1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
|
#include <torch/csrc/profiler/collection.h>
#include <torch/csrc/profiler/orchestration/vulkan.h>
#include <algorithm>
#include <functional>
#include <limits>
#include <memory>
#include <queue>
#include <type_traits>
#include <utility>
#include <fmt/format.h>
#ifdef USE_KINETO
#include <libkineto.h>
#endif
#include <ATen/Context.h>
#include <ATen/record_function.h>
#include <c10/util/Exception.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/overloaded.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/profiler/data_flow.h>
#include <torch/csrc/profiler/kineto_shim.h>
namespace torch::profiler::impl {
using result_ptr_t = std::shared_ptr<Result>;
using trace_ptr_t =
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>;
RawTensorMetadataBase::RawTensorMetadataBase(const at::Tensor& t)
: data_{t.has_storage() ? t.storage().data() : nullptr},
dtype_{t.scalar_type()},
layout_{t.layout()},
size_dim_{static_cast<uint32_t>(t.sizes().size())} {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
t.sizes().size() <= std::numeric_limits<uint32_t>::max(),
"Cannot profile Tensors of size > uint32 max. Got dim: ",
t.sizes().size());
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
t.sizes().size() == t.strides().size(),
"Tensor has mismatching sizes and strides. Sizes: ",
t.sizes().size(),
" Strides: ",
t.strides().size());
}
RawTensorMetadata::RawTensorMetadata(const at::Tensor& t)
: RawTensorMetadataBase(t),
weak_self_{WeakTensor(t)},
device_type_{t.device().type()},
device_index_{t.device().index()} {}
TensorMetadata::TensorMetadata(
const RawTensorMetadata& r,
std::vector<int64_t> sizes,
std::vector<int64_t> strides)
// NOLINTNEXTLINE(cppcoreguidelines-slicing)
: RawTensorMetadataBase(r),
weak_self_{r.weak_self_.value_or(WeakTensor(at::Tensor()))},
device_{r.device_type_, r.device_index_},
sizes_{std::move(sizes)},
strides_{std::move(strides)} {
SOFT_ASSERT(r.weak_self_.has_value());
}
// ============================================================================
// == PyTorch Ops =============================================================
// ============================================================================
namespace {
struct TagToIOType {
InputOutputEncoder::Tag tag;
InputOutputEncoder::IOType io_type;
};
constexpr int tagCount = ((int)InputOutputEncoder::Tag::TERMINATOR) + 1;
constexpr std::array<TagToIOType, tagCount> tag_map = {{
{InputOutputEncoder::Tag::Tensor, InputOutputEncoder::IOType::Shapes},
{InputOutputEncoder::Tag::UndefinedTensor,
InputOutputEncoder::IOType::Shapes},
{InputOutputEncoder::Tag::TensorListBegin,
InputOutputEncoder::IOType::Shapes},
{InputOutputEncoder::Tag::ScalarList,
InputOutputEncoder::IOType::ConcreteInputs},
{InputOutputEncoder::Tag::Scalar, InputOutputEncoder::IOType::Shapes},
{InputOutputEncoder::Tag::Other, InputOutputEncoder::IOType::Shapes},
{InputOutputEncoder::Tag::TERMINATOR, InputOutputEncoder::IOType::None},
}};
constexpr bool allTagsMapped(int idx = 0) {
return tag_map[idx].tag == InputOutputEncoder::Tag::TERMINATOR ||
((idx == (int)tag_map[idx].tag) && allTagsMapped(idx + 1));
}
static_assert(allTagsMapped(), "tag_map is out of order");
constexpr InputOutputEncoder::IOType tagToIOType(InputOutputEncoder::Tag tag) {
return tag_map[(int)tag].io_type;
}
} // namespace
// ----------------------------
// | Input / Output encoder |
// ----------------------------
void InputOutputEncoder::push(c10::ArrayRef<const c10::IValue> values) {
for (const auto& value : values) {
if (value.isTensor()) {
push(value.toTensor());
} else if (value.isScalar()) {
tags_.emplace_back(Tag::Scalar);
// Scalars are small enough that they are stored in ivalues without an
// extra memory alloc
// TODO: further optimize this by maybe giving Profiler access to the
// guts of IValue.
ivalues_.emplace_back(value);
} else if (value.isTensorList()) {
tags_.emplace_back(Tag::TensorListBegin);
for (const auto& t : value.toTensorList()) {
push(t);
}
tags_.emplace_back(Tag::TERMINATOR);
} else if (isSupportedScalarList(value)) {
tags_.emplace_back(Tag::ScalarList);
ivalues_.emplace_back(value);
} else {
tags_.emplace_back(Tag::Other);
}
}
tags_.emplace_back(Tag::TERMINATOR);
}
void InputOutputEncoder::push(const at::Tensor& t) {
// TODO fix nested and symbolic sizes
if (t.defined() && !t.is_nested() &&
!t.unsafeGetTensorImpl()->has_symbolic_sizes_strides()) {
tags_.emplace_back(Tag::Tensor);
tensor_metadata_.emplace_back(t);
tensor_sizes_strides_.copy(t.sizes());
if (t.layout() == at::kStrided) {
// Only Strided layout tensors have strides
tensor_sizes_strides_.copy(t.strides());
}
} else {
tags_.emplace_back(Tag::UndefinedTensor);
}
}
bool InputOutputEncoder::isSupportedScalarList(
const c10::IValue& list_candidate) {
// Scalar list can be very long. If a list is too long, we shouldn't
// collect it. This function checks whether the list is a scalar list
// and whether its length is sufficiently short.
if (!get_record_concrete_inputs_enabled()) {
return false;
}
if (!list_candidate.isList()) {
return false;
}
auto list_ref = list_candidate.toListRef();
if (C10_UNLIKELY(list_ref.empty())) {
return true;
}
if (C10_UNLIKELY(!list_ref[0].isScalar())) {
return false;
}
if (C10_UNLIKELY(list_ref.size() > SCALAR_LIST_LENGTH_LIMIT)) {
return false;
}
return true;
}
// This function returns a lambda which is is a custom-iterator-like getter.
// Each invocation of the lambda returns input values for one op.
//
// io_type is used to filter the ivalues between 'Shapes' and 'Concrete Args'.
// Shapes are used to represent the shapes of tensors. We save only the shapes
// of the tensors because tensors can be large.
