File: llvm_jit.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (392 lines) | stat: -rw-r--r-- 13,140 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#ifdef TORCH_ENABLE_LLVM

#include <c10/macros/Macros.h>

#include <torch/csrc/jit/tensorexpr/external_functions.h>
#include <torch/csrc/jit/tensorexpr/intrinsic_symbols.h>
#include <torch/csrc/jit/tensorexpr/llvm_jit.h>

C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wsuggest-override")
#include <llvm/ExecutionEngine/ExecutionEngine.h>
#include <llvm/ExecutionEngine/JITSymbol.h>
C10_DIAGNOSTIC_POP()

#include <llvm/ExecutionEngine/Orc/CompileUtils.h>
#include <llvm/ExecutionEngine/Orc/ExecutionUtils.h>
#include <llvm/ExecutionEngine/Orc/IRCompileLayer.h>
// llvm::SCEVPredicate has virtual function but non-virtual destructor
// https://github.com/llvm/llvm-project/blob/c1a0a213378a458fbea1a5c77b315c7dce08fd05/llvm/include/llvm/Analysis/ScalarEvolution.h#L198
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
#include <llvm/ExecutionEngine/Orc/LLJIT.h>
#pragma GCC diagnostic pop
#include <llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h>
#include <llvm/ExecutionEngine/Orc/SymbolStringPool.h>
#include <llvm/ExecutionEngine/RTDyldMemoryManager.h>
#include <llvm/ExecutionEngine/SectionMemoryManager.h>
#include <llvm/IR/DataLayout.h>
#include <llvm/IR/Mangler.h>
#include <llvm/Support/CFGUpdate.h>
#include <llvm/Support/DynamicLibrary.h>
#if LLVM_VERSION_MAJOR >= 18
#include <llvm/TargetParser/Host.h>
#else
#include <llvm/Support/Host.h>
#endif
#include <llvm/Support/raw_ostream.h>
#include <llvm/Target/TargetMachine.h>

#include <torch/csrc/jit/tensorexpr/external_functions_registry.h>

#include <c10/util/Half.h>

#include <algorithm>
#include <memory>
#include <string>
#include <unordered_set>
#include <vector>

using namespace torch::jit::tensorexpr;

template <typename T>
static llvm::JITTargetAddress toAddress(T* Ptr) {
  return static_cast<llvm::JITTargetAddress>(reinterpret_cast<uintptr_t>(Ptr));
}

// Get subtarget features for the host.
static llvm::SubtargetFeatures getHostSubtargetFeatures() {
  llvm::SubtargetFeatures subtargetFeatures;
#if LLVM_VERSION_MAJOR >= 19
  const auto featureMap = llvm::sys::getHostCPUFeatures();
#else
  llvm::StringMap<bool> featureMap;
  llvm::sys::getHostCPUFeatures(featureMap);
#endif
  for (auto& feature : featureMap) {
    subtargetFeatures.AddFeature(feature.first(), feature.second);
  }
  return subtargetFeatures;
}

// Create a JTMB using the host's triple.  CPU and attrs default to the host
// unless they are supplied.
static llvm::orc::JITTargetMachineBuilder makeJTMBFromHost(
    std::optional<std::string> cpu,
    std::optional<std::string> attrs) {
  llvm::orc::JITTargetMachineBuilder JTMB(
      (llvm::Triple(llvm::sys::getProcessTriple())));
  JTMB.setCPU(cpu.value_or(llvm::sys::getHostCPUName().str()));
  if (attrs) {
    std::vector<std::string> features;
    llvm::SubtargetFeatures::Split(features, *attrs);
    JTMB.addFeatures(features);
  } else {
    JTMB.addFeatures(getHostSubtargetFeatures().getFeatures());
  }
  return JTMB;
}

// Create a JTMB using a given triple.  Do not set cpu or attrs if not supplied.
static llvm::orc::JITTargetMachineBuilder makeJTMBFromTriple(
    const std::string& triple,
    std::optional<std::string> cpu,
    std::optional<std::string> attrs) {
  llvm::orc::JITTargetMachineBuilder JTMB((llvm::Triple(triple)));
  if (cpu) {
    JTMB.setCPU(*cpu);
  }
  if (attrs) {
    std::vector<std::string> features;
    llvm::SubtargetFeatures::Split(features, *attrs);
    JTMB.addFeatures(features);
  }
  return JTMB;
}

static llvm::orc::JITTargetMachineBuilder makeTargetMachineBuilder(
    std::optional<std::string> triple,
    std::optional<std::string> cpu,
    std::optional<std::string> attrs) {
  auto JTMB = triple ? makeJTMBFromTriple(*triple, cpu, attrs)
                     : makeJTMBFromHost(cpu, attrs);
#if LLVM_VERSION_MAJOR >= 18
  JTMB.setCodeGenOptLevel(llvm::CodeGenOptLevel::Default);
#else
  JTMB.setCodeGenOptLevel(llvm::CodeGenOpt::Default);
#endif
  JTMB.getOptions().AllowFPOpFusion = llvm::FPOpFusion::Fast;
  return JTMB;
}

static void registerIntrinsics(
    llvm::orc::JITDylib& JD,
    llvm::orc::MangleAndInterner& Mangle,
    std::unordered_set<std::string>& intrinsics) {
  using namespace llvm;
  using namespace llvm::orc;

  auto entry = [&](const char* name, auto ptr) -> SymbolMap::value_type {
#if LLVM_VERSION_MAJOR >= 17
    return {Mangle(name), {ExecutorAddr(toAddress(ptr)), JITSymbolFlags::None}};
#else
    return {Mangle(name), {toAddress(ptr), JITSymbolFlags::None}};
#endif
  };

