File: pybind.h

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (420 lines) | stat: -rw-r--r-- 13,009 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#pragma once

#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/pythoncapi_compat.h>

#include <ATen/core/Tensor.h>
#include <ATen/core/jit_type_base.h>
#include <c10/util/irange.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>

#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/utils/tensor_memoryformats.h>

namespace py = pybind11;

#define IS_PYBIND_2_13_PLUS PYBIND11_VERSION_HEX >= 0x020D0000

// This makes intrusive_ptr to be available as a custom pybind11 holder type,
// see
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::intrusive_ptr<T>, true)

PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonOrSharedTypePtr<T>)
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonTypePtr<T>, true)

namespace pybind11::detail {

// torch.Tensor <-> at::Tensor conversions (without unwrapping)
template <>
struct TORCH_PYTHON_API type_caster<at::Tensor> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::Tensor, _("torch.Tensor"));

  bool load(handle src, bool);

  static handle cast(
      const at::Tensor& src,
      return_value_policy /* policy */,
      handle /* parent */);
};

// torch._StorageBase <-> at::Storage
template <>
struct type_caster<at::Storage> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::Storage, _("torch.StorageBase"));

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (torch::isStorage(obj)) {
      value = torch::createStorage(obj);
      return true;
    }
    return false;
  }

  static handle cast(
      const at::Storage& src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return handle(torch::createPyObject(src));
  }
};

template <>
struct type_caster<at::Generator> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::Generator, _("torch.Generator"));

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (THPGenerator_Check(obj)) {
      value = reinterpret_cast<THPGenerator*>(obj)->cdata;
      return true;
    }
    return false;
  }

  static handle cast(
      const at::Generator& src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return handle(THPGenerator_Wrap(src));
  }
};

template <>
struct TORCH_PYTHON_API type_caster<at::IntArrayRef> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::IntArrayRef, _("Tuple[int, ...]"));

  bool load(handle src, bool);
  static handle cast(
      at::IntArrayRef src,
      return_value_policy /* policy */,
      handle /* parent */);

 private:
  std::vector<int64_t> v_value;
};

template <>
struct TORCH_PYTHON_API type_caster<at::SymIntArrayRef> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::SymIntArrayRef, _("List[int]"));

  bool load(handle src, bool);
  static handle cast(
      at::SymIntArrayRef src,
      return_value_policy /* policy */,
      handle /* parent */);

 private:
  std::vector<c10::SymInt> v_value;
};

template <>
struct TORCH_PYTHON_API type_caster<at::ArrayRef<c10::SymNode>> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::ArrayRef<c10::SymNode>, _("List[SymNode]"));

  bool load(handle src, bool);
  static handle cast(
      at::ArrayRef<c10::SymNode> src,
      return_value_policy /* policy */,
      handle /* parent */);

 private:
  std::vector<c10::SymNode> v_value;
};

template <>
struct type_caster<at::MemoryFormat> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::MemoryFormat, _("torch.memory_format"));

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (THPMemoryFormat_Check(obj)) {
      value = reinterpret_cast<THPMemoryFormat*>(obj)->memory_format;
      return true;
    }
    return false;
  }
  static handle cast(
      at::MemoryFormat src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return handle(Py_NewRef(torch::utils::getTHPMemoryFormat(src)));
  }
};

template <>
struct type_caster<at::Device> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::Device, _("torch.device"));

  // PYBIND11_TYPE_CASTER defines a member field called value. Since at::Device
  // cannot be default-initialized, we provide this constructor to explicitly
  // initialize that field. The value doesn't matter as it will be overwritten
  // after a successful call to load.
  type_caster() : value(c10::kCPU) {}

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (THPDevice_Check(obj)) {
      value = reinterpret_cast<THPDevice*>(obj)->device;
      return true;
    }
    return false;
  }

  static handle cast(
      const at::Device& src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return handle(THPDevice_New(src));
  }
};

template <>
struct type_caster<at::ScalarType> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(at::ScalarType, _("torch.dtype"));

  // PYBIND11_TYPE_CASTER defines a member field called value. at::ScalarType
  // cannot be default-initialized, we provide this constructor to explicitly
  // initialize that field. The value doesn't matter as it will be overwritten
  // after a successful call to load.
  type_caster() : value(at::kFloat) {}

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (THPDtype_Check(obj)) {
      value = reinterpret_cast<THPDtype*>(obj)->scalar_type;
      return true;
    }
    return false;
  }

  static handle cast(
      const at::ScalarType& src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return Py_NewRef(torch::getTHPDtype(src));
  }
};

template <>
struct type_caster<c10::Stream> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(c10::Stream, _("torch.Stream"));

  // PYBIND11_TYPE_CASTER defines a member field called value. Since c10::Stream
  // cannot be default-initialized, we provide this constructor to explicitly
  // initialize that field. The value doesn't matter as it will be overwritten
  // after a successful call to load.
  type_caster() : value(c10::Stream::DEFAULT, c10::Device(c10::kCPU, 0)) {}

