1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
#include <torch/csrc/utils/tensor_apply.h>
#include <ATen/ExpandUtils.h>
#include <ATen/TensorUtils.h>
#include <c10/util/irange.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_scalars.h>
using namespace at;
namespace torch::utils {
struct StridedData {
StridedData(const Tensor& tensor)
: data(tensor.data_ptr()),
strides(tensor.strides()),
elementSize(tensor.element_size()) {}
void* data;
IntArrayRef strides;
int64_t elementSize;
void step(int dim) {
data = (char*)data + (strides[dim] * elementSize);
}
};
template <size_t N>
static void recursive_apply(
IntArrayRef sizes,
ScalarType scalarType,
int64_t dim,
PyObject* fn,
std::array<StridedData, N> strided_data) {
int64_t ndim = static_cast<int64_t>(sizes.size());
if (dim == ndim) {
auto args = THPObjectPtr(PyTuple_New(N));
if (!args)
throw python_error();
for (const auto i : c10::irange(N)) {
PyObject* arg = load_scalar(strided_data[i].data, scalarType);
if (!arg)
throw python_error();
PyTuple_SET_ITEM(args.get(), i, arg);
}
auto ret = THPObjectPtr(PyObject_CallObject(fn, args.get()));
if (!ret)
throw python_error();
store_scalar(strided_data[0].data, scalarType, ret.get());
return;
}
auto n = sizes[dim];
for ([[maybe_unused]] const auto i : c10::irange(n)) {
recursive_apply(sizes, scalarType, dim + 1, fn, strided_data);
for (auto& td : strided_data) {
td.step(dim);
}
}
}
const Tensor& apply_(const Tensor& self, PyObject* fn) {
if (self.is_meta()) {
return self; // Just skip
}
TORCH_CHECK_TYPE(
self.device().is_cpu(), "apply_ is only implemented on CPU tensors");
auto scalarType = self.scalar_type();
recursive_apply<1>(self.sizes(), scalarType, 0, fn, {{self}});
return self;
}
const Tensor& map_(const Tensor& self, const Tensor& other_, PyObject* fn) {
TORCH_CHECK_TYPE(
other_.options().type_equal(self.options()),
"map_: expected ",
self.toString(),
" for 'other' (got ",
other_.toString(),
")");
if (self.is_meta()) {
return self; // Just skip
}
TORCH_CHECK_TYPE(
self.device().is_cpu(), "map_ is only implemented on CPU tensors");
c10::MaybeOwned<Tensor> other = expand_inplace(self, other_, "map_");
auto scalarType = self.scalar_type();
recursive_apply<2>(self.sizes(), scalarType, 0, fn, {{self, *other}});
return self;
}
const Tensor& map2_(
const Tensor& self,
const Tensor& x_,
const Tensor& y_,
PyObject* fn) {
TORCH_CHECK_TYPE(
x_.options().type_equal(self.options()),
"map2_: expected ",
self.toString(),
" for argument 'x' (got ",
x_.toString(),
")");
TORCH_CHECK_TYPE(
y_.options().type_equal(self.options()),
"map2_: expected ",
self.toString(),
" for argument 'y' (got ",
y_.toString(),
")");
if (self.is_meta()) {
return self; // Just skip
}
TORCH_CHECK_TYPE(
(self.device().is_cpu() && x_.device().is_cpu() && y_.device().is_cpu()),
"map2_ is only implemented on CPU tensors");
auto others = expand_inplace(self, x_, y_, "map2_");
auto scalarType = self.scalar_type();
recursive_apply<3>(
self.sizes(),
scalarType,
0,
fn,
{{self, *std::get<0>(others), *std::get<1>(others)}});
return self;
}
} // namespace torch::utils
|