1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
#include <torch/csrc/jit/tensorexpr/operators/misc.h>
#include <torch/csrc/jit/tensorexpr/operators/pointwise.h>
namespace torch::jit::tensorexpr {
using namespace torch::jit::tensorexpr;
Tensor computeSign(
const std::vector<ArgValue>& inputValues,
const std::vector<ExprHandle>& outputShape,
const std::optional<std::vector<ExprHandle>>& outputStrides) {
return Compute(
"aten_sign", outputShape, outputStrides, [&](ParameterList& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
std::vector<ExprHandle> inputs = {
tensorOrConstant(inputValues[0], indices)};
auto inp = inputs[0];
auto zero = ExprHandle(immLike(inp, 0.0f));
auto res = (zero < inp) - (inp < zero);
return promoteToDtype(res, inp.dtype().scalar_type());
});
}
Tensor computeOneOperand(
const std::string& name,
const std::vector<ArgValue>& inputValues,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const std::optional<ScalarType>& outputType,
const std::function<ExprHandle(const ExprHandle&)>& innerExpr,
const int checkParamTypes) {
return Compute(
name,
outputShape,
outputStrides,
[inputValues, outputType, innerExpr, checkParamTypes](
const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
std::vector<ExprHandle> inputs = {
tensorOrConstant(inputValues[0], indices)};
promoteInputs(inputs, checkParamTypes);
ExprHandle compute = innerExpr(inputs[0]);
return demoteOutput(compute, outputType);
});
}
Tensor computeTwoOperand(
const std::string& name,
const std::vector<ArgValue>& inputValues,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const std::optional<ScalarType>& outputType,
const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
innerExpr) {
return Compute(
name,
outputShape,
outputStrides,
[inputValues, outputType, innerExpr](const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
std::vector<ExprHandle> inputs = {
tensorOrConstant(inputValues[0], indices),
tensorOrConstant(inputValues[1], indices),
};
promoteInputs(inputs);
ExprHandle compute = innerExpr(inputs[0], inputs[1]);
return demoteOutput(compute, outputType);
});
}
Tensor computeTwoOperandWithAlpha(
const std::string& name,
const std::vector<ArgValue>& inputValues,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const std::optional<ScalarType>& outputType,
const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
innerExpr) {
return Compute(
name,
outputShape,
outputStrides,
[inputValues, outputType, innerExpr](const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
std::vector<ExprHandle> inputs = {
tensorOrConstant(inputValues[0], indices),
tensorOrConstant(inputValues[1], indices),
tensorOrConstant(inputValues[2], indices),
};
promoteInputs(inputs);
ExprHandle compute = innerExpr(inputs[0], inputs[2] * inputs[1]);
return demoteOutput(compute, outputType);
});
}
Tensor computeConditionWithTwoOperand(
const std::string& name,
const std::vector<ArgValue>& inputValues,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const std::optional<ScalarType>& outputType,
const std::function<
ExprHandle(const ExprHandle&, const ExprHandle&, const ExprHandle&)>&
innerExpr) {
return Compute(
name,
outputShape,
outputStrides,
[inputValues, outputType, innerExpr](const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
std::vector<ExprHandle> inputs = {
tensorOrConstant(inputValues[1], indices),
tensorOrConstant(inputValues[2], indices),
};
promoteInputs(inputs);
// First expr is the condition, which we don't promote
inputs.emplace(
inputs.begin(), tensorOrConstant(inputValues[0], indices));
ExprHandle compute = innerExpr(inputs[0], inputs[1], inputs[2]);
return demoteOutput(compute, outputType);
});
}
Tensor computeThreeOperand(
const std::string& name,
const std::vector<ArgValue>& inputValues,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const std::optional<ScalarType>& outputType,
const std::function<
ExprHandle(const ExprHandle&, const ExprHandle&, const ExprHandle&)>&
innerExpr,
bool promote_inputs) {
return Compute(
name,
outputShape,
outputStrides,
[inputValues, outputType, innerExpr, promote_inputs](
const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
std::vector<ExprHandle> inputs = {
tensorOrConstant(inputValues[0], indices),
tensorOrConstant(inputValues[1], indices),
tensorOrConstant(inputValues[2], indices),
};
if (promote_inputs) {
promoteInputs(inputs);
}
ExprHandle compute = innerExpr(inputs[0], inputs[1], inputs[2]);
return demoteOutput(compute, outputType);
});
}
Tensor computeFourOperand(
const std::string& name,
const std::vector<ArgValue>& inputValues,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const std::optional<ScalarType>& outputType,
const std::function<ExprHandle(
const ExprHandle&,
const ExprHandle&,
const ExprHandle&,
const ExprHandle&)>& innerExpr) {
return Compute(
name,
outputShape,
outputStrides,
[inputValues, outputType, innerExpr](const std::vector<VarHandle>& axes) {
std::vector<ExprHandle> indices(axes.begin(), axes.end());
std::vector<ExprHandle> inputs = {
tensorOrConstant(inputValues[0], indices),
tensorOrConstant(inputValues[1], indices),
tensorOrConstant(inputValues[2], indices),
tensorOrConstant(inputValues[3], indices),
};
promoteInputs(inputs);
ExprHandle compute =
innerExpr(inputs[0], inputs[1], inputs[2], inputs[3]);
return demoteOutput(compute, outputType);
});
}
Tensor computeNoop(
const std::vector<ArgValue>& inputValues,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const std::optional<ScalarType>& outputType,
at::Device device) {
return computeOneOperand(
"copy",
inputValues,
outputShape,
outputStrides,
outputType,
[](const ExprHandle& a) { return a; });
}
Tensor computeScalar(
const std::string& name,
const std::vector<ArgValue>& inputValues,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
const std::optional<ScalarType>& outputType,
const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
innerExpr) {
auto dt = Dtype(*outputType);
VarPtr let_var = alloc<Var>(name + "_var", dt);
std::vector<ExprHandle> inputs = {
scalarOrConstant(inputValues[0]), scalarOrConstant(inputValues[1])};
promoteInputs(inputs);
ExprHandle compute = innerExpr(inputs[0], inputs[1]);
StmtPtr let_stmt =
Let::make(VarHandle(let_var), demoteOutput(compute, outputType));
std::vector<ExprPtr> dims;
BufPtr buf = alloc<Buf>(let_var, dims, dt);
return Tensor(buf, let_stmt);
}
} // namespace torch::jit::tensorexpr
|