File: tensor.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (426 lines) | stat: -rw-r--r-- 13,436 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#include <torch/csrc/lazy/core/config.h>
#include <torch/csrc/lazy/core/tensor.h>

#include <c10/util/irange.h>
#include <torch/csrc/lazy/core/helpers.h>
#include <torch/csrc/lazy/core/ir_builder.h>
#include <torch/csrc/lazy/core/ir_dump_util.h>
#include <torch/csrc/lazy/core/lazy_graph_executor.h>
#include <torch/csrc/lazy/core/metrics.h>
#include <torch/csrc/lazy/core/tensor_impl.h>
#include <torch/csrc/lazy/core/tensor_util.h>

#include <ATen/FunctionalTensorWrapper.h>

#include <utility>

namespace torch::lazy {
namespace {
LazyTensorPtr GetOrCreateLtcTensor(
    const at::Tensor& tensor,
    const BackendDevice& device) {
  if (!tensor.defined()) {
    return torch::lazy::LazyTensorPtr();
  }
  auto lazy_tensor = TryGetLtcTensor(tensor);
  return lazy_tensor ? lazy_tensor : LazyTensor::Create(tensor, device);
}
} // namespace

LazyTensor::Data::~Data() {
  LazyGraphExecutor::Get()->UnregisterTensor(this);
}

LazyTensorPtr LazyTensor::Create(
    const at::Tensor& tensor,
    const BackendDevice& device) {
  TORCH_CHECK(tensor.device().type() != at::kLazy);
  LazyTensorPtr lazy_tensor =
      c10::make_intrusive<LazyTensor>(LazyTensor(tensor, device));
  LazyGraphExecutor::Get()->RegisterTensor(lazy_tensor->data());
  return lazy_tensor;
}

LazyTensorPtr LazyTensor::Create(Value ir_value, const BackendDevice& device) {
  LazyTensorPtr lazy_tensor =
      c10::make_intrusive<LazyTensor>(LazyTensor(std::move(ir_value), device));
  LazyGraphExecutor::Get()->RegisterTensor(lazy_tensor->data());
  return lazy_tensor;
}

LazyTensorPtr LazyTensor::Create(const BackendDataPtr& handle) {
  LazyTensorPtr lazy_tensor =
      c10::make_intrusive<LazyTensor>(LazyTensor(handle));
  LazyGraphExecutor::Get()->RegisterTensor(lazy_tensor->data());
  return lazy_tensor;
}

LazyTensorPtr LazyTensor::Create(std::shared_ptr<Data> data) {
  return c10::make_intrusive<LazyTensor>(LazyTensor(std::move(data)));
}

LazyTensor::LazyTensor(const at::Tensor& tensor, const BackendDevice& device)
    : LazyTensor(std::make_shared<Data>(tensor, device)) {}

LazyTensor::LazyTensor(const BackendDataPtr& handle)
    : LazyTensor(std::make_shared<Data>(handle, handle->device())) {}

LazyTensor::LazyTensor(Value ir_value, const BackendDevice& device)
    : LazyTensor(std::make_shared<Data>(std::move(ir_value), device)) {
  TryLimitGraphSize();
}

LazyTensor::LazyTensor(std::shared_ptr<Data> data) : data_(std::move(data)) {}

auto LazyTensor::data() const -> const std::shared_ptr<Data>& {
  TORCH_CHECK(data_ != nullptr, "Trying to access a null cursor");
  return data_;
}

int64_t LazyTensor::size(int64_t dim) const {
  auto tensor_shape = shape();
  auto rank = tensor_shape.Get().dim();
  auto dim_index = GetCanonicalDimensionIndex(dim, rank);
  return tensor_shape.Get().size(dim_index);
}

at::ScalarType LazyTensor::dtype() const {
  return shape().Get().scalar_type();
}

