1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
#include <ATen/core/interned_strings.h>
#include <caffe2/serialize/file_adapter.h>
#include <caffe2/serialize/in_memory_adapter.h>
#include <caffe2/serialize/inline_container.h>
#include <caffe2/serialize/istream_adapter.h>
#include <caffe2/serialize/read_adapter_interface.h>
#include <torch/csrc/jit/api/compilation_unit.h>
#include <ATen/core/functional.h>
#include <ATen/core/ivalue_inl.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/frontend/script_type_parser.h>
#include <torch/csrc/jit/ir/graph_utils.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/mobile/file_format.h>
#include <torch/csrc/jit/mobile/flatbuffer_loader.h>
#include <torch/csrc/jit/operator_upgraders/upgraders_entry.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/serialization/import_export_helpers.h>
#include <torch/csrc/jit/serialization/import_read.h>
#include <torch/csrc/jit/serialization/import_source.h>
#include <torch/csrc/jit/serialization/source_range_serialization.h>
#include <torch/csrc/jit/serialization/unpickler.h>
#include <ATen/ATen.h>
#include <fmt/format.h>
#include <string>
#include <utility>
#include <vector>
namespace torch::jit {
using caffe2::serialize::MemoryReadAdapter;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::ReadAdapterInterface;
static void postSetStateValidate(const IValue& v) {
auto obj = v.toObject();
const auto& objType = obj->type();
for (const auto i : c10::irange(objType->numAttributes())) {
const auto& attrType = objType->getAttribute(i);
#ifndef STRIP_ERROR_MESSAGES
const auto& attrName = objType->getAttributeName(i);
#endif
const auto& slot = obj->getSlot(i);
// const auto attrType = objType->getAttribute(i);
// Verify that all the non-optional attributes have been initialized
// TODO: Issue #20497
if (attrType->kind() != TypeKind::UnionType &&
attrType->kind() != TypeKind::OptionalType &&
attrType->kind() != TypeKind::NoneType) {
TORCH_CHECK(
!slot.isNone(),
fmt::format(
"The field '{}' was left uninitialized after '__setstate__', "
"but expected a value of type '{}'",
attrName,
attrType->repr_str()));
}
}
}
// Decouple how to get obj from type. In this file it's dependent on
// Method.run() and graph executor, etc.
// For bytecode import we need to decouple these dependencies.
c10::intrusive_ptr<c10::ivalue::Object> ObjLoaderFunc(
const at::StrongTypePtr& type,
IValue input) {
auto cls = type.type_->expect<at::ClassType>();
auto qn = cls->name();
size_t n = cls->numAttributes();
if (checkHasValidSetGetState(cls)) {
auto obj = c10::ivalue::Object::create(type, n);
// XXX: Do not optimize __setstate__, so that we don't try to
// specialize the class before it is initialized.
GraphOptimizerEnabledGuard guard(false);
Function& set_state = cls->getMethod("__setstate__");
// since we are in the middle of unpickling we might still have lists and
// dicts that do not have accurate tags (e.g. they report they are
// List[Any]). But we need to run __setstate__ which will check the input
// type and may access the tags. Since setstate has a known input type, we
// can correctly restore the tags now by apply the input type of set_state
// to the state object being passed.
// TODO: Remove once [serialization type tags] is landed
restoreAccurateTypeTags(
input, set_state.getSchema().arguments().at(1).type());
set_state({obj, input});
postSetStateValidate(obj);
return obj;
} else {
auto dict = std::move(input).toGenericDict();
auto obj = c10::ivalue::Object::create(type, n);
for (const auto i : c10::irange(n)) {
obj->setSlot(i, dict.at(cls->getAttributeName(i)));
}
return obj;
}
}
namespace {
// This is a deserializer class which loads script modules from pt files.
// Content of the file is written using PyTorchStreamWriter, for details please
// check caffe2/serialize/inline_container.h.
// The module is saved in pickle. readArchive() is called to parse and construct
// the constant table and the script module.