// Concrete args are separated to clarify that they are the actual values.
auto InputOutputEncoder::getIValueGenerator(const IOType& io_type) {
return [this,
tag_it = tags_.begin(),
tensor_metadata_it = tensor_metadata_.begin(),
tensor_size_strides_it = tensor_sizes_strides_.begin(),
ivals_it = ivalues_.begin(),
io_type]() mutable {
auto decode_tensor = [&]() -> TensorMetadata {
std::vector<int64_t> sizes;
std::vector<int64_t> strides;
if (tensor_metadata_it.exhausted()) {
LOG(WARNING)
<< "Tensor metadata exhausted prematurely. Reported shapes may be inaccurate!";
return {RawTensorMetadata(), sizes, strides};
}
const auto& raw_metadata = *tensor_metadata_it++;
for ([[maybe_unused]] const auto _ :
c10::irange(raw_metadata.size_dim_)) {
if (tensor_size_strides_it.exhausted()) {
LOG(WARNING)
<< "Expected Tensor Size mismatch with raw Tensor metadata. Reported shapes may be inaccurate!";
return {raw_metadata, sizes, strides};
}
sizes.push_back(*tensor_size_strides_it++);
}
if (raw_metadata.layout_ == at::kStrided) {
for ([[maybe_unused]] const auto _ :
c10::irange(raw_metadata.size_dim_)) {
if (tensor_size_strides_it.exhausted()) {
LOG(WARNING)
<< "Expected Tensor Strides mismatch with raw Tensor metadata. Reported shapes may be inaccurate!";
return {raw_metadata, sizes, strides};
}
strides.push_back(*tensor_size_strides_it++);
}
}
return {raw_metadata, sizes, strides};
};
std::vector<op_input_t> out;
auto push_value = [&out, io_type](const Tag& tag, op_input_t input) {
if (io_type == tagToIOType(tag)) {
out.emplace_back(std::move(input));
} else {
out.emplace_back(std::nullopt);
}
};
bool terminate = false;
while (!terminate && tag_it != tags_.end()) {
switch (*tag_it) {
case Tag::Tensor:
push_value(*tag_it, decode_tensor());
break;
case Tag::TensorListBegin: {
std::vector<TensorMetadata> arg;
bool found_undefined = false;
while (*(++tag_it) != Tag::TERMINATOR) {
if (*tag_it == Tag::UndefinedTensor) {
found_undefined = true;
continue;
}
TORCH_INTERNAL_ASSERT(*tag_it == Tag::Tensor, (int)(*tag_it));
arg.emplace_back(decode_tensor());
}
if (found_undefined) {
push_value(*tag_it, std::nullopt);
} else {
push_value(Tag::TensorListBegin, std::move(arg));
}
} break;
case Tag::ScalarList:
case Tag::Scalar:
push_value(*tag_it, *ivals_it++);
break;
case Tag::UndefinedTensor:
case Tag::Other:
push_value(*tag_it, std::nullopt);
break;
case Tag::TERMINATOR:
// This marks the end of this op.
terminate = true;
break;
default:
break;
}
++tag_it;
}
return out;
};
}
auto InputOutputEncoder::getInputShapeGenerator() {
return getIValueGenerator(IOType::Shapes);
}
auto InputOutputEncoder::getConcreteInputGenerator() {
return getIValueGenerator(IOType::ConcreteInputs);
}
void InputOutputEncoder::clear() {
tags_.clear();
tensor_metadata_.clear();
tensor_sizes_strides_.clear();
ivalues_.clear();
}
// ---------------------------------------------------
// | Correlation ID tracking (OpList & EventBlock) |
// ---------------------------------------------------
template <typename T, size_t ChunkSize>
ThreadLocalSubqueue::TorchOpStorage::EventBlock<T, ChunkSize>::EventBlock() {
static std::atomic<uint64_t> counter_{0};
id_start_ = 1 + ChunkSize * counter_++;
}
template <class... Args>
std::pair<KinetoObserverContext::Event*, uint64_t> ThreadLocalSubqueue::
TorchOpStorage::OpList::emplace_back(Args&&... args) {
auto event_ptr = AppendOnlyList::emplace_back(std::forward<Args>(args)...);
auto corr_id = buffer_last_->correlation_id(event_ptr);
return {event_ptr, corr_id};
}
uint64_t ThreadLocalSubqueue::TorchOpStorage::OpList::correlationID(
const OpList::Iterator& e) {
return e.address().first->correlation_id(&*e);
}
template <typename T, size_t ChunkSize>
uint64_t ThreadLocalSubqueue::TorchOpStorage::EventBlock<T, ChunkSize>::
correlation_id(const T* ptr) const {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
ptr >= this->data() && ptr < this->data() + ChunkSize);
return id_start_ + (ptr - this->data());
}
// ---------------------------------
// | Collection (Observer logic) |
// ---------------------------------
std::unique_ptr<KinetoObserverContext> ThreadLocalSubqueue::begin_op(
const at::RecordFunction& fn) {
auto [event, corr_id] = torch_ops_.op_events_.emplace_back(
torch::profiler::impl::TorchOpBasicFields{
fn.seqNr(),
fn.forwardThreadId(),
fn.scope(),
fn.isAsync(),
fn.handle(),
fn.debugHandle(),
fn.name()});
if (config_.report_input_shapes) {
torch_ops_.inputs_outputs_.push(fn.inputs());
torch_ops_.kwinputs_.emplace_back(fn.kwinputs());
}
if (fn.scope() == at::RecordScope::USER_SCOPE) {
torch::profiler::impl::kineto::pushUserCorrelationId(corr_id);
} else {
torch::profiler::impl::kineto::pushCorrelationId(corr_id);
}
#if !defined BUILD_LITE_INTERPRETER && !defined C10_MOBILE
// backward nodes source range corresponds to the forward node
// TODO: consider using C++ stack trace
if (config_.with_stack && fn.scope() != at::RecordScope::BACKWARD_FUNCTION) {
auto cs = torch::profiler::impl::prepareCallstack(jit::currentCallstack());
torch_ops_.jit_stack_.emplace_back(callstackStr(cs));
}
if (config_.with_modules &&
fn.scope() != at::RecordScope::BACKWARD_FUNCTION) {
torch_ops_.jit_modules_.emplace_back(jit::currentModuleHierarchy());
}
#endif
if (config_.with_flops) {
torch_ops_.extra_args_.emplace_back(
torch::profiler::impl::saveExtraArgs(fn));
}
auto out = std::make_unique<KinetoObserverContext>(event);
if (fn.isNcclMeta()) {
// Record NCCL metadata for specific CPU ops, switch off output
// introspection in this begin_op callback, we will do that in exit callback
// if needed.
torch::profiler::impl::SaveNcclMetaConfig ncclMetaConfig{
true, true, true, false};
out->event_->extra_nccl_meta_ = torch_ops_.extra_meta_.emplace_back(
torch::profiler::impl::saveNcclMeta(fn, ncclMetaConfig));
} else {
out->event_->extra_nccl_meta_ = torch_ops_.extra_meta_.emplace_back();
}
if (config_.state == ProfilerState::KINETO_GPU_FALLBACK) {
try {
out->fallback_ = torch_ops_.device_fallback_.emplace_back();
torch::profiler::impl::cudaStubs()->record(
nullptr, &out->fallback_->device_event_start_, nullptr);
} catch (const std::exception& e) {
LOG(WARNING) << "Failed to record CUDA event. " << e.what();
}
} else if (config_.state == ProfilerState::KINETO_PRIVATEUSE1_FALLBACK) {
out->fallback_ = torch_ops_.device_fallback_.emplace_back();
torch::profiler::impl::privateuse1Stubs()->record(
nullptr, &out->fallback_->device_event_start_, nullptr);
}
event->start_time_ = c10::getApproximateTime();
event->allow_tf32_cublas_ = at::globalContext().allowTF32CuBLAS();
if (!config_.experimental_config.performance_events.empty()) {
const size_t n = config_.experimental_config.performance_events.size();
event->counters_ = std::make_unique<perf_counters_t>(n, 0);
perf_profiler_->Enable();
}
return out;
}
// ---------------
// | Collation |
// ---------------
namespace {
template <typename T>
struct StealOrDefault {
explicit StealOrDefault(T& container)
: container_{container}, it_{container.begin()} {}
StealOrDefault(const StealOrDefault&) = delete;
StealOrDefault(StealOrDefault&&) = delete;
StealOrDefault& operator=(const StealOrDefault&) = delete;
StealOrDefault& operator=(StealOrDefault&&) = delete;
~StealOrDefault() {
container_.get().clear();
}
typename T::Iterator::value_type operator()() {
if (it_.exhausted()) {
return typename T::Iterator::value_type();
} else {
auto result = std::move(*it_);
++it_;
return result;
}
}
std::reference_wrapper<T> container_;
typename T::Iterator it_;
};
} // namespace
static constexpr std::string_view profilerStepString = "ProfilerStep#";
void ThreadLocalSubqueue::TorchOpStorage::materialize(
std::vector<std::shared_ptr<Result>>& out,
std::vector<ProfilerStepInfo>& step_info,
const std::function<c10::time_t(c10::approx_time_t)>& time_converter,
const uint64_t tid,
const kineto::DeviceAndResource& kineto_info) {
// Plumb Autograd info to the top level annotation.
