File: pointwise.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (224 lines) | stat: -rw-r--r-- 8,052 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#include <torch/csrc/jit/tensorexpr/operators/misc.h>
#include <torch/csrc/jit/tensorexpr/operators/pointwise.h>

namespace torch::jit::tensorexpr {

using namespace torch::jit::tensorexpr;

Tensor computeSign(
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::optional<std::vector<ExprHandle>>& outputStrides) {
  return Compute(
      "aten_sign", outputShape, outputStrides, [&](ParameterList& axes) {
        std::vector<ExprHandle> indices(axes.begin(), axes.end());
        std::vector<ExprHandle> inputs = {
            tensorOrConstant(inputValues[0], indices)};
        auto inp = inputs[0];
        auto zero = ExprHandle(immLike(inp, 0.0f));
        auto res = (zero < inp) - (inp < zero);
        return promoteToDtype(res, inp.dtype().scalar_type());
      });
}

Tensor computeOneOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(const ExprHandle&)>& innerExpr,
    const int checkParamTypes) {
  return Compute(
      name,
      outputShape,
      outputStrides,
      [inputValues, outputType, innerExpr, checkParamTypes](
          const std::vector<VarHandle>& axes) {
        std::vector<ExprHandle> indices(axes.begin(), axes.end());
        std::vector<ExprHandle> inputs = {
            tensorOrConstant(inputValues[0], indices)};
        promoteInputs(inputs, checkParamTypes);
        ExprHandle compute = innerExpr(inputs[0]);
        return demoteOutput(compute, outputType);
      });
}

Tensor computeTwoOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
        innerExpr) {
  return Compute(
      name,
      outputShape,
      outputStrides,
      [inputValues, outputType, innerExpr](const std::vector<VarHandle>& axes) {
        std::vector<ExprHandle> indices(axes.begin(), axes.end());
        std::vector<ExprHandle> inputs = {
            tensorOrConstant(inputValues[0], indices),
            tensorOrConstant(inputValues[1], indices),
        };

        promoteInputs(inputs);
        ExprHandle compute = innerExpr(inputs[0], inputs[1]);
        return demoteOutput(compute, outputType);
      });
}

Tensor computeTwoOperandWithAlpha(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
        innerExpr) {
  return Compute(
      name,
      outputShape,
      outputStrides,
      [inputValues, outputType, innerExpr](const std::vector<VarHandle>& axes) {
        std::vector<ExprHandle> indices(axes.begin(), axes.end());
        std::vector<ExprHandle> inputs = {
            tensorOrConstant(inputValues[0], indices),
            tensorOrConstant(inputValues[1], indices),
            tensorOrConstant(inputValues[2], indices),
        };

        promoteInputs(inputs);
        ExprHandle compute = innerExpr(inputs[0], inputs[2] * inputs[1]);
        return demoteOutput(compute, outputType);
      });
}

Tensor computeConditionWithTwoOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<
        ExprHandle(const ExprHandle&, const ExprHandle&, const ExprHandle&)>&
        innerExpr) {
  return Compute(
      name,
      outputShape,
      outputStrides,
      [inputValues, outputType, innerExpr](const std::vector<VarHandle>& axes) {
        std::vector<ExprHandle> indices(axes.begin(), axes.end());
        std::vector<ExprHandle> inputs = {
            tensorOrConstant(inputValues[1], indices),
            tensorOrConstant(inputValues[2], indices),
        };

        promoteInputs(inputs);
        // First expr is the condition, which we don't promote
        inputs.emplace(
            inputs.begin(), tensorOrConstant(inputValues[0], indices));
        ExprHandle compute = innerExpr(inputs[0], inputs[1], inputs[2]);
        return demoteOutput(compute, outputType);
      });
}

Tensor computeThreeOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<
        ExprHandle(const ExprHandle&, const ExprHandle&, const ExprHandle&)>&
        innerExpr,
    bool promote_inputs) {
  return Compute(
      name,
      outputShape,
      outputStrides,
      [inputValues, outputType, innerExpr, promote_inputs](
          const std::vector<VarHandle>& axes) {
        std::vector<ExprHandle> indices(axes.begin(), axes.end());
        std::vector<ExprHandle> inputs = {
            tensorOrConstant(inputValues[0], indices),
            tensorOrConstant(inputValues[1], indices),
            tensorOrConstant(inputValues[2], indices),
        };

        if (promote_inputs) {
          promoteInputs(inputs);
        }
        ExprHandle compute = innerExpr(inputs[0], inputs[1], inputs[2]);
        return demoteOutput(compute, outputType);
      });
}
Tensor computeFourOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(
        const ExprHandle&,
        const ExprHandle&,
        const ExprHandle&,
        const ExprHandle&)>& innerExpr) {
  return Compute(
      name,
      outputShape,
      outputStrides,
      [inputValues, outputType, innerExpr](const std::vector<VarHandle>& axes) {
        std::vector<ExprHandle> indices(axes.begin(), axes.end());
        std::vector<ExprHandle> inputs = {
            tensorOrConstant(inputValues[0], indices),
            tensorOrConstant(inputValues[1], indices),
            tensorOrConstant(inputValues[2], indices),
            tensorOrConstant(inputValues[3], indices),
        };

        promoteInputs(inputs);
        ExprHandle compute =
            innerExpr(inputs[0], inputs[1], inputs[2], inputs[3]);
        return demoteOutput(compute, outputType);
      });
}

Tensor computeNoop(
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device) {
  return computeOneOperand(
      "copy",
      inputValues,
      outputShape,
      outputStrides,
      outputType,
      [](const ExprHandle& a) { return a; });
}

Tensor computeScalar(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
        innerExpr) {
  auto dt = Dtype(*outputType);
  VarPtr let_var = alloc<Var>(name + "_var", dt);
  std::vector<ExprHandle> inputs = {
      scalarOrConstant(inputValues[0]), scalarOrConstant(inputValues[1])};
  promoteInputs(inputs);
  ExprHandle compute = innerExpr(inputs[0], inputs[1]);
  StmtPtr let_stmt =
      Let::make(VarHandle(let_var), demoteOutput(compute, outputType));
  std::vector<ExprPtr> dims;
  BufPtr buf = alloc<Buf>(let_var, dims, dt);
  return Tensor(buf, let_stmt);
}

} // namespace torch::jit::tensorexpr