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();
    if (THPStream_Check(obj)) {
      value = c10::Stream::unpack3(
          ((THPStream*)obj)->stream_id,
          static_cast<c10::DeviceIndex>(((THPStream*)obj)->device_index),
          static_cast<c10::DeviceType>(((THPStream*)obj)->device_type));
      return true;
    }
    return false;
  }

  static handle cast(
      const c10::Stream& src,
      return_value_policy /* policy */,
      handle /* parent */) {
    return handle(THPStream_Wrap(src));
  }
};

template <>
struct type_caster<c10::DispatchKey>
    : public type_caster_base<c10::DispatchKey> {
  using base = type_caster_base<c10::DispatchKey>;
  c10::DispatchKey tmp{};

 public:
  bool load(handle src, bool convert) {
    if (base::load(src, convert)) {
      return true;
    } else if (py::isinstance(
                   src, py::module_::import("builtins").attr("str"))) {
      tmp = c10::parseDispatchKey(py::cast<std::string>(src));
      value = &tmp;
      return true;
    }
    return false;
  }

  static handle cast(
      c10::DispatchKey src,
      return_value_policy policy,
      handle parent) {
    return base::cast(src, policy, parent);
  }
};

template <>
struct TORCH_PYTHON_API type_caster<c10::Scalar> {
 public:
  PYBIND11_TYPE_CASTER(
      c10::Scalar,
      _("Union[Number, torch.SymInt, torch.SymFloat, torch.SymBool]"));
  bool load(py::handle src, bool);

  static py::handle cast(
      const c10::Scalar& si,
      return_value_policy /* policy */,
      handle /* parent */);
};

template <>
struct TORCH_PYTHON_API type_caster<c10::SymInt> {
 public:
  PYBIND11_TYPE_CASTER(c10::SymInt, _("Union[int, torch.SymInt]"));
  bool load(py::handle src, bool);

  static py::handle cast(
      const c10::SymInt& si,
      return_value_policy /* policy */,
      handle /* parent */);
};

template <>
struct TORCH_PYTHON_API type_caster<c10::SymFloat> {
 public:
  PYBIND11_TYPE_CASTER(c10::SymFloat, _("float"));
  bool load(py::handle src, bool);

  static py::handle cast(
      const c10::SymFloat& si,
      return_value_policy /* policy */,
      handle /* parent */);
};

template <>
struct TORCH_PYTHON_API type_caster<c10::SymBool> {
 public:
  PYBIND11_TYPE_CASTER(c10::SymBool, _("Union[bool, torch.SymBool]"));
  bool load(py::handle src, bool);

  static py::handle cast(
      const c10::SymBool& si,
      return_value_policy /* policy */,
      handle /* parent */);
};

template <typename T>
struct type_caster<c10::complex<T>> {
 public:
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  PYBIND11_TYPE_CASTER(c10::complex<T>, _("complex"));

  bool load(handle src, bool) {
    PyObject* obj = src.ptr();

    // Refered from `THPUtils_unpackComplexDouble`
    Py_complex py_complex = PyComplex_AsCComplex(obj);
    if (py_complex.real == -1.0 && PyErr_Occurred()) {
      return false;
    }

    // Python's Complex is always double precision.
    value = c10::complex<double>(py_complex.real, py_complex.imag);
    return true;
  }

  static handle cast(
      const c10::complex<T>& complex,
      return_value_policy /* policy */,
      handle /* parent */) {
    // Python only knows double precision complex.
    return handle(PyComplex_FromDoubles(complex.real(), complex.imag()));
  }
};

} // namespace pybind11::detail

namespace torch::impl {

// Use this function if you have a C++ object that is used from both C++
// and Python contexts, and you need its GIL to be released when you
// destruct it in the Python context.
//
// This function is a valid shared_ptr destructor and can be used to
// conveniently allocate a shared_ptr to an object whose destructor will be run
// without the GIL.  Pass it as the second argument to shared_ptr, e.g.,
//
//    shared_ptr<T>(new T(), destroy_without_gil<T>)
//
// Attaching the GIL release logic to the holder pointer rather than the
// actual destructor of T is helpful when T is Python-agnostic and
// shouldn't refer to the PYthon API.
//
// Note there are limitations to the correctness of code that makes use of this.
// In particular, if a shared_ptr is constructed from C++ code without this
// destructor and then passed to pybind11, pybind11 will happily take ownership
// of the shared_ptr (and be willing to destruct it from a context where it is
// holding the GIL).  unique_ptr with a type branded deleter is less prone to
// this problem, because a stock deleter unique_ptr is not convertible with it.
// I plan to mitigate this problem by adding DEBUG-only asserts to the true C++
// destructors that the GIL is not held (using a virtual call to get to the
// Python interpreter); alternately, we could use a virtual call to simply
// ensure we release the GIL in the C++ destructor, however, this is a layering
// violation (why does code that is ostensibly Python agnostic calling into the
// GIL).
//
// Adapted from
// https://github.com/pybind/pybind11/issues/1446#issuecomment-406341510
template <typename T>
inline void destroy_without_gil(T* ptr) {
  // Because the ownership of a shared_ptr is diffuse, it's not possible to
  // necessarily predict whether or not the last reference to an object will
  // be destructed from Python or C++.  This means that in the destructor here,
  // we don't necessarily know if we actually have the GIL or not; in fact,
  // we don't even know if the Python interpreter still exists!  Thus, we have
  // to test for it before releasing the GIL.
  //
  // PyGILState_Check is hopefully self explanatory.  But Py_IsInitialized or
  // _PyIsFinalizing?  Both get set at the same time during the Python
  // destruction process:
  // https://github.com/python/cpython/blob/d92513390a1a0da781bb08c284136f4d7abea36d/Python/pylifecycle.c#L1716-L1717
  // so the operant question is whether or not you want to release the GIL after
  // finalization has completed (and there is just no Python interpreter).
  // Clearly there is no need to release GIL in that state, so we want
  // Py_IsInitialized.
  if (Py_IsInitialized() && PyGILState_Check()) {
    pybind11::gil_scoped_release nogil;
    delete ptr;
  } else {
    delete ptr;
  }
}

} // namespace torch::impl