MaybeRef<Shape> LazyTensor::shape() const {
  if (data()->handle != nullptr) {
    return Shape(data()->handle->shape());
  }
  if (data()->ir_value) {
    // TODO(whc) remove shape from LazyTensor API too!
    return data()->ir_value.shape();
  }
  auto const& tensor_data = data()->tensor_data;
  TORCH_CHECK(tensor_data);
  return Shape(tensor_data->scalar_type(), ToI64Vector(tensor_data->sizes()));
}

const BackendDevice& LazyTensor::GetDevice() const {
  return data()->device;
}

int64_t LazyTensor::GetUniqueId() const {
  return data()->unique_id;
}

BackendDataPtr LazyTensor::GetDataHandle() {
  BackendDataPtr handle = CurrentDataHandle();
  if (handle != nullptr) {
    TORCH_CHECK(
        handle->HasValue(),
        "Trying to access data while an async operation is in flight: ",
        handle->shape().to_string());
    return handle;
  }

  if (data()->ir_value) {
    ApplyPendingGraph();
  } else {
    auto const& tensor_data = data()->tensor_data;
    TORCH_CHECK(tensor_data.has_value());
    data()->handle = TensorToDataHandle(*tensor_data, GetDevice());
  }

  return data()->handle;
}

BackendDataPtr LazyTensor::CurrentDataHandle() const {
  return data()->handle;
}

void LazyTensor::SetDataHandle(BackendDataPtr handle) {
  SetDataHandle(std::move(handle), /*sync=*/true);
}

void LazyTensor::SetDataHandle(BackendDataPtr handle, bool sync) {
  data()->handle = std::move(handle);
  // Assigning a device data should always clear the IR node, to allow graph
  // trimming.
  AssignIrValue(Value());
  if (sync) {
    data()->tensor_data = std::nullopt;
  }
}

void LazyTensor::SetIrValue(Value ir_value) {
  data()->handle = nullptr;
  data()->tensor_data = std::nullopt;
  AssignIrValue(std::move(ir_value));
  TryLimitGraphSize();
}

void LazyTensor::SetInPlaceIrValue(Value ir_value) {
  auto tensor_shape = shape();
  if (tensor_shape.Get().scalar_type() != ir_value.shape().scalar_type()) {
    ir_value =
        MakeCast(ir_value, tensor_shape.Get().scalar_type(), std::nullopt);
  }
  SetIrValue(std::move(ir_value));
}

void LazyTensor::AssignIrValue(Value ir_value) const {
  data()->ir_value = std::move(ir_value);
  data()->generation += 1;
}

void LazyTensor::TryLimitGraphSize() {
  if (data()->ir_value &&
      LazyGraphExecutor::Get()->IncTrimCounter() %
              FLAGS_torch_lazy_trim_graph_check_frequency ==
          0) {
    size_t graph_size = Util::GetGraphSize({data()->ir_value.node.get()});
    if (static_cast<int64_t>(graph_size) > FLAGS_torch_lazy_trim_graph_size) {
      TORCH_LAZY_COUNTER("TrimIrGraph", 1);
      ApplyPendingGraph();
    }
  }
}

Value LazyTensor::GetIrValue() const {
  Value ir_value = CurrentIrValue();
  if (ir_value) {
    return ir_value;
  }
  BackendDataPtr handle = CurrentDataHandle();
  if (handle != nullptr) {
    // In case of tensor node, we do not clear the data when we set the IR
    // node. This because we want further calls to GetIrValue() to fetch the
    // same IR node, and not create new ones (even though the lowering context
    // will still collapse them all into a single parameter op). So the call
    // which wants the data will still find it, w/out having to fetch it via
    // a computation client from-server call.
    AssignIrValue(CreateTensorNode(handle, /*read_only=*/false));
    return data()->ir_value;
  }
  std::optional<at::Tensor> tensor_data = CurrentTensorData();
  TORCH_CHECK(tensor_data);
  AssignIrValue(GetIrValueForTensor(*tensor_data, GetDevice()));
  return data()->ir_value;
}

Value LazyTensor::CurrentIrValue() const {
  return data()->ir_value;
}

void LazyTensor::SetTensorData(at::Tensor tensor_data) {
  data()->tensor_data = std::move(tensor_data);
}

std::optional<at::Tensor> LazyTensor::CurrentTensorData() const {
  return data()->tensor_data;
}