class ScriptModuleDeserializer final {
public:
ScriptModuleDeserializer(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader)
: compilation_unit_(std::move(cu)),
reader_(std::move(reader)),
code_prefix_("code/"),
pickle_dir_prefix_(""),
tensor_dir_prefix_(""),
source_importer_(
compilation_unit_,
&constants_table_,
[this](const std::string& qualifier) {
return findSourceInArchiveFromQualifier(
*reader_, code_prefix_, qualifier);
},
reader_->version()) {}
ScriptModuleDeserializer(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader,
std::string pickle_dir_prefix,
std::string tensor_dir_prefix,
std::shared_ptr<DeserializationStorageContext> storage_context)
: compilation_unit_(std::move(cu)),
reader_(std::move(reader)),
storage_context_(std::move(storage_context)),
code_prefix_(".data/ts_code/code/"),
pickle_dir_prefix_(std::move(pickle_dir_prefix)),
tensor_dir_prefix_(std::move(tensor_dir_prefix)),
source_importer_(
compilation_unit_,
&constants_table_,
[this](const std::string& qualifier) {
return findSourceInArchiveFromQualifier(
*reader_, code_prefix_, qualifier);
},
reader_->version()) {}
Module deserialize(
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool restore_shapes = false);
private:
IValue readArchive(const std::string& archive_name);
std::shared_ptr<CompilationUnit> compilation_unit_;
std::shared_ptr<PyTorchStreamReader> reader_;
std::shared_ptr<DeserializationStorageContext> storage_context_;
std::optional<at::Device> device_;
std::vector<at::IValue> constants_table_;
std::string code_prefix_;
std::string pickle_dir_prefix_;
std::string tensor_dir_prefix_;
SourceImporter source_importer_;
};
IValue ScriptModuleDeserializer::readArchive(const std::string& archive_name) {
auto type_resolver = [&](const c10::QualifiedName& qn) {
auto cls = source_importer_.loadType(qn);
return c10::StrongTypePtr(compilation_unit_, std::move(cls));
};
return readArchiveAndTensors(
/*archive_name=*/archive_name,
/*pickle_prefix=*/pickle_dir_prefix_,
/*tensor_prefix=*/tensor_dir_prefix_,
type_resolver,
ObjLoaderFunc,
device_,
*reader_,
nullptr,
storage_context_);
}
void rewriteQuantizedConvForBC(const Module& module) {
const std::string& old_quantized_conv2d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv2d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d_relu(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv3d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& old_quantized_conv3d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d_relu(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv2d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv2d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv2d_relu(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv3d = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
const std::string& new_quantized_conv3d_relu = R"(
graph(%x, %packed_params, %stride, %padding, %dilation, %groups, %r_scale, %r_zero_point):
%r = quantized::conv3d_relu(%x, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
SubgraphRewriter rewriter;
static const std::vector<std::pair<std::string, std::string>>
patterns_and_replacements = {
{old_quantized_conv2d, new_quantized_conv2d},
{old_quantized_conv2d_relu, new_quantized_conv2d_relu},
{old_quantized_conv3d, new_quantized_conv3d},
{old_quantized_conv3d_relu, new_quantized_conv3d_relu},
};
for (const auto& item : patterns_and_replacements) {
rewriter.RegisterRewritePattern(item.first, item.second);
}
rewriter.runOnModule(module);
for (const Module& child : module.children()) {
rewriteQuantizedConvForBC(child);
}
}
Module ScriptModuleDeserializer::deserialize(
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool restore_shapes) {
// we populate the upgraders map before any load starts
populate_upgraders_graph_map();
C10_LOG_API_USAGE_ONCE("torch.jit.load");
device_ = device;
// Load extra files.
for (const auto& kv : extra_files) {
const std::string& key = "extra/" + kv.first;
if (reader_->hasRecord(key)) {
auto [meta_ptr, meta_size] = reader_->getRecord(key);
extra_files[kv.first] =
std::string(static_cast<char*>(meta_ptr.get()), meta_size);
}
}
if (reader_->hasRecord("model.json") && code_prefix_ == "code/") {
TORCH_CHECK(false, "Legacy model format is not supported on mobile.");
}
auto tuple = readArchive("constants").toTuple();