auto it = op_events_.begin();
for ([[maybe_unused]] const auto _ :
c10::irange(static_cast<int64_t>(op_events_.size()) - 1)) {
auto& first = it->basic_fields_;
auto& second = (++it)->basic_fields_;
if (first.scope_ == at::RecordScope::FUNCTION &&
second.scope_ == at::RecordScope::BACKWARD_FUNCTION &&
first.name_.rfind("autograd::engine::evaluate_function: ", 0) == 0) {
first.sequence_number_ = second.sequence_number_;
first.forward_tid_ = second.forward_tid_;
}
}
// `AccumulateGrad` is an important marker for profile analysis; however the
// annotation relies on `c10::demangle` which is platform dependent. In
// particular, Windows will add a "struct " prefix.
const std::string accumulate_grad = "torch::autograd::AccumulateGrad";
const std::string windows_pattern = std::string("struct ") + accumulate_grad;
for (auto& event : op_events_) {
auto& name = event.basic_fields_.name_;
auto position = name.find(windows_pattern);
if (position != std::string::npos) {
name.replace(position, windows_pattern.size(), accumulate_grad);
}
}
auto input_shape_getter = inputs_outputs_.getInputShapeGenerator();
auto concrete_input_getter = inputs_outputs_.getConcreteInputGenerator();
// TODO: CTAD will take care of template args when we move to C++17
auto jit_stack = StealOrDefault<decltype(jit_stack_)>(jit_stack_);
auto jit_module = StealOrDefault<decltype(jit_modules_)>(jit_modules_);
auto extra_args = StealOrDefault<decltype(extra_args_)>(extra_args_);
auto extra_meta = StealOrDefault<decltype(extra_meta_)>(extra_meta_);
auto kwinputs = StealOrDefault<decltype(kwinputs_)>(kwinputs_);
auto gpu_fallback =
StealOrDefault<decltype(device_fallback_)>(device_fallback_);
for (auto event = op_events_.begin(); event != op_events_.end(); ++event) {
ExtraFields<EventType::TorchOp> e{
std::move(event->basic_fields_),
ThreadLocalSubqueue::TorchOpStorage::OpList::correlationID(event),
time_converter(event->end_time_),
input_shape_getter(),
concrete_input_getter(),
jit_stack(),
jit_module(),
extra_args(),
extra_meta(),
kwinputs(),
gpu_fallback(),
event->allow_tf32_cublas_,
std::move(event->counters_)};
if (e.name_.find(profilerStepString) != std::string::npos) {
step_info.emplace_back(
time_converter(event->start_time_),
time_converter(event->end_time_),
out.size());
}
out.emplace_back(Result::create(
time_converter(event->start_time_), tid, kineto_info, std::move(e)));
}
op_events_.clear();
inputs_outputs_.clear();
}
template <size_t BlockSize>
static void materialize_vulkan(
std::vector<std::shared_ptr<Result>>& out,
AppendOnlyList<ExtraFields<EventType::Vulkan>::raw_event_t, BlockSize>&
raw_events,
const std::function<c10::time_t(c10::approx_time_t)>& time_converter,
const uint64_t tid,
const kineto::DeviceAndResource& kineto_info) {
for (const auto& i : raw_events) {
const auto name_and_duration_ns =
torch::profiler::impl::vulkan::getShaderNameAndDurationNs(i.second);
out.emplace_back(Result::create(
/*start_time_ns_=*/time_converter(i.first),
/*start_tid_=*/tid,
/*kineto_info_=*/kineto_info,
/*extra_fields_=*/
ExtraFields<EventType::Vulkan>{
/*name_=*/std::get<0>(name_and_duration_ns),
/*duration_ns_=*/
static_cast<int64_t>(std::get<1>(name_and_duration_ns)),
/*in_tree_building_=*/false}));
}
raw_events.clear();
}
namespace {
// See `RecordQueue::getSubqueue()` for an overview of this cache.
struct SubQueueThreadCache {
uint32_t key_;
ThreadLocalSubqueue* ref_;
};
// The astute observer will note that this leaves a dangling reference; nothing
// in the teardown of `RecordQueue` or `ThreadLocalSubqueue` clears this value.
// (And the raw pointer in `SubQueueThreadCache` will not extend the lifetime
// of `*ref_`.) This is safe, however, because `getSubqueue` will check
// `sub_queue_cache_.key_` before attempting to access `ref_`, and if `key_`
// does not match the RecordQueue's *unique* `id_` it will evict
// `sub_queue_cache_` and fall back to a different mechanism.
