File: pointwise.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (82 lines) | stat: -rw-r--r-- 3,159 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#pragma once

#include <torch/csrc/jit/tensorexpr/kernel.h>

namespace torch::jit::tensorexpr {

TORCH_API Tensor computeSign(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::optional<std::vector<ExprHandle>>& outputStrides = std::nullopt);

Tensor computeOneOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(const ExprHandle&)>& innerExpr,
    const int checkParamTypes = kAllTypes);
Tensor computeTwoOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
        innerExpr);
Tensor computeTwoOperandWithAlpha(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
        innerExpr);
Tensor computeConditionWithTwoOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<
        ExprHandle(const ExprHandle&, const ExprHandle&, const ExprHandle&)>&
        innerExpr);
Tensor computeThreeOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<
        ExprHandle(const ExprHandle&, const ExprHandle&, const ExprHandle&)>&
        innerExpr,
    bool promote_inputs = true);
Tensor computeFourOperand(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(
        const ExprHandle&,
        const ExprHandle&,
        const ExprHandle&,
        const ExprHandle&)>& innerExpr);
Tensor computeNoop(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);

Tensor computeScalar(
    const std::string& name,
    const std::vector<ArgValue>& inputValues,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    const std::function<ExprHandle(const ExprHandle&, const ExprHandle&)>&
        innerExpr);

} // namespace torch::jit::tensorexpr