1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
#include <ATen/ATen.h>
#include <ATen/NestedTensorImpl.h>
#include <c10/core/ScalarType.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/nested.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/tensor_new.h>
#include <torch/torch.h>
#include <stdexcept>
#include <vector>
namespace torch::utils {
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
static c10::TensorOptions typeIdWithDefault(
PythonArgs& r,
int device_idx,
c10::DispatchKey dispatch_key) {
auto options = dispatchKeyToTensorOptions(dispatch_key);
if (!r.isNone(device_idx)) {
options = options.device(r.device(device_idx));
}
return options;
}
at::Tensor nested_tensor_ctor(
c10::DispatchKey dispatch_key,
at::ScalarType scalar_type,
torch::PythonArgs& r) {
TORCH_CHECK(r.idx == 0, "nested_tensor(): invalid arguments");
PyObject* data = r.pyobject(0);
// Check if data is a list: Only List[Tensor] and List[List...[Scalar]] are
// accepted for now
TORCH_CHECK_TYPE(
PyList_Check(data),
"Only lists (List[Tensor] and List[List...[Scalar]]) are accepted in nested_tensor");
auto dtype_val = r.scalartypeWithDefault(1, scalar_type);
auto tensor_options = typeIdWithDefault(r, 2, dispatch_key);
bool pin_memory = r.toBool(3);
bool args_requires_grad = r.toBool(4);
TORCH_CHECK(
PyList_Size(data) >= 0,
"Something went really wrong and your list has negative size");
// Check whether we are dealing with lists of tensors or not
std::vector<at::Tensor> new_list(PyList_Size(data));
for (const auto i : c10::irange(PyList_Size(data))) {
THPObjectPtr elem = THPObjectPtr(PyList_GetItemRef(data, i));
if (THPVariable_Check(elem.get())) {
new_list[i] = THPVariable_Unpack(elem.get()).detach();
TORCH_CHECK(
!new_list[i].is_nested(),
"We do not accept nested tensors as input to nested tensors");
TORCH_CHECK(
new_list[i].layout() == kStrided,
"We do not accept non-strided layouts as input to nested tensors");
} else {
PythonArgs elem_r(r);
std::array<PyObject*, 6> elem_args = {
elem.get(), // data
r.args[1], // dtpye
nullptr, // device (cpu)
nullptr, // no pinned memory
r.args[4], // requires grad
nullptr // names
};
elem_r.args = elem_args.data();
new_list[i] = tensor_ctor(dispatch_key, scalar_type, elem_r);
}
}
at::ScalarType final_dtype = dtype_val;
if (r.isNone(1) && !new_list.empty()) {
final_dtype = c10::typeMetaToScalarType(new_list[0].dtype());
}
at::Device final_device = tensor_options.device();
if (r.isNone(2) && !new_list.empty()) {
final_device = new_list[0].device();
}
auto out = at::_nested_tensor_from_tensor_list(
new_list, final_dtype, std::nullopt, final_device, pin_memory);
out.requires_grad_(args_requires_grad);
return out;
}
} // namespace torch::utils
|