1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
#include <torch/csrc/jit/serialization/pickle.h>
#include <ATen/core/ivalue.h>
#include <caffe2/serialize/inline_container.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/csrc/jit/serialization/import_read.h>
namespace torch::jit {
namespace {
c10::StrongTypePtr customClassResolver(const c10::QualifiedName& qn) {
at::TypePtr type = nullptr;
if (c10::QualifiedName("__torch__").isPrefixOf(qn)) {
type = torch::getCustomClass(qn.qualifiedName());
} else {
// This is a regular type, fall back to the default type parser
torch::jit::ScriptTypeParser parser;
type = parser.parseType(qn.qualifiedName());
return c10::StrongTypePtr(nullptr, std::move(type));
}
if (type == nullptr) {
TORCH_CHECK(
false,
"Couldn't resolve type '{}', did you forget to add its build dependency?",
qn.qualifiedName());
}
// Passing nullptr is a little bit sus, but should be fine:
// 1. The lifetime of the class type is not tied to a specific
// CompilationUnit
// but rather the global custom class registry.
// 2. We will not access the `cu_` field and immediately discard this
// StrongTypePtr post-deserialization.
return c10::StrongTypePtr(nullptr, std::move(type));
}
} // namespace
void pickle(
std::function<void(const char* data_start, size_t data_len)> writer,
const IValue& ivalue,
std::vector<at::Tensor>* tensor_table) {
Pickler pickler(std::move(writer), tensor_table, nullptr, nullptr);
pickler.protocol();
pickler.pushIValue(ivalue);
pickler.stop();
}
std::vector<char> pickle(
const IValue& ivalue,
std::vector<at::Tensor>* tensor_table) {
std::vector<char> data;
pickle(
[&](const char* bytes, size_t len) {
data.insert(data.end(), bytes, bytes + len);
},
ivalue,
tensor_table);
return data;
}
// This has to live here instead of the C++ API to mirror torch.save since the
// mobile build excludes the C++ API
std::vector<char> pickle_save(const at::IValue& ivalue) {
#ifndef C10_MOBILE
// Pickle the IValue into an array of bytes
std::vector<char> pickle_data;
Pickler pickler([&](const char* buf, size_t size) {
pickle_data.insert(pickle_data.end(), buf, buf + size);
});
pickler.protocol();
pickler.pushIValue(ivalue);
pickler.stop();
std::vector<char> container_data;
container_data.reserve(pickle_data.size());
caffe2::serialize::PyTorchStreamWriter writer(
[&](const void* void_bytes, size_t len) {
const char* bytes = reinterpret_cast<const char*>(void_bytes);
container_data.insert(container_data.end(), bytes, bytes + len);
return len;
});
// Write the generated bytes and the associated tensors into a data.pkl file
// and data/0, data/1, data/2... files for each of the tensors
writeArchiveAndTensors(
"data",
pickle_data.data(),
pickle_data.size(),
pickler.tensorData(),
writer);
return container_data;
#else
TORCH_CHECK(
false,
"pickle_save not supported on mobile "
"(see https://github.com/pytorch/pytorch/pull/30108)");
#endif
}
#ifndef C10_MOBILE
size_t VectorReader::read(uint64_t pos, void* buf, size_t n, const char* what)
const {
std::copy(
data_.data() + pos, data_.data() + pos + n, reinterpret_cast<char*>(buf));
return n;
}
size_t StringViewReader::read(
uint64_t pos,
void* buf,
size_t n,
const char* what) const {
std::copy(
data_.data() + pos, data_.data() + pos + n, reinterpret_cast<char*>(buf));
return n;
}
#endif
IValue pickle_load(const std::vector<char>& data) {
// Read in the pickle data
#ifndef C10_MOBILE
caffe2::serialize::PyTorchStreamReader reader(
std::make_unique<VectorReader>(data));
return readArchiveAndTensors(
"data",
/*pickle_prefix=*/"",
/*tensor_prefix=*/"",
/*type_resolver=*/std::nullopt,
/*obj_loader=*/std::nullopt,
/*device=*/std::nullopt,
reader);
#else
TORCH_CHECK(
false,
"pickle_load not supported on mobile "
"(see https://github.com/pytorch/pytorch/pull/30108)");
#endif
}
// A specialized version of pickle_load that can load custom objects.
c10::IValue pickle_load_obj(std::string_view data) {
#ifndef C10_MOBILE
caffe2::serialize::PyTorchStreamReader reader(
std::make_unique<torch::jit::StringViewReader>(data));
return torch::jit::readArchiveAndTensors(
"data",
/*pickle_prefix=*/"",
/*tensor_prefix=*/"",
/*type_resolver=*/customClassResolver,
/*obj_loader=*/torch::jit::ObjLoaderFunc,
/*device=*/std::nullopt,
reader);
#else
TORCH_CHECK(
false,
"pickle_load not supported on mobile "
"(see https://github.com/pytorch/pytorch/pull/30108)");
#endif
}
IValue unpickle(
std::function<size_t(char*, size_t)> reader,
TypeResolver type_resolver,
c10::ArrayRef<at::Tensor> tensor_table,
c10::TypePtr (*type_parser)(const std::string&),
ObjLoader obj_loader) {
Unpickler unpickler(
std::move(reader),
std::move(type_resolver),
tensor_table,
std::move(obj_loader),
type_parser);
return unpickler.parse_ivalue();
}
IValue unpickle(
const char* data,
size_t size,
TypeResolver type_resolver,
c10::ArrayRef<at::Tensor> tensor_table,
c10::TypePtr (*type_parser)(const std::string&)) {
return unpickle(
data, size, nullptr, std::move(type_resolver), tensor_table, type_parser);
}
IValue unpickle(
const char* data,
size_t size,
ObjLoader obj_loader,
TypeResolver type_resolver,
c10::ArrayRef<at::Tensor> tensor_table,
c10::TypePtr (*type_parser)(const std::string&)) {
size_t bytes_read = 0;
return unpickle(
[&](char* buffer, size_t len) -> size_t {
if (bytes_read >= size) {
return 0;
}
len = std::min(size - bytes_read, len);
// Copy len bytes into buffer
const char* start = data + bytes_read;
std::memcpy(buffer, start, len);
bytes_read += len;
return len;
},
std::move(type_resolver),
tensor_table,
type_parser,
std::move(obj_loader));
}
} // namespace torch::jit
|