Value LazyTensor::GetIrValueForTensor(
    const at::Tensor& tensor,
    const BackendDevice& device) const {
  BackendDataPtr data;
  bool read_only = false;
  if (tensor.dim() == 0 && tensor.numel() == 1) {
    at::Scalar value = tensor.item();
    if (IsSpecialScalar(value)) {
      return MakeScalar(value, tensor.scalar_type());
    }
    data = LazyGraphExecutor::Get()->GetDeviceData(tensor.cpu(), device);
    read_only = true;
  } else {
    TORCH_LAZY_TIMED("IrValueTensorToDataHandle");
    data = TensorToDataHandle(tensor, device);
  }
  return CreateTensorNode(data, read_only);
}

at::Tensor LazyTensor::ToTensor(bool detached) {
  at::Tensor tensor;
  std::optional<at::Tensor> tensor_data = CurrentTensorData();
  if (!tensor_data) {
    LazyGraphExecutor::Get()->DeviceBarrier(GetDevice());
    // The GetDataHandle() call will trigger an ApplyPendingGraph() if an IR
    // Node is available on the tensor.
    std::vector<at::Tensor> tensors =
        DataHandlesToTensors({GetDataHandle()}, dtype());
    tensor = std::move(tensors.front());
    if (!detached) {
      SetTensorData(tensor);
    }
  } else {
    tensor = *tensor_data;
    if (detached) {
      if (data()->ir_value || data()->handle != nullptr) {
        // If we have other authoritive sources, just drop our reference and
        // transfer it to the caller.
        data()->tensor_data = std::nullopt;
      } else {
        // Otherwise we need to make a copy to prevent the caller changing our
        // version.
        tensor = CopyTensor(tensor);
      }
    }
  }
  return tensor;
}

void LazyTensor::ShallowCopyTo(const LazyTensorPtr& dest) const {
  dest->SetIrValue(GetIrValue());
}

void LazyTensor::SetTensor(at::Tensor tensor) {
  SetTensorData(std::move(tensor));
  data()->handle = nullptr;
  AssignIrValue(Value());
}

void LazyTensor::UpdateFromTensor(const at::Tensor& tensor, bool sync) {
  if (sync) {
    at::Tensor typed_tensor = CopyTensor(tensor, dtype(), /*copy=*/false);
    SetIrValue(GetIrValueForTensor(typed_tensor, GetDevice()));
  } else {
    SetTensorData(tensor);
    data()->handle = nullptr;
    AssignIrValue(Value());
  }
}

void LazyTensor::UpdateFromTensorOut(const at::Tensor& tensor) {
  UpdateFromTensor(tensor, /*sync=*/false);
}

void LazyTensor::UpdateFromTensorOut(const LazyTensorPtr& tensor) {
  SetIrValue(tensor->GetIrValue());
}

Value LazyTensor::CreateTensorNode(const BackendDataPtr& data, bool read_only)
    const {
  data->SetInfo(std::make_shared<LazyGraphExecutor::DeviceDataInfo>(
      GetUniqueId(), read_only));
  return MakeDeviceData(data);
}

std::vector<LazyTensorPtr> LazyTensor::MakeOutputTensors(
    const NodePtr& node) const {
  std::vector<LazyTensorPtr> tensors;
  tensors.reserve(node->num_outputs());
  for (const auto i : c10::irange(node->num_outputs())) {
    tensors.push_back(Create(Value(node, i), GetDevice()));
  }
  return tensors;
}

LazyTensorPtr LazyTensor::CopyTensorToDevice(const BackendDevice& device) {
  // TODO: This can be optimized.
  return Create(ToTensor(/*detached=*/true), device);
}

void LazyTensor::ApplyPendingGraph() {
  LazyGraphExecutor::Get()->DeviceBarrier(GetDevice());
  // This method is called to ensure that the tensor data is available on
  // device, so that a call to CurrentDataHandle() returns a valid pointer.
  if (CurrentDataHandle() == nullptr) {
    std::vector<LazyTensorPtr> tensors(
        {c10::make_intrusive<LazyTensor>(LazyTensor(*this))});
    LazyGraphExecutor::Get()->SyncTensorsGraph(
        &tensors,
        {},
        /*wait=*/true,
        /*sync_ltc_data=*/false);
  }
}