std::atomic<uint32_t> queue_id_{0};
thread_local SubQueueThreadCache sub_queue_cache_{0, nullptr};
std::string toString(const ExtraFields<EventType::PyCall>& e) {
if (e.module_.has_value()) {
return fmt::format(
"nn.Module: {}_{}", e.module_->cls_name_.str(), e.module_->id_);
}
return fmt::format(
"{}({}): {}",
e.callsite_.filename_.str(),
e.callsite_.line_no_,
e.callsite_.funcname_.str());
}
auto scopeToType(at::RecordScope scope) {
return scope == at::RecordScope::USER_SCOPE
? libkineto::ActivityType::USER_ANNOTATION
: libkineto::ActivityType::CPU_OP;
}
int64_t torchOpEndNS(
const ExtraFields<EventType::TorchOp>& e,
const bool finished,
const std::weak_ptr<Result>& parent) {
if (finished && e.end_time_ns_ == std::numeric_limits<c10::time_t>::min()) {
auto p = parent.lock();
if (p) {
return p->endTimeNS();
}
}
return e.end_time_ns_;
}
auto kinetoEventCorrelationID(
const ExtraFields<EventType::Kineto>& e,
const std::weak_ptr<Result>& parent) {
if (e.correlation_id_) {
return e.correlation_id_;
}
auto p = parent.lock();
return p ? p->correlationID() : 0;
}
} // namespace
#define ATTRIBUTE(event_type, expr) \
[&](const ExtraFields<EventType::event_type>& e) { \
(void)e; \
return expr; \
}
std::string Result::name() const {
return visit(c10::overloaded(
ATTRIBUTE(Vulkan, std::string(e.name_)),
ATTRIBUTE(Allocation, std::string("[memory]")),
ATTRIBUTE(OutOfMemory, std::string("[OutOfMemory]")),
ATTRIBUTE(PyCall, toString(e)),
ATTRIBUTE(PyCCall, std::string(e.function_name_.str())),
[](const auto& e) -> std::string { return e.name_; }));
}
libkineto::ActivityType Result::kinetoType() const {
return visit(c10::overloaded(
ATTRIBUTE(TorchOp, scopeToType(e.scope_)),
ATTRIBUTE(Backend, scopeToType(e.scope_)),
ATTRIBUTE(Vulkan, libkineto::ActivityType::CPU_OP),
ATTRIBUTE(Allocation, libkineto::ActivityType::CPU_INSTANT_EVENT),
ATTRIBUTE(OutOfMemory, libkineto::ActivityType::CPU_INSTANT_EVENT),
ATTRIBUTE(PyCall, libkineto::ActivityType::PYTHON_FUNCTION),
ATTRIBUTE(PyCCall, libkineto::ActivityType::PYTHON_FUNCTION),
ATTRIBUTE(Kineto, e.activity_type_)));
}
uint64_t Result::correlationID() const {
return visit(c10::overloaded(
ATTRIBUTE(TorchOp, e.correlation_id_),
ATTRIBUTE(Kineto, kinetoEventCorrelationID(e, parent_)),
[&](const auto&) -> uint64_t { return 0; }));
}
int64_t Result::endTimeNS() const {
auto end_time_ns = visit(c10::overloaded(
ATTRIBUTE(TorchOp, torchOpEndNS(e, finished_, parent_)),
ATTRIBUTE(Backend, e.end_time_us_ * 1000),
ATTRIBUTE(
Vulkan, start_time_ns_ + (e.in_tree_building_ ? 0 : e.duration_ns_)),
ATTRIBUTE(Allocation, start_time_ns_),
ATTRIBUTE(OutOfMemory, start_time_ns_),
ATTRIBUTE(Kineto, start_time_ns_ + e.duration_ns_),
[&](const auto& e) -> int64_t { return e.end_time_ns_; }));
// In rare cases we're willing to tolerate ops which are missing an end time
// so long as they can borrow their parent's end time. A consequence of this,
// however, is that `endTimeNS` may not make sense until tree construction is
// complete.
auto end_time_is_valid =
!finished_ || SOFT_ASSERT(end_time_ns >= start_time_ns_, name());
return end_time_is_valid ? end_time_ns : start_time_ns_;
}
uint64_t Result::endTID() const {
return visit(c10::overloaded(
ATTRIBUTE(TorchOp, e.end_tid_),
[&](const auto&) -> uint64_t { return start_tid_; }));
}
c10::DeviceType Result::deviceType() const {
using torch::autograd::profiler::deviceTypeFromActivity;
return visit(c10::overloaded(
ATTRIBUTE(Vulkan, c10::DeviceType::Vulkan),
ATTRIBUTE(Allocation, e.device_type_),
ATTRIBUTE(OutOfMemory, e.device_type_),
ATTRIBUTE(Kineto, deviceTypeFromActivity(e.activity_type_)),
[&](const auto&) { return c10::DeviceType::CPU; }));
}
#undef ATTRIBUTE
ThreadLocalSubqueue::ThreadLocalSubqueue(
const uint64_t tid,
ProfilerConfig config)
: tid_{tid},
config_{std::move(config)},
kineto_info_{kineto::kineto_ids()} {
torch::profiler::impl::kineto::recordThreadInfo();
if (!config_.experimental_config.performance_events.empty()) {
perf_profiler_ =
std::make_unique<torch::profiler::impl::linux_perf::PerfProfiler>();
perf_profiler_->Configure(config_.experimental_config.performance_events);
}
}
RecordQueue::RecordQueue(
ProfilerConfig config,
std::set<ActivityType> activities)
: id_(++queue_id_),
config_{std::move(config)},
activities_{std::move(activities)} {
if (tracePython()) {
python_tracer_ = python_tracer::PythonTracerBase::make(this);
}
}
bool RecordQueue::tracePython() const {
return config_.with_stack && activities_.count(ActivityType::CPU);
}
ThreadLocalSubqueue* RecordQueue::getSubqueue() {
// In the most common case, a thread will want to write to the same sub-queue
// that it wrote to last call. The only time that isn't true is if:
// A) The profiler context has ended and we are in a new one.
// B) Two profilers are active in different TLS contexts, and this thread
// is a worker helping with intra-op parallelism.
// Since we expect this to be the OVERWHELMINGLY common case (>99%), we add a
// special thread_local cache so that we can skip the overall `flat_hash_map`
// (and corresponding lock).
if (id_ == sub_queue_cache_.key_) {
return sub_queue_cache_.ref_;
}
const auto tid = at::RecordFunction::currentThreadId();
std::lock_guard<std::mutex> guard(sub_queue_mutex_);
auto it = sub_queues_.find(tid);
if (it == sub_queues_.end()) {
it = sub_queues_
.emplace(tid, std::make_unique<ThreadLocalSubqueue>(tid, config_))
.first;
}
sub_queue_cache_ = SubQueueThreadCache{id_, it->second.get()};
return it->second.get();
}
void RecordQueue::stop() {
if (python_tracer_) {
python_tracer_->stop();
}
}
void RecordQueue::restart() {
if (python_tracer_) {
python_tracer_->restart();
}
}
namespace {
void mark_finished(std::shared_ptr<Result>& r) {
TORCH_INTERNAL_ASSERT(!r->finished_, r->name());
r->finished_ = true;
TORCH_INTERNAL_ASSERT(r->endTimeNS() >= r->start_time_ns_, r->name());
}
#ifdef USE_KINETO
// Assumption: Total threads number will not exceed 2^16-1, and total ops will
// not exceed 2^48 -1.
static uint64_t getForwardThreadKey(uint64_t tid, uint64_t seqNr) {
return (((tid) << 48) | ((seqNr) & (((uint64_t)1 << 48) - 1)));
}
void generateForwardBackwardLink(
const Result& profiler_result,
uint64_t& fwd_bwd_link_id,
libkineto::GenericTraceActivity& activity,
std::unordered_map<uint64_t, libkineto::GenericTraceActivity*>&
tidSeq2activity) {
const ExtraFields<EventType::TorchOp>& extra_fields =
std::get<ExtraFields<EventType::TorchOp>>(profiler_result.extra_fields_);
if (extra_fields.forward_tid_ > 0) {
// act is backward op.
uint64_t key = getForwardThreadKey(
extra_fields.forward_tid_, extra_fields.sequence_number_);
auto iter = tidSeq2activity.find(key);
if (iter != tidSeq2activity.end()) {
libkineto::GenericTraceActivity* fwd = iter->second;
fwd->flow.start = true;
activity.flow.id = fwd->flow.id = fwd_bwd_link_id;
activity.flow.type = fwd->flow.type = libkineto::kLinkFwdBwd;
++fwd_bwd_link_id;
// If there are multiple events that match this sequence/tid pair, we
// should delete this entry in the map to avoid inserting multiple "end"
// flow events.
