File: misc.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (94 lines) | stat: -rw-r--r-- 3,288 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#pragma once

#include <torch/csrc/jit/tensorexpr/fwd_decls.h>
#include <torch/csrc/jit/tensorexpr/lowerings.h>
#include <torch/csrc/jit/tensorexpr/tensor.h>

namespace torch::jit::tensorexpr {

struct TensorInfo {
  std::vector<int64_t> dims;
  c10::ScalarType dtype;
};
std::optional<TensorInfo> getTensorInfo(const BufHandle& b);

int64_t normalizeAndCheckIndex(int64_t idx, int64_t list_size);

// Convert boolean to integer, if needed.
ExprHandle boolToInteger(const ExprHandle& x);
ExprHandle promoteToDtype(ExprHandle e, ScalarType dt);
void promoteInputs(
    std::vector<ExprHandle>& inputs,
    const int typeConstraints = kAllTypes);
ExprHandle promoteIntegerToDefaultType(const ExprHandle& e);
ExprHandle promoteHalfToFloat(const ExprHandle& e);
ExprHandle demoteOutput(
    const ExprHandle& e,
    const std::optional<ScalarType> type);

std::vector<ExprHandle> broadcastShapes(
    std::vector<std::vector<ExprHandle>> shapes);
std::vector<ExprHandle> broadcastShapes(
    const std::vector<ExprHandle>& a,
    const std::vector<ExprHandle>& b);

std::vector<ExprHandle> valueShape(const ArgValue& v);
ExprHandle tensorOrConstant(
    const ArgValue& v,
    const std::vector<ExprHandle>& axes);
ExprHandle scalarOrConstant(const ArgValue& v);
ExprHandle broadcast(const BufHandle& b, const std::vector<ExprHandle>& axes);
ExprHandle constant(const ArgValue& v);

ExprHandle clamp(
    const ExprHandle& cmin,
    const ExprHandle& cmax,
    const ExprHandle& input);

Tensor computeChunk(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);
Tensor computeTranspose(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);
Tensor computeExpand(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);
Tensor computeReshape(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);
Tensor computeFlatten(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);
Tensor computeCatWoConditionals(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape);
Tensor computeCat(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);
Tensor computeEmbedding(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);

} // namespace torch::jit::tensorexpr