1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
#pragma once
#include <c10/core/TensorOptions.h>
// device_lazy_init() is always compiled, even for CPU-only builds.
namespace torch::utils {
/**
* This mechanism of lazy initialization is designed for each device backend.
* Currently, CUDA and XPU follow this design. This function `device_lazy_init`
* MUST be called before you attempt to access any Type(CUDA or XPU) object
* from ATen, in any way. It guarantees that the device runtime status is lazily
* initialized when the first runtime API is requested.
*
* Here are some common ways that a device object may be retrieved:
* - You call getNonVariableType or getNonVariableTypeOpt
* - You call toBackend() on a Type
*
* It's important to do this correctly, because if you forget to add it you'll
* get an oblique error message seems like "Cannot initialize CUDA without
* ATen_cuda library" or "Cannot initialize XPU without ATen_xpu library" if you
* try to use CUDA or XPU functionality from a CPU-only build, which is not good
* UX.
*/
void device_lazy_init(at::DeviceType device_type);
void set_requires_device_init(at::DeviceType device_type, bool value);
inline void maybe_initialize_device(at::Device& device) {
// Add more devices here to enable lazy initialization.
if (device.is_cuda() || device.is_xpu() || device.is_privateuseone() ||
device.is_hpu() || device.is_mtia()) {
device_lazy_init(device.type());
}
}
inline void maybe_initialize_device(std::optional<at::Device>& device) {
if (!device.has_value()) {
return;
}
maybe_initialize_device(device.value());
}
inline void maybe_initialize_device(const at::TensorOptions& options) {
auto device = options.device();
maybe_initialize_device(device);
}
bool is_device_initialized(at::DeviceType device_type);
} // namespace torch::utils
|