tidSeq2activity.erase(iter);
}
} else if (profiler_result.start_tid_ != 0) {
// act is forward op.
uint64_t key = getForwardThreadKey(
profiler_result.start_tid_, extra_fields.sequence_number_);
// Assumption: Among all ops with same sequence number,
// the one with biggest start time is most likely launching backward op.
auto iter = tidSeq2activity.find(key);
if (iter == tidSeq2activity.end()) {
tidSeq2activity[key] = &activity;
} else {
// Now the sequence number is only incremented on creating a "Node"
// object for backward pass, by calling
// "at::sequence_number::get_and_increment()". Among all ops with same
// sequence number, the one with biggest startTime is the one launching
// backward op.
if (activity.startTime >= iter->second->startTime) {
tidSeq2activity[key] = &activity;
}
}
}
}
#endif // USE_KINETO
void generateForwardBackwardLinks(
std::unique_ptr<torch::profiler::impl::kineto::trace_t>& cpu_trace,
const std::vector<std::shared_ptr<Result>>& results){
#ifndef USE_KINETO
}
#else // USE_KINETO
TORCH_INTERNAL_ASSERT(cpu_trace->activities.size() == results.size());
// startThreadId_seqNum to pointer of activity.
// Low-16bits of startThreadId and low-48bits seqNum are concatenated into
// one uint64_t variable as key.
std::unordered_map<uint64_t, libkineto::GenericTraceActivity*> tidSeq2activity;
uint64_t fwd_bwd_link_id = 1;
using result_activity_t = std::pair<Result*, libkineto::GenericTraceActivity*>;
std::vector<result_activity_t> torch_events;
for (const auto idx : c10::irange(cpu_trace->activities.size())) {
auto& profiler_result = results[idx];
auto& activity = cpu_trace->activities[idx];
// add information about an associated forward op, if a sequence number
// is available (e.g. during training)
profiler_result->visit_if_base<ExtraFields<EventType::TorchOp>>(
[&](const auto& e) {
if (e.sequence_number_ >= 0) {
torch_events.emplace_back(profiler_result.get(), activity.get());
}
});
}
// We need to visit the events in chronological order.
// So we sort them by end_time_ns_ before processing.
std::sort(
torch_events.begin(),
torch_events.end(),
[](const result_activity_t& left, const result_activity_t& right) {
auto left_end_time =
std::get<ExtraFields<EventType::TorchOp>>(left.first->extra_fields_)
.end_time_ns_;
auto right_end_time =
std::get<ExtraFields<EventType::TorchOp>>(right.first->extra_fields_)
.end_time_ns_;
return left_end_time < right_end_time;
});
for (auto& [profiler_result, activity] : torch_events) {
generateForwardBackwardLink(
*profiler_result, fwd_bwd_link_id, *activity, tidSeq2activity);
}
}
#endif // USE_KINETO
static constexpr const char* indexKey = "Ev Idx";
void passEventsToKineto(
const std::vector<std::shared_ptr<Result>>& results,
uint64_t start_time_ns,
uint64_t end_time_ns,
const ProfilerConfig& config) {
using namespace torch::profiler::impl::kineto;
TraceWrapper cpu_trace(
static_cast<int64_t>(start_time_ns), "PyTorch Profiler");
// Generate Kineto events for each event recorded by the PyTorch profiler.
for (const auto i : c10::irange(results.size())) {
const auto& e = results[i];
// (TODO): This is a temporary fix for async traces to make sure that we do
// not use int64 MIN as end time in Kineto. If we use that value, the
// duration will overflow and become a very large positive number. For a
// long term solution, add guards in kineto for each activity type
int64_t act_end_time = std::max(e->endTimeNS(), e->start_time_ns_);
auto* activity = cpu_trace.addCPUActivity(
e->name(),
e->kinetoType(),
e->kineto_info_,
e->correlationID(),
e->start_time_ns_,
act_end_time);
TORCH_INTERNAL_ASSERT(activity || !kKinetoAvailable);
if (activity) {
addMetadata(activity, indexKey, std::to_string(i));
// There is a longstanding regression for initializing
// on-demand Kineto activity handling. Enabling this path
// for Profiler API could cause side effects as much has changed since.
// Make a surgical fix here until we holistically assess the on-demand
// vs API path framentation, which has been snowballing in complexity
// and thus flakiness.
if (config.global()) {
e->kineto_activity_ = activity;
}
}
}
if (get_fwd_bwd_enabled()) {
generateForwardBackwardLinks(cpu_trace.get(), results);
}
// Kineto adds the events that it collected.
cpu_trace.transferCpuTrace(static_cast<int64_t>(end_time_ns));
}
#ifdef USE_KINETO
// There are two mechanisms that we use to connect Profiler and Kineto events.
// The first is the correlation ID. The profiler pushes a unique integer at the
// start of an op and pops it at the end. Kineto then associates the events
// that it collects with that correlation ID and sets the linked activity of
// the events that it collected to point to the profiler op.
//
// However, this is not a sufficient description because it does not retain
// dependency information between kineto ops. Consider a call to `torch.add`.
// Three events will be collected:
// `aten::add` (TorchOp, collected by profiler)
// `cudaLaunchKernel` (CUDA runtime event, collected by Kineto)
// `at::vectorized_...` (GPU kernel, collected by Kineto)
// If we only relied on correlation IDs we would set both Kineto events as
// children of the `at::add`, rather than the correct
// `at::add -> cudaLaunchKernel -> at::vectorized_...`
//
// Kineto surfaces this information through a second concept called a "flow".
// In this example, the `cudaLaunchKernel` event is the start of a flow and the
// GPU kernel has the same flow id but is not a start event. Thus, when merging
// the Kineto events into the call tree we first add all events which are flow
// start nodes. We then merge the rest, trying to pair them with flow starts
// and falling back to correlation ID if necessary. For any nodes without
// linked events the caller is determined using the normal tree construction
// algorithm.
class TransferEvents {
using itrace_t = libkineto::ITraceActivity;
using activity_t = torch::profiler::impl::kineto::activity_t;
public:
TransferEvents(
std::vector<std::shared_ptr<Result>>& results,
trace_ptr_t& trace)
: results_{results} {
auto* trace_activities_ptr = trace->get()->activities();
TORCH_INTERNAL_ASSERT(trace_activities_ptr != nullptr);
trace_activities_ = *trace_activities_ptr;
reassociate();
extractEventsFromTrace();
setParents();
}
private:
static long long extractIndex(const std::string& metadata_json) {
static const auto prefix = fmt::format("\"{}\": ", indexKey);
auto pos = metadata_json.find(prefix);
return (pos == std::string::npos) ? unmatchedIndex : [&]() {
auto end = metadata_json.find(',', pos);
end = (end == std::string::npos) ? metadata_json.size() : end;
return std::stoll(metadata_json.substr(pos + prefix.size(), end));
}();
}
std::shared_ptr<Result> lookup(const itrace_t* key) {
if (key == nullptr) {
return nullptr;
}
// First check the map.