for (auto constant : tuple->elements()) {
constants_table_.push_back(constant.toIValue());
}
auto m_ivalue = readArchive("data");
auto m = Module(m_ivalue.toObject());
rewriteQuantizedConvForBC(m);
// Checking for and loading saved traced inputs
if (restore_shapes && reader_->hasRecord("traced_inputs.pkl")) {
auto dict = readArchive("traced_inputs").toGenericDict();
for (const auto& entry : dict) {
auto inputs = entry.value().toList().vec();
auto g =
toGraphFunction(m.get_method(entry.key().toStringRef()).function())
.graph();
Stack stack(inputs.begin(), inputs.end());
// Added the module as the first input if we are missing
// an input as traced modules refer to self as an additional input
if (g->inputs().size() == stack.size() + 1) {
stack.insert(stack.begin(), m_ivalue);
}
setInputTensorTypes(*g, stack, /*complete=*/true);
PropagateInputShapes(g);
}
} else {
if (restore_shapes) {
TORCH_WARN("Cannot restore shapes as no traced inputs were stored");
}
}
c10::LogAPIUsageMetadata(
"torch.script.load.metadata",
{{"serialization_id", reader_->serializationId()}});
return m;
}
} // namespace
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::istream& in,
std::optional<at::Device> device,
bool load_debug_files) {
ExtraFilesMap extra_files;
return import_ir_module(
std::move(cu), in, device, extra_files, load_debug_files);
}
static Module _load_jit_module_from_bytes(
const std::shared_ptr<char>& data,
size_t size,
std::shared_ptr<CompilationUnit> cu,
std::optional<c10::Device> device,
ExtraFilesMap& extra_files,
bool restore_shapes);
Module parse_and_initialize_jit_module(
const std::shared_ptr<char>& data,
size_t size,
ExtraFilesMap& extra_files,
std::optional<at::Device> device) {
populate_upgraders_graph_map();
ExtraFilesMap jit_files;
std::vector<IValue> jit_constants;
mobile::Module mobilem = parse_and_initialize_mobile_module_for_jit(
data.get(), size, jit_files, jit_constants, device, &extra_files);
Module m = jitModuleFromSourceAndConstants(
mobilem._ivalue(),
jit_files,
jit_constants,
static_cast<int32_t>(mobilem.bytecode_version()));
m.set_delete_memory(data);
return m;
}
Module load_jit_module_from_file(
const std::string& filename,
ExtraFilesMap& extra_files,
std::optional<at::Device> device) {
auto data = get_file_content(filename.c_str());
return parse_and_initialize_jit_module(
std::get<0>(data), std::get<1>(data), extra_files, device);
}
Module load_jit_module_from_stream(
std::istream& in,
ExtraFilesMap& extra_files,
std::optional<at::Device> device) {
auto data = get_stream_content(in);
return parse_and_initialize_jit_module(
std::get<0>(data), std::get<1>(data), extra_files, device);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::istream& in,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files,
bool restore_shapes) {
in.seekg(0, in.beg);
// NOTE: Zipformat can be large files. So using stream version directly
// instead of reading the file all at once.
if (getFileFormat(in) != FileFormat::FlatbufferFileFormat) {
auto reader = std::make_unique<PyTorchStreamReader>(&in);
reader->setShouldLoadDebugSymbol(load_debug_files);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files, restore_shapes);
}
auto [data, size] = get_stream_content(in);
return _load_jit_module_from_bytes(
data, size, cu, device, extra_files, restore_shapes);
}
// For reading unified serialization format from torch.Package.
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<PyTorchStreamReader> reader,
std::shared_ptr<DeserializationStorageContext> storage_context,
std::optional<at::Device> device,
const std::string& ts_id) {
ScriptModuleDeserializer deserializer(
std::move(cu),
std::move(reader),
/* pickle_dir_prefix = */ ".data/ts_code/" + ts_id + "/",
/* tensor_dir_prefix = */ ".data/",
std::move(storage_context));
ExtraFilesMap extra_files;
return deserializer.deserialize(device, extra_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
std::optional<at::Device> device,
bool load_debug_files) {
ExtraFilesMap extra_files;
return import_ir_module(
std::move(cu), filename, device, extra_files, load_debug_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files,
bool restore_shapes) {
// NOTE: Zipformat can be large files. So using stream version directly
// instead of reading the file all at once.