  SymbolMap symbols;
  for (auto const& sym : getIntrinsicSymbols()) {
    symbols.insert(entry(sym.symbol, sym.address));
    intrinsics.insert(sym.symbol);
  }
  assertSuccess(JD.define(absoluteSymbols(symbols)));

  for (auto& kv : getNNCFunctionRegistry()) {
    assertSuccess(
        JD.define(absoluteSymbols({entry(kv.first.c_str(), kv.second)})));
  }
  assertSuccess(JD.define(
      absoluteSymbols({entry("DispatchParallel", DispatchParallel)})));
  assertSuccess(
      JD.define(absoluteSymbols({entry("nnc_aten_free", nnc_aten_free)})));
}

namespace llvm {
namespace orc {

// Lightly modified implementation from LLVM's Kaleidoscope JIT tutorial:
// https://llvm.org/docs/tutorial/BuildingAJIT1.html
#if LLVM_VERSION_MAJOR >= 9
class TORCH_API PytorchLLVMJITImpl {
 private:
  std::unique_ptr<TargetMachine> TM;
  std::unique_ptr<LLJIT> LLJ;
  std::unordered_set<std::string> intrinsics;

 public:
  PytorchLLVMJITImpl(
      std::optional<std::string> triple,
      std::optional<std::string> cpu,
      std::optional<std::string> attrs)
      : TM(assertSuccess(makeTargetMachineBuilder(triple, cpu, attrs)
                             .createTargetMachine())),
        LLJ(assertSuccess(
            LLJITBuilder()
                .setJITTargetMachineBuilder(
                    makeTargetMachineBuilder(triple, cpu, attrs))
#if LLVM_VERSION_MAJOR >= 17
                .setObjectLinkingLayerCreator([&](ExecutionSession& ES,
                                                  const Triple& TT) {
                  return std::make_unique<ObjectLinkingLayer>(
                      ES,
                      assertSuccess(jitlink::InProcessMemoryManager::Create()));
                })
#endif
                .create())) {
    auto ProcSymbolsGenerator =
        assertSuccess(DynamicLibrarySearchGenerator::GetForCurrentProcess(
            LLJ->getDataLayout().getGlobalPrefix()));
    auto& JD = LLJ->getMainJITDylib();
#if LLVM_VERSION_MAJOR == 9
    JD.setGenerator(std::move(ProcSymbolsGenerator));
#else
    JD.addGenerator(std::move(ProcSymbolsGenerator));
#endif

    // Handle platform-specific symbol mangling
    MangleAndInterner Mangle(LLJ->getExecutionSession(), LLJ->getDataLayout());

    // Register implementations of intrinsics
    registerIntrinsics(JD, Mangle, intrinsics);

    // Work around UBSAN crashes which reads 8 byte in front of every function.
    // Placing a dummy variable with 8 bytes first ensures there is readable
    // memory before code for the first function is emitted. See also:
    // - https://reviews.llvm.org/D148665
    // - https://github.com/llvm/llvm-project/issues/65253
    {
      std::unique_ptr<llvm::LLVMContext> ctx =
          std::make_unique<llvm::LLVMContext>();
      std::unique_ptr<llvm::Module> module_ =
          std::make_unique<llvm::Module>("__asan_workaround_fill", *ctx);
      llvm::Type* type = llvm::ArrayType::get(llvm::Type::getInt8Ty(*ctx), 8);
      module_->getOrInsertGlobal("__asan_workaround_fill", type, [&]() {
        return new llvm::GlobalVariable(
            *module_,
            type,
            true,
            llvm::GlobalVariable::InternalLinkage,
            llvm::Constant::getNullValue(type),
            "__asan_workaround_fill");
      });
      assertSuccess(LLJ->addIRModule(
          ThreadSafeModule(std::move(module_), std::move(ctx))));
    }
  }

  void addModule(std::unique_ptr<Module> M, std::unique_ptr<LLVMContext> C) {
    assertSuccess(
        LLJ->addIRModule(ThreadSafeModule(std::move(M), std::move(C))),
        "Failed to add module to compile layer");
  }

  JITSymbol findSymbol(const std::string Name) {
#if LLVM_VERSION_MAJOR >= 15
    // Starting with llvm-15, LLJIT::lookup returns an address rather than a
    // symbol. Even though an address is what we ultimately we want, we also
    // want to avoid churning our internal APIs, so we wrap the returned address
    // in a fake JITSymbol.
    auto result = assertSuccess(LLJ->lookup(Name));
    return JITSymbol(result.getValue(), JITSymbolFlags());
#else
    return assertSuccess(LLJ->lookup(Name));
#endif
  }

  bool hasSymbol(const std::string& Name) {
    return intrinsics.find(Name) != intrinsics.end();
  }