auto it = kineto_events_.find(key);
if (it != kineto_events_.end()) {
return it->second;
}
// Then fallback to the encoded metadata.
const auto index = extractIndex(key ? key->metadataJson() : "");
if (index != unmatchedIndex) {
auto out = results_.get().at(index);
kineto_events_[key] = out;
return out;
}
// And finally give up.
return nullptr;
}
void reassociate() {
// Match profiler events with the corresponding kineto events. Kineto may
// have moved or copied the activities, so we have to recover the
// relationship between `libkineto::ITraceActivity` and `Result`.
for (const auto* activity : trace_activities_) {
TORCH_INTERNAL_ASSERT(activity != nullptr);
auto e = lookup(activity);
if (e != nullptr) {
TORCH_INTERNAL_ASSERT(e->kineto_activity_ == nullptr);
e->kineto_activity_ = static_cast<const activity_t*>(activity);
}
}
if (results_.get().size() != kineto_events_.size()) {
TORCH_WARN(fmt::format(
"Failed to recover relationship between all profiler and kineto events: "
"{} vs. {} reassociated.",
results_.get().size(),
kineto_events_.size()));
}
}
std::shared_ptr<Result> resultFromActivity(const itrace_t* activity) {
TORCH_INTERNAL_ASSERT(activity != nullptr);
// Kineto is inconsistent with types, so we have to cast to int32.
torch::profiler::impl::kineto::DeviceAndResource device_and_resource{
static_cast<int32_t>(activity->deviceId()),
static_cast<int32_t>(activity->resourceId())};
auto event = Result::create(
activity->timestamp(),
noTID, // Placeholder
device_and_resource,
ExtraFields<EventType::Kineto>{
activity->name(),
activity->duration(),
static_cast<uint64_t>(activity->correlationId()),
activity->type(),
{/*id=*/static_cast<uint32_t>(activity->flowId()),
/*type=*/static_cast<uint32_t>(activity->flowType()),
/*start=*/activity->flowStart()}});
// NB: It's tempting to set `event->kineto_activity_`; however we can only
// guarantee that the events we passed to Kineto are of type
// `GenericTraceActivity`. Others may derive from ITraceActivity and thus
// are not safe to cast.
return event;
}
std::shared_ptr<Result> toResult(const itrace_t* activity) {
auto e = lookup(activity);
// Until we are very sure that we can reassociate kineto and profiler
// events we need to be very defensive.
const auto type = activity->type();
if (e == nullptr &&
(type == libkineto::ActivityType::CPU_OP ||
type == libkineto::ActivityType::CPU_INSTANT_EVENT ||
type == libkineto::ActivityType::USER_ANNOTATION ||
type == libkineto::ActivityType::PYTHON_FUNCTION)) {
TORCH_WARN_ONCE(
"Detected an event which was likely passed to kineto by the PyTorch "
"profiler, but is not present in the set of known events: ",
activity->name(),
" This most likely means that Kineto has not "
"maintained address stability for this event. Please report this to "
"the PyTorch team.");
return nullptr;
}
if (e == nullptr) {
e = resultFromActivity(activity);
results_.get().push_back(e);
kineto_events_[activity] = e;
}
return e;
}
void extractEventsFromTrace() {
for (const auto* activity : trace_activities_) {
auto e = toResult(activity);
const auto* linked_activity = activity->linkedActivity();
if (e && linked_activity) {
e->visit(c10::overloaded(
[&](ExtraFields<EventType::Kineto>& i) {
i.linked_activity_ = toResult(linked_activity);
},
[](auto&) { TORCH_INTERNAL_ASSERT(false); }));
}
}
}
void setKinetoTID(
std::shared_ptr<Result>& r,
std::shared_ptr<Result> parent) {
r->visit(c10::overloaded(
[&]([[maybe_unused]] ExtraFields<EventType::Kineto>& i) {
TORCH_INTERNAL_ASSERT(r->start_tid_ == noTID);
r->start_tid_ = parent ? parent->start_tid_
: at::RecordFunction::currentThreadId();
},
[](auto&) {}));
for (auto& child : r->children_) {
setKinetoTID(child, r);
}
}
void setParents() {
// First pass: Collect start events and set parent to linked event.
ska::flat_hash_map<uint32_t, std::shared_ptr<Result>> flow_map;
for (auto& e : results_.get()) {
TORCH_INTERNAL_ASSERT(e != nullptr);
e->visit(c10::overloaded(
[&](const ExtraFields<EventType::Kineto>& i) {
if (i.flow.type == libkineto::kLinkAsyncCpuGpu && i.flow.start) {
auto inserted = flow_map.insert({i.flow.id, e});
#ifdef USE_ROCM
if (inserted.second) {
TORCH_WARN_ONCE(
"ROCTracer produced duplicate flow start: ", i.flow.id);
}
#else // USE_ROCM
TORCH_INTERNAL_ASSERT(inserted.second);
#endif // USE_ROCM
}
TORCH_INTERNAL_ASSERT(e->parent_.expired());
e->parent_ = i.linked_activity_;
},
[](const auto&) {}));
}
// Second pass
for (auto& e : results_.get()) {
e->visit(c10::overloaded(
[&](const ExtraFields<EventType::Kineto>& i) {
// Flow takes priority over linked event.
const auto it = flow_map.find(i.flow.id);
if (it != flow_map.end() &&
i.flow.type == libkineto::kLinkAsyncCpuGpu && !i.flow.start) {
e->parent_ = it->second;
}
// If a parent was set we have to do some bookkeeping.
auto parent = e->parent_.lock();
if (parent) {
parent->children_.push_back(e);
mark_finished(e);
}
},
[](const auto&) {}));
}
// Set TIDs now that we have established lineage.
for (auto& e : results_.get()) {
if (e->parent_.expired()) {
setKinetoTID(e, nullptr);
}
}
}
static constexpr long long unmatchedIndex = -1;
static constexpr auto noTID = std::numeric_limits<uint64_t>::max();
std::reference_wrapper<std::vector<std::shared_ptr<Result>>> results_;
std::vector<const itrace_t*> trace_activities_;
ska::flat_hash_map<const itrace_t*, std::shared_ptr<Result>> kineto_events_;
};
#else
class TransferEvents {
public:
template <class... Args>
TransferEvents(Args&&...) {}
};
#endif
trace_ptr_t addKinetoEvents(
std::vector<std::shared_ptr<Result>>& results,
uint64_t start_time_ns,
uint64_t end_time_ns,
const ProfilerConfig& config) {
using namespace torch::profiler::impl::kineto;
passEventsToKineto(results, start_time_ns, end_time_ns, config);
// In on demand mode kineto is directly controlled by other machinery.
