1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
#include <torch/csrc/profiler/data_flow.h>
#include <c10/util/overloaded.h>
#include <torch/csrc/profiler/collection.h>
namespace torch::profiler::impl {
namespace {
static constexpr TensorImplAddress NoTensorImpl{nullptr};
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
struct RawTensorInfo {
TensorImplAddress impl_;
StorageImplData storage_;
c10::Device device_;
bool is_free_;
// Used to assign back to the original structs.
std::reference_wrapper<std::optional<AllocationID>> allocation_id_ref_;
std::reference_wrapper<std::optional<TensorID>> id_ref_;
};
struct RawTensors {
std::vector<RawTensorInfo>& get() {
return tensors_;
}
void operator()(TensorMetadata& t) {
tensors_.emplace_back(RawTensorInfo{
t.impl(), t.data_, t.device_, false, t.allocation_id_, t.id_});
}
void operator()(std::optional<TensorMetadata>& t) {
if (t.has_value()) {
(*this)(*t);
}
}
void operator()(ExtraFields<EventType::Allocation>& a) {
const StorageImplData ptr{a.ptr_};
const auto is_free = a.alloc_size_ < 0;
tensors_.emplace_back(RawTensorInfo{
NoTensorImpl, ptr, a.device(), is_free, a.allocation_id_, a.id_});
}
void operator()(std::vector<TensorMetadata>& t) {
for (auto& ti : t) {
(*this)(ti);
}
}
template <typename T>
void operator()(T&) {}
std::vector<RawTensorInfo> tensors_;
};
} // namespace
void calculateUniqueTensorIDs(
std::vector<std::shared_ptr<Result>>& sorted_results) {
// This task is equivilent to https://leetcode.com/problems/number-of-islands/
// We first cluster events with a greedy index assignment, and then merge
// groups that overlap.
std::vector<RawTensorInfo> tensors;
// Flatten results to a uniform representation.
// --------------------------------------------------------------------------
{
RawTensors raw_tensors;
// The python tracer caches values, so it's only safe to use the first case.
ska::flat_hash_set<PyModuleSelf> seen_modules;
ska::flat_hash_set<PyOptimizerSelf> seen_optimizers;
for (auto& result : sorted_results) {
result->visit(c10::overloaded(
[&](ExtraFields<EventType::TorchOp>& torch_op) {
for (auto& i : torch_op.inputs_) {
std::visit(raw_tensors, i);
}
},
[&](ExtraFields<EventType::PyCall>& py_call) {
// torch.nn.Module
if (py_call.module_.has_value() &&
seen_modules.insert(py_call.module_->self_).second) {
for (auto& p : py_call.module_->parameters_) {
raw_tensors(p.metadata_);
raw_tensors(p.grad_metadata_);
}
}
// torch.optim.Optimizer
if (py_call.optimizer_.has_value() &&
seen_optimizers.insert(py_call.optimizer_->self_).second) {
for (auto& p : py_call.optimizer_->parameters_) {
raw_tensors(p.metadata_);
raw_tensors(p.grad_metadata_);
for (auto& state_i : p.state_) {
raw_tensors(state_i.second);
}
}
}
},
[&](auto& i) { raw_tensors(i); }));
}
tensors = std::move(raw_tensors.tensors_);
}
// Assign IDs to solve ABA for Storage.
// --------------------------------------------------------------------------
{
size_t counter{1};
using key_t = std::pair<StorageImplData, c10::Device>;
ska::flat_hash_map<key_t, size_t, HashCombine> versions;
for (auto& t : tensors) {
auto inserted = versions.insert({{t.storage_, t.device_}, counter});
counter += inserted.second;
t.allocation_id_ref_.get().emplace(AllocationID(inserted.first->second));
if (t.is_free_) {
versions.erase(inserted.first);
}
}
}
// Handle any allocation events which we cannot prove are for Tensor storage.
// --------------------------------------------------------------------------
{
ska::flat_hash_set<AllocationID> tensor_set;
for (const auto& t : tensors) {
if (t.impl_ != NoTensorImpl) {
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
tensor_set.insert(t.allocation_id_ref_.get().value());
}
}
tensors.erase(
std::remove_if(
tensors.begin(),
tensors.end(),
[&tensor_set](const auto& i) {
auto it = tensor_set.find(i.allocation_id_ref_.get().value());
return it == tensor_set.end();
}),
tensors.end());
}
// Handle the case that the storage of a TensorImpl changed.
// --------------------------------------------------------------------------
using storage_id_pair_t = std::pair<AllocationID, AllocationID>;
ska::flat_hash_set<storage_id_pair_t, HashCombine> same_group_set;
{
ska::flat_hash_map<TensorImplAddress, AllocationID> impl_map;
for (const auto& t : tensors) {
// Storage allocations / frees don't have an associated TensorImpl, so
// we don't want all storages to merge through nullptr.
if (!t.impl_) {
continue;
}
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
const auto allocation_id = *t.allocation_id_ref_.get();
const auto it = impl_map.insert({t.impl_, allocation_id}).first;
// The pair needs to be sorted for the coalesce step to work properly.
it->second < allocation_id
? same_group_set.insert({it->second, allocation_id})
: same_group_set.insert({allocation_id, it->second});
}
}
// Coalesce groups and assign final IDs.
// --------------------------------------------------------------------------
ska::flat_hash_map<AllocationID, size_t> id_map;
{
std::vector<storage_id_pair_t> unique_pairs;
for (const auto& i : same_group_set) {
unique_pairs.push_back(i);
}
std::sort(unique_pairs.begin(), unique_pairs.end());
size_t current_id{0};
for (const auto& i : unique_pairs) {
auto inserted = id_map.insert({i.first, current_id});
current_id += inserted.second;
id_map.insert({i.second, inserted.first->second});
}
}
// Write back to Tensor IDs.
// --------------------------------------------------------------------------
for (const auto& t : tensors) {
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
const auto id = id_map.at(t.allocation_id_ref_.get().value());
t.id_ref_.get().emplace(TensorID(id));
}
}
} // namespace torch::profiler::impl
|