  TargetMachine& getTargetMachine() {
    return *TM;
  }

  const DataLayout& getDataLayout() {
    return LLJ->getDataLayout();
  }
};

#elif LLVM_VERSION_MAJOR == 8 && LLVM_VERSION_PATCH == 20181009

class TORCH_API PytorchLLVMJITImpl {
 private:
  ExecutionSession ES;
  std::shared_ptr<SymbolResolver> Resolver;
  std::unique_ptr<TargetMachine> TM;
  const DataLayout DL;
  RTDyldObjectLinkingLayer ObjectLayer;
  IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;
  std::unordered_set<std::string> intrinsics;

 public:
  PytorchLLVMJITImpl(
      std::optional<std::string> triple,
      std::optional<std::string> cpu,
      std::optional<std::string> attrs)
      : Resolver(createLegacyLookupResolver(
            ES,
            [this](const std::string& Name) -> JITSymbol {
              if (auto Sym = CompileLayer.findSymbol(Name, false)) {
                return Sym;
              } else if (auto Err = Sym.takeError()) {
                return std::move(Err);
              }
              if (auto SymAddr =
                      RTDyldMemoryManager::getSymbolAddressInProcess(Name)) {
                return JITSymbol(SymAddr, JITSymbolFlags::Exported);
              }
              MangleAndInterner Mangle(ES, DL);
              return assertSuccess(
                  lookup({&ES.getMainJITDylib()}, Mangle(Name)));
            },
            [](Error Err) {
              assertSuccess(std::move(Err), "lookupFlags failed");
            })),
        TM(assertSuccess(makeTargetMachineBuilder(triple, cpu, attrs)
                             .createTargetMachine())),
        DL(TM->createDataLayout()),
        ObjectLayer(
            ES,
            [this](VModuleKey) {
              return RTDyldObjectLinkingLayer::Resources{
                  std::make_shared<SectionMemoryManager>(), Resolver};
            }),
        CompileLayer(ObjectLayer, SimpleCompiler(*TM)) {
    auto& JD = ES.getMainJITDylib();
    MangleAndInterner Mangle(ES, DL);
    registerIntrinsics(JD, Mangle, intrinsics);
    llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
  }

  TargetMachine& getTargetMachine() {
    return *TM;
  }

  void addModule(std::unique_ptr<Module> M, std::unique_ptr<LLVMContext> C) {
    // Add the module to the JIT with a new VModuleKey.
    auto K = ES.allocateVModule();
    assertSuccess(
        CompileLayer.addModule(K, std::move(M)),
        "Failed to add module to compile layer");
  }

  JITSymbol findSymbol(const std::string Name) {
    std::string MangledName;
    raw_string_ostream MangledNameStream(MangledName);
    Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
    return CompileLayer.findSymbol(MangledNameStream.str(), true);
  }

  bool hasSymbol(const std::string& Name) {
    return intrinsics.find(Name) != intrinsics.end();
  }

  JITTargetAddress getSymbolAddress(const std::string Name) {
    return assertSuccess(findSymbol(Name).getAddress());
  }

  void removeModule(VModuleKey K) {
    assertSuccess(CompileLayer.removeModule(K));
  }

  const DataLayout& getDataLayout() {
    return DL;
  }
};

#else // LLVM_VERSION_MAJOR
#error Only LLVM versions 8 and above are supported.
#endif

PytorchLLVMJIT::PytorchLLVMJIT(
    std::optional<std::string> triple,
    std::optional<std::string> cpu,
    std::optional<std::string> attrs)
    : impl_(std::make_unique<PytorchLLVMJITImpl>(triple, cpu, attrs)) {}

PytorchLLVMJIT::~PytorchLLVMJIT() = default;

void PytorchLLVMJIT::addModule(
    std::unique_ptr<Module> M,
    std::unique_ptr<LLVMContext> C) {
  impl_->addModule(std::move(M), std::move(C));
}

JITSymbol PytorchLLVMJIT::findSymbol(const std::string Name) {
  return impl_->findSymbol(std::move(Name));
}

bool PytorchLLVMJIT::hasSymbol(const std::string& Name) {
  return impl_->hasSymbol(Name);
}

TargetMachine& PytorchLLVMJIT::getTargetMachine() {
  return impl_->getTargetMachine();
}

const DataLayout& PytorchLLVMJIT::getDataLayout() {
  return impl_->getDataLayout();
}

#if !defined(NDEBUG)
void dumpCFG(const llvm::cfg::Update<llvm::BasicBlock*>& update) {
  // XXX: This method call is only here to placate gcov builds.  The `dump`
  // method is conditionally defined when NDEBUG is unset, so if you try to
  // link a debug-mode pytorch with an opt-mode llvm, the symbol is undefined.
  update.dump();
}
#endif

} // end namespace orc
} // end namespace llvm

#endif // TORCH_ENABLE_LLVM