if (config.global()) {
return nullptr;
}
auto trace = std::make_unique<ActivityTraceWrapper>(stopTrace());
TORCH_INTERNAL_ASSERT(trace || !kKinetoAvailable);
TransferEvents transfer{results, trace};
return trace;
}
struct ResultGreater {
bool operator()(const result_ptr_t& a, const result_ptr_t& b) const {
return a->endTimeNS() > b->endTimeNS();
}
};
void set_in_tree_building(
std::vector<result_ptr_t>& results,
const bool value) {
for (result_ptr_t& r : results) {
r->visit(c10::overloaded(
[value](ExtraFields<EventType::Vulkan>& i) {
i.in_tree_building_ = value;
},
[&](auto&) {
// pass
}));
}
}
void build_tree(std::vector<std::shared_ptr<Result>>& sorted_events) {
set_in_tree_building(sorted_events, true);
using op_fields = ExtraFields<EventType::TorchOp>;
ska::flat_hash_map<uint64_t, std::shared_ptr<Result>> stacks;
std::priority_queue<result_ptr_t, std::vector<result_ptr_t>, ResultGreater>
end_events_;
auto push_event = [&stacks, &end_events_](std::shared_ptr<Result>& event) {
// Kineto builds subtrees using correlation ids and flows, so some Kineto
// events are already marked finished before the main tree building
// algorithm. It's fine to ignore them; the root event of these subtrees
// not a Kineto op and will be handled normally.
if (std::holds_alternative<ExtraFields<EventType::Kineto>>(
event->extra_fields_) &&
event->finished_) {
return;
}
TORCH_INTERNAL_ASSERT(event->parent_.expired());
for (const auto& child : event->children_) {
TORCH_INTERNAL_ASSERT(child->finished_);
}
TORCH_INTERNAL_ASSERT(!event->finished_);
auto parent_it = stacks.find(event->start_tid_);
if (parent_it == stacks.end()) {
auto fwd_tid = event->visit(c10::overloaded(
[](const op_fields& i) { return i.forward_tid_; },
[](const auto&) -> uint64_t { return 0; }));
if (fwd_tid) {
parent_it = stacks.find(fwd_tid);
}
}
if (parent_it != stacks.end()) {
event->parent_ = parent_it->second;
parent_it->second->children_.push_back(event);
}
if (event->endTimeNS() > event->start_time_ns_) {
stacks[event->start_tid_] = event;
end_events_.push(event);
} else if (event->endTimeNS() == std::numeric_limits<c10::time_t>::min()) {
// We use min time to indicate the lack of a termination event, so if we
// encounter such a case we don't push to `end_events_`.
stacks[event->start_tid_] = event;
} else {
mark_finished(event);
}
};
auto pop_event = [&stacks](std::shared_ptr<Result> event) {
if (event->finished_) {
// This event was marked finished by a previous `pop_event` call.
return;
}
auto start_tid = event->start_tid_;
auto frame = stacks.at(start_tid);
while (frame.get() != event.get()) {
TORCH_INTERNAL_ASSERT(frame != nullptr);
mark_finished(frame);
TORCH_INTERNAL_ASSERT(!frame->parent_.expired());
frame = frame->parent_.lock();
}
mark_finished(event);
stacks.erase(start_tid);
auto new_frame = event->parent_.lock();
if (new_frame != nullptr) {
stacks[start_tid] = new_frame;
}
};
// Stack replay loop.
for (auto& event : sorted_events) {
while (!end_events_.empty() &&
end_events_.top()->endTimeNS() < event->start_time_ns_) {
pop_event(end_events_.top());
end_events_.pop();
}
push_event(event);
}
// Cleanup remaining exit events.
while (!end_events_.empty()) {
pop_event(end_events_.top());
end_events_.pop();
}
set_in_tree_building(sorted_events, false);
}
/**
* Adjust r's duration to be the max of its current duration and the sum of all
* of its children's adjusted durations (keeping its start time the same)
* (adjust all child durations recursively)
*/
int64_t adjust_durations_dfs(std::shared_ptr<Result>& r) {
if (SOFT_ASSERT(r != nullptr)) {
int64_t original_duration = r->endTimeNS() - r->start_time_ns_;
int64_t children_total_duration = std::accumulate(
r->children_.begin(),
r->children_.end(),
0,
[](int64_t acc, std::shared_ptr<Result>& child) {
return acc + adjust_durations_dfs(child);
});
if (children_total_duration > original_duration) {
r->visit(c10::overloaded(
[&r, &children_total_duration](ExtraFields<EventType::TorchOp>& i) {
i.end_time_ns_ = r->start_time_ns_ + children_total_duration;
},
[&children_total_duration](ExtraFields<EventType::Vulkan>& i) {
i.duration_ns_ = children_total_duration;
},
[]([[maybe_unused]] ExtraFields<EventType::Allocation>& _) {
// Pass- Allocation events can't have children
},
[&](auto&) {
SOFT_ASSERT(
false,
"unexpected event type in mobile profiler adjust_durations_dfs: ",
r->name());
}));
return children_total_duration;
} else {
return original_duration;
}
} else {
return 0;
}
}
/**
* 1) Adjust r's start time to be [new_start_time] (also adjusting end time and
keeping duration the same)
* 2) Recursively adjust r's children's start times, making them line up such
that the last one ends at the same time as r
* 3) Return r's final end time
*/
int64_t adjust_timestamps_dfs(
std::shared_ptr<Result>& r,
int64_t new_start_time) {
if (SOFT_ASSERT(r != nullptr)) {
if (r->start_time_ns_ != new_start_time) {
// Adjust start time (keeping duration constant)
r->visit(c10::overloaded(
[&r, &new_start_time](ExtraFields<EventType::TorchOp>& i) {
i.end_time_ns_ =
new_start_time + (i.end_time_ns_ - r->start_time_ns_);
},
[]([[maybe_unused]] ExtraFields<EventType::Vulkan>& i) {
// Pass- We don't need to manually adjust end time for Vulkan events
},
[]([[maybe_unused]] ExtraFields<EventType::Allocation>& _) {
// Pass- No duration or end time to adjust
},
[&](auto&) {
SOFT_ASSERT(
false,
"unexpected event type in mobile profiler adjust_timestamps_dfs: ",
r->name());
}));
r->start_time_ns_ = new_start_time;
}
int64_t children_total_duration = std::accumulate(
r->children_.begin(),
r->children_.end(),
0,
[](int64_t acc, std::shared_ptr<Result>& child) {
return acc + (child->endTimeNS() - child->start_time_ns_);
});
int64_t child_start_time = r->endTimeNS() - children_total_duration;
for (std::shared_ptr<Result>& child : r->children_) {
child_start_time = adjust_timestamps_dfs(child, child_start_time);
}
}
return r->endTimeNS();
}
/**
* Adjust timestamps and durations of nodes in [out] such that
* - Vulkan event timelines are synchronized with CPU event times
* - Parent event timelines fully contain their child timelines
* - No overlaps in timelines for nodes at the same depth
*/
void adjust_timestamps(std::vector<std::shared_ptr<Result>>& out) {
if (out.empty()) {
return;
}
int64_t min_start_time = out[0]->start_time_ns_;
for (std::shared_ptr<Result>& r : out) {
// Only begin traversal for root nodes.
