& tuple,
at::ArrayRef<Value*> inputs,
size_t reserve_extra_space = 0) {
if (tuple.size() != inputs.size()) {
TORCH_CHECK(
false,
"expected " + std::to_string(inputs.size()) + " inputs, but got " +
std::to_string(tuple.size()));
}
Stack result;
result.reserve(tuple.size() + reserve_extra_space);
for (const auto i : c10::irange(inputs.size())) {
result.push_back(toIValue(std::move(tuple[i]), inputs[i]->type()));
}
return result;
}
// Run `callee`, potentially inserting a CallFunction/CallMethod node into the
// tracing graph.
inline py::object runAndInsertCall(
Function& callee,
const tuple_slice& args,
const py::kwargs& kwargs,
std::optional<IValue> self,
// Lambda that tells this function how to insert `callee` into the graph if
// we're tracing.
const std::function<Value*(Graph&, const MatchedSchema& match)>&
callInserter) {
auto stack =
createStackForSchema(callee.getSchema(), args, kwargs, std::move(self));
const auto& tracing_state = tracer::getTracingState();
if (!tracing_state) {
pybind11::gil_scoped_release no_gil_guard;
// If we're not tracing, just run the callee as normal.
callee.run(stack);
} else {
// If we are tracing, insert the appropriate CallFunction or CallMethod node
// and then run the callee with tracing disabled.
// Get the graph `Value`s that represent the input IValues
auto inputs = last(stack, callee.num_inputs());
auto input_values =
fmap(inputs, [](const IValue& v) { return tracer::getValueTrace(v); });
TORCH_INTERNAL_ASSERT(callee.getSchema().returns().size() == 1)
auto return_type = callee.getSchema().returns().at(0).type();
auto graph = tracing_state->graph;
std::vector<NamedValue> named_values;
named_values.reserve(input_values.size());
for (Value* v : input_values) {
named_values.emplace_back(v);
}
// Add a call node.
MatchedSchema match = matchSchema(
callee.getSchema(),
tracer::getPythonInterpreterSourceRange(),
*graph,
named_values,
{});
auto output_value = callInserter(*graph, match);
// Actually run the callee. Pause the tracer so that we don't double-add the
// callee nodes.
{
pybind11::gil_scoped_release no_gil_guard;
ResourceGuard guard(tracer::pauseTracing());
callee.run(stack);
}
// Associate the output IValues with the output `Value`s in the graph
tracer::setValueTrace(stack.back(), output_value);
}
TORCH_CHECK(
!stack.empty(),
"Expected values in the stack after execution but found none");
return toPyObject(std::move(stack.back()));
}
inline std::optional<py::object> maybeTorchFunctionDispatch(
const py::object& callee,
const tuple_slice& args_no_self,
const py::kwargs& kwargs,
const c10::QualifiedName& qualname) {
std::vector<py::handle> args_vec;
for (const auto& arg : args_no_self) {
args_vec.push_back(arg);
}
py::tuple args = py::cast(args_vec);
// Handle __torch_function__ dispatch
std::vector<PyObject*> overloaded_args;
size_t total_arg_num = args.size() + kwargs.size();
for (const auto& arg : args) {
is_tensor_and_append_overloaded(arg.ptr(), &overloaded_args);
is_tensor_list_and_append_overloaded(
arg.ptr(),
&overloaded_args,
static_cast<int>(total_arg_num),
false /* throw_error */);
}
// NB: for kwargs, we cannot guarantee the order of appending
// is the same as the argument order in operator's schema.
// This is suboptimal, but should be fine. Later when we have
// better schema matching and argument parsing, we could
// match the operator in `operations` first, then the order will
// be guaranteed.
for (auto item : kwargs) {
is_tensor_and_append_overloaded(item.second.ptr(), &overloaded_args);
is_tensor_list_and_append_overloaded(
item.second.ptr(),
&overloaded_args,
total_arg_num,
false /* throw_error */);
}
if (!overloaded_args.empty()) {
return pybind11::reinterpret_steal<py::object>(
handle_torch_function_no_python_arg_parser(
/*overloaded_args=*/overloaded_args,
/*args=*/args.ptr(),
/*kwargs=*/kwargs.ptr(),
/*func_name=*/qualname.name().c_str(),
/*torch_api_function=*/callee.ptr(),
/*module_name=*/qualname.prefix().c_str()));
}
return std::nullopt;
}
inline py::object invokeScriptFunctionFromPython(
Function& callee,
const tuple_slice& args,
const py::kwargs& kwargs) {
// TODO: we could add __torch_function__ dispatch here but I don't know
// the implications of doing so
return runAndInsertCall(
callee,
args,
kwargs,
/*self=*/std::nullopt,
[&](Graph& graph, const MatchedSchema& match) {
return graph.insertFunctionCall(&callee, match);
});
}
inline py::object invokeScriptMethodFromPython(
Method& callee,
const tuple_slice& args,
const py::kwargs& kwargs) {
auto self = callee.owner()._ivalue();
if (auto torch_fn_result = maybeTorchFunctionDispatch(
py::cast(callee), args, kwargs, callee.name())) {
return *torch_fn_result;
}
return runAndInsertCall(
callee.function(),
args,
kwargs,
self,
[&](Graph& graph, const MatchedSchema& match) {
return graph.insertMethodCall(callee.name(), match);
});
}
TORCH_PYTHON_API std::pair<std::shared_ptr<Operator>, Stack> getOpWithStack(
const std::vector<std::shared_ptr<Operator>>& operations,
const py::args& args,
const py::kwargs& kwargs);
TORCH_PYTHON_API py::object invokeOperatorFromPython(
const std::vector<std::shared_ptr<Operator>>& operations,
const py::args& args,
const py::kwargs& kwargs,
std::optional<c10::DispatchKey> dk = std::nullopt);
TORCH_PYTHON_API std::optional<py::object> _maybe_handle_torch_function(
const std::string& ns,
const std::string& method_name,
const std::string& overload_name,
bool is_overload,
const py::args& args,
const py::kwargs& kwargs);
TORCH_PYTHON_API bool checkSchemaAllowFakeScriptObject(
const FunctionSchema& schema,
const py::args& args,
const py::kwargs& kwargs);
TORCH_PYTHON_API py::object _get_operation_for_overload_or_packet(
const std::vector<std::shared_ptr<Operator>>& operations,
Symbol symbol,
const py::args& args,
const py::kwargs& kwargs,
bool is_overload,
std::optional<c10::DispatchKey> dk = std::nullopt);
} // namespace torch::jit
|