if (getFileFormat(filename) != FileFormat::FlatbufferFileFormat) {
auto reader = std::make_unique<PyTorchStreamReader>(filename);
reader->setShouldLoadDebugSymbol(load_debug_files);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files, restore_shapes);
}
auto [data, size] = get_file_content(filename.c_str());
return _load_jit_module_from_bytes(
data, size, cu, device, extra_files, restore_shapes);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::unique_ptr<ReadAdapterInterface> rai,
std::optional<at::Device> device,
bool load_debug_files) {
ExtraFilesMap extra_files;
return import_ir_module(
std::move(cu), std::move(rai), device, extra_files, load_debug_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::unique_ptr<ReadAdapterInterface> rai,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
std::shared_ptr<ReadAdapterInterface> rai_shared = std::move(rai);
return import_ir_module(
std::move(cu), rai_shared, device, extra_files, load_debug_files);
}
Module import_ir_module(
std::shared_ptr<CompilationUnit> cu,
std::shared_ptr<ReadAdapterInterface> rai,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
auto reader = std::make_shared<PyTorchStreamReader>(std::move(rai));
reader->setShouldLoadDebugSymbol(load_debug_files);
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files);
}
Module load(
std::istream& in,
std::optional<at::Device> device,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(std::move(cu), in, device, load_debug_files);
}
Module load(
std::istream& in,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(
std::move(cu), in, device, extra_files, load_debug_files);
}
Module load(
const std::string& filename,
std::optional<at::Device> device,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(std::move(cu), filename, device, load_debug_files);
}
Module load(
const std::string& filename,
std::optional<at::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(
std::move(cu), filename, device, extra_files, load_debug_files);
}
Module load(
std::shared_ptr<ReadAdapterInterface> rai,
std::optional<c10::Device> device,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
ExtraFilesMap extra_files;
return import_ir_module(
std::move(cu), std::move(rai), device, extra_files, load_debug_files);
}
Module load(
std::shared_ptr<ReadAdapterInterface> rai,
std::optional<c10::Device> device,
ExtraFilesMap& extra_files,
bool load_debug_files) {
auto cu = std::make_shared<CompilationUnit>();
return import_ir_module(
std::move(cu), std::move(rai), device, extra_files, load_debug_files);
}
Module _load_jit_module_from_bytes(
const std::shared_ptr<char>& data,
size_t size,
std::shared_ptr<CompilationUnit> cu,
std::optional<c10::Device> device,
ExtraFilesMap& extra_files,
bool restore_shapes) {
TORCH_CHECK(size >= kFileFormatHeaderSize, "Unrecognized data format");
auto format = getFileFormat(data.get());
switch (format) {
case FileFormat::FlatbufferFileFormat: {
return parse_and_initialize_jit_module(data, size, extra_files, device);
}
case FileFormat::ZipFileFormat: {
auto rai = std::make_unique<MemoryReadAdapter>(data.get(), size);
auto reader = std::make_unique<PyTorchStreamReader>(std::move(rai));
ScriptModuleDeserializer deserializer(std::move(cu), std::move(reader));
return deserializer.deserialize(device, extra_files, restore_shapes);
}
default:
TORCH_CHECK(false, "Unrecognized data format");
}
}
// Replace object with a newly created but equivalent object.
// The goal is to replace object's methods. However, since object's
// methods are attached to type; we need to replace it's type.
// Non-objects are unchanged; however, nested structures such as list, dict
// are also reconstructed because they might contain an object.
static IValue recreateObject(IValue ivalue, const TypeResolver& resolver) {
if (ivalue.isObject()) {
auto obj = ivalue.toObject();
auto classtype_old = obj->type();
auto newtype = resolver(*classtype_old->name());
size_t n = classtype_old->numAttributes();
auto newobj = c10::ivalue::Object::create(newtype, n);
for (const auto i : c10::irange(n)) {
newobj->setSlot(i, recreateObject(obj->getSlot(i), resolver));
}
return newobj;
} else if (ivalue.isList()) {
auto res = c10::impl::GenericList(ivalue.type()->containedType(0));
for (const auto& ival : ivalue.toList()) {
res.emplace_back(recreateObject(ival, resolver));
}
return res;
} else if (ivalue.isGenericDict()) {
auto result = c10::impl::GenericDict(
ivalue.type()->containedType(0), ivalue.type()->containedType(1));
for (const auto& kv : ivalue.toGenericDict()) {
result.insert_or_assign(
recreateObject(kv.key(), resolver),
recreateObject(kv.value(), resolver));
}
return result;
} else if (ivalue.isTuple()) {
std::vector<IValue> res;
for (const auto& ival : ivalue.toTuple()->elements()) {
res.push_back(recreateObject(ival, resolver));
}
return c10::ivalue::Tuple::create(res);
}
// Leaf types are returned verbatim.
return ivalue;
}
Module jitModuleFromSourceAndConstants(
const IValue& ivalue,
const ExtraFilesMap& source,
const std::vector<IValue>& constants,
int32_t version) {
auto compilation_unit = std::make_shared<CompilationUnit>();
SourceImporter importer(
compilation_unit,
&constants,
[&source](const std::string& qualifier) -> std::shared_ptr<Source> {
auto source_iter = source.find(qualifier);
if (source_iter == source.end()) {
return nullptr;
}
return std::make_shared<Source>(
source_iter->second, qualifier, 1, nullptr, Source::COPIES_STRING);
},
version);
auto type_resolver = [&](const c10::QualifiedName& qn) {
auto cls = importer.loadType(qn);
return c10::StrongTypePtr(compilation_unit, std::move(cls));
};
auto newIvalue = recreateObject(ivalue, type_resolver).toObject();
Module m(newIvalue);
rewriteQuantizedConvForBC(m);
return m;
}
} // namespace torch::jit
|