if (r->parent_.expired()) {
adjust_durations_dfs(r);
min_start_time = adjust_timestamps_dfs(
r,
std::max(
r->tag() != EventType::Vulkan
? r->start_time_ns_
: std::numeric_limits<int64_t>::min(),
min_start_time));
}
}
}
} // namespace
std::pair<
std::vector<std::shared_ptr<Result>>,
std::unique_ptr<torch::profiler::impl::kineto::ActivityTraceWrapper>>
RecordQueue::getRecords(
std::function<c10::time_t(c10::approx_time_t)> time_converter,
uint64_t start_time_ns,
uint64_t end_time_ns) {
auto converter = [&](c10::approx_time_t t) {
return t == std::numeric_limits<c10::approx_time_t>::min()
? std::numeric_limits<c10::time_t>::min()
: time_converter(t);
};
// Lambda that checks that only the right side of the base intersects with
// ev_start and ev_end
auto right_intersection_only =
[&](ProfilerStepInfo base, int64_t ev_start, int64_t ev_end) {
return (base.start_time_ns < ev_start) &&
(base.end_time_ns <= ev_end && base.end_time_ns > ev_start);
};
std::vector<std::shared_ptr<Result>> out;
std::vector<python_tracer::CompressedEvent> python_enters;
std::vector<ProfilerStepInfo> step_info;
long unsigned int step_idx = 0;
for (auto& subqueue_it : sub_queues_) {
auto& queue = *subqueue_it.second;
auto materialize = [&](auto& events) {
for (auto& i : events) {
c10::time_t start_time_ns = 0;
if constexpr (std::is_same_v<
std::remove_reference_t<decltype(i)>,
ExtraFields<EventType::Backend>>) {
start_time_ns = i.start_time_us_ * 1000;
} else {
start_time_ns = converter(i.start_time_);
}
out.emplace_back(Result::create(
/*start_time_ns_=*/start_time_ns,
/*start_tid_=*/queue.tid(),
/*kineto_info_=*/queue.kineto_info(),
/*extra_fields_=*/std::move(i)));
}
events.clear();
};
queue.torch_ops_.materialize(
out, step_info, converter, queue.tid(), queue.kineto_info());
materialize(queue.backend_events_);
materialize_vulkan(
out, queue.vulkan_events_, converter, queue.tid(), queue.kineto_info());
for (auto& i : queue.allocations_) {
out.emplace_back(Result::create(
/*start_time_ns_=*/converter(i.start_time_),
/*start_tid_=*/queue.tid(),
/*kineto_info_=*/queue.kineto_info(),
/*extra_fields_=*/ExtraFields<EventType::Allocation>(i)));
}
queue.allocations_.clear();
materialize(queue.ooms_);
for (auto& i : queue.py_calls_) {
python_enters.push_back(
{i.first, queue.tid(), queue.kineto_info(), converter(i.second)});
}
}
if (python_tracer_) {
std::vector<std::shared_ptr<torch::profiler::impl::Result>> ev;
try {
ev = python_tracer_->getEvents(
converter, python_enters, static_cast<c10::time_t>(end_time_ns));
} catch (std::exception&) {
// Normally addKinetoEvents() below will stop the trace - but if an
// exception happens here then the events will never be stopped and future
// runs will be broken - so make sure to stopTrace() if we see an
// exception.
torch::profiler::impl::kineto::stopTrace();
throw;
}
// Placeholder for if we run out of ProfilerStep annotations
ProfilerStepInfo defaultStep = {LLONG_MAX, LLONG_MAX, 0};
ProfilerStepInfo step =
step_idx < step_info.size() ? step_info[step_idx] : defaultStep;
for (const auto& i : ev) {
// Only adjust timestamps if experimental config is enabled
if (config_.experimental_config.adjust_profiler_step) {
// If event has start time after step end time we can continue to the
// next step
while (i->start_time_ns_ > step.end_time_ns) {
step_idx++;
step =
step_idx < step_info.size() ? step_info[step_idx] : defaultStep;
}
// If Step annotation starts before event and ends before event ends
// with intersection then we move the lefthand side of the step
// annotation to the event start time
if (right_intersection_only(step, i->start_time_ns_, i->endTimeNS())) {
// NOLINTNEXTLINE(facebook-hte-LocalUncheckedArrayBounds)
auto const& currStepRes = out[step.out_idx];
currStepRes->start_time_ns_ = i->start_time_ns_ + 1;
step_idx++;
step =
step_idx < step_info.size() ? step_info[step_idx] : defaultStep;
}
}
out.push_back(i);
}
python_tracer_.reset();
}
if (config_.experimental_config.adjust_timestamps) {
std::stable_sort(out.begin(), out.end(), [](const auto& a, const auto& b) {
return a->start_time_ns_ < b->start_time_ns_;
});
build_tree(out);
adjust_timestamps(out);
for (auto& r : out) {
r->parent_.reset();
// Reset these so that second build_tree can happen
r->finished_ = false;
r->children_.clear();
}
}
auto trace = addKinetoEvents(out, start_time_ns, end_time_ns, config_);
std::stable_sort(out.begin(), out.end(), [](const auto& a, const auto& b) {
return a->start_time_ns_ < b->start_time_ns_;
});
if (config_.report_input_shapes && config_.profile_memory) {
calculateUniqueTensorIDs(out);
}
build_tree(out);
return {out, std::move(trace)};
}
namespace {
std::function<bool()>& record_concrete_inputs_enabled_fn() {
static std::function<bool()> fn = []() { return true; };
return fn;
}
} // namespace
bool get_record_concrete_inputs_enabled() {
return record_concrete_inputs_enabled_fn()();
}
void set_record_concrete_inputs_enabled_fn(std::function<bool()> fn) {
record_concrete_inputs_enabled_fn() = std::move(fn);
}
void set_record_concrete_inputs_enabled_val(bool val) {
record_concrete_inputs_enabled_fn() = [val]() { return val; };
}
namespace {
std::function<bool()>& fwd_bwd_enabled_fn() {
static std::function<bool()> fn = []() { return true; };
return fn;
}
} // namespace
bool get_fwd_bwd_enabled() {
return fwd_bwd_enabled_fn()();
}
void set_fwd_bwd_enabled_fn(std::function<bool()> fn) {
fwd_bwd_enabled_fn() = std::move(fn);
}
void set_fwd_bwd_enabled_val(bool val) {
fwd_bwd_enabled_fn() = [val]() { return val; };
}
namespace {
std::function<bool()>& cuda_sync_enabled_fn() {
static std::function<bool()> fn = []() { return false; };
return fn;
}
} // namespace
bool get_cuda_sync_enabled() {
return cuda_sync_enabled_fn()();
}
void set_cuda_sync_enabled_fn(std::function<bool()> fn) {
cuda_sync_enabled_fn() = std::move(fn);
}
void set_cuda_sync_enabled_val(bool val) {
cuda_sync_enabled_fn() = [val]() { return val; };
}
namespace {
std::function<bool()>& record_tensor_addrs_enabled() {
static std::function<bool()> fn = []() { return false; };
return fn;
}
} // namespace
bool get_record_tensor_addrs_enabled() {
static std::optional<bool> cached_record_tensor_addrs_enabled;
if (!cached_record_tensor_addrs_enabled.has_value()) {
cached_record_tensor_addrs_enabled = record_tensor_addrs_enabled()();
}
return cached_record_tensor_addrs_enabled.value();
}
void set_record_tensor_addrs_enabled_fn(std::function<bool()> fn) {
record_tensor_addrs_enabled() = std::move(fn);
}
void set_record_tensor_addrs_enabled_val(bool val) {
record_tensor_addrs_enabled() = [val]() { return val; };
}
} // namespace torch::profiler::impl
|