int64_t LazyTensor::GetNextTensorId() {
  static std::atomic<int64_t>* id_generator = new std::atomic<int64_t>(1);
  return id_generator->fetch_add(1);
}

torch::lazy::Value GetTensorList(at::ITensorListRef tensors) {
  std::vector<Value> values;
  for (const auto& t : tensors) {
    auto* impl = dynamic_cast<LTCTensorImpl*>(t.unsafeGetTensorImpl());
    TORCH_INTERNAL_ASSERT(
        impl,
        "GetTensorList only supports lists of valid tensors, but optional support could be added");
    values.push_back(impl->tensor()->GetIrValue());
  }

  return torch::lazy::Value(torch::lazy::MakeTensorList(values));
}

LazyTensorPtr TryGetLtcTensor(const at::Tensor& tensor) {
  auto* impl = dynamic_cast<LTCTensorImpl*>(
      maybe_unwrap_functional(tensor).unsafeGetTensorImpl());
  if (impl == nullptr) {
    // return c10::make_intrusive<LazyTensor>();
    return LazyTensorPtr();
  }
  return impl->tensor();
}

LazyTensorPtr GetLtcTensor(const at::Tensor& tensor) {
  auto lazy_tensor = TryGetLtcTensor(tensor);
  TORCH_CHECK(
      lazy_tensor, "Input tensor is not a lazy tensor: ", tensor.toString());
  return lazy_tensor;
}

std::vector<LazyTensorPtr> GetLtcTensors(c10::ArrayRef<at::Tensor> tensors) {
  std::vector<LazyTensorPtr> ltc_tensors;
  ltc_tensors.reserve(tensors.size());
  for (const auto& tensor : tensors) {
    ltc_tensors.emplace_back(TryGetLtcTensor(tensor));
  }
  return ltc_tensors;
}

LazyTensorPtr GetOrCreateLtcTensor(
    const std::optional<at::Tensor>& tensor,
    const BackendDevice& device) {
  return GetOrCreateLtcTensor(tensor.value_or(at::Tensor()), device);
}

LazyTensorPtr GetLtcTensorOrCreateForWrappedNumber(
    const at::Tensor& tensor,
    const BackendDevice& device) {
  // TODO: There are places in core where a scalar is wrapped but not marked as
  // wrapped.
  return (tensor.unsafeGetTensorImpl()->is_wrapped_number() ||
          (tensor.dim() == 0 && tensor.numel() == 1))
      ? GetOrCreateLtcTensor(tensor, device)
      : GetLtcTensor(tensor);
}

at::Tensor CreateAtenFromLtcTensor(const LazyTensorPtr& ltc_tensor) {
  return ltc_tensor ? at::Tensor(c10::make_intrusive<LTCTensorImpl>(ltc_tensor))
                    : at::Tensor();
}

at::Tensor CreateAtenFromLtcTensor(LazyTensor&& ltc_tensor) {
  return at::Tensor(c10::make_intrusive<LTCTensorImpl>(std::move(ltc_tensor)));
}

at::Tensor to_lazy_tensor(
    const at::Tensor& self,
    const c10::TensorOptions& options,
    at::Device device,
    bool non_blocking,
    bool functionalize_output) {
  TORCH_INTERNAL_ASSERT(self.device().type() != c10::kLazy);
  TORCH_INTERNAL_ASSERT(device.type() == c10::kLazy);

  auto eager_tensor =
      self.to(options, /*non_blocking=*/non_blocking, /*copy=*/true);
  auto lazy_self = torch::lazy::GetOrCreateLtcTensor(
      eager_tensor, torch::lazy::atenDeviceToBackendDevice(device));
  auto out = torch::lazy::CreateAtenFromLtcTensor(lazy_self);
  if (functionalize_output) {
    // See Note [Lazy Tensor Functionalization]
    return at::functionalization::impl::to_functional_tensor(out);
  } else {
    return out;
  }
}

} // namespace torch::lazy