File: reduction.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (32 lines) | stat: -rw-r--r-- 1,105 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#pragma once

#include <torch/csrc/jit/tensorexpr/kernel.h>

namespace torch::jit::tensorexpr {

TORCH_API Tensor computeSum(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);
TORCH_API Tensor computeMean(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);
TORCH_API Tensor computeAdaptiveAvgPool2d(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);
Tensor computeMax(
    const std::vector<ArgValue>& inputs,
    const std::vector<ExprHandle>& outputShape,
    const std::vector<ExprHandle>& outputStrides,
    const std::optional<ScalarType>& outputType,
    at::Device device);

} // namespace torch::jit::tensorexpr