File: tensor_apply.cpp

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (130 lines) | stat: -rw-r--r-- 3,494 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#include <torch/csrc/utils/tensor_apply.h>

#include <ATen/ExpandUtils.h>
#include <ATen/TensorUtils.h>
#include <c10/util/irange.h>

#include <torch/csrc/Exceptions.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_scalars.h>

using namespace at;

namespace torch::utils {

struct StridedData {
  StridedData(const Tensor& tensor)
      : data(tensor.data_ptr()),
        strides(tensor.strides()),
        elementSize(tensor.element_size()) {}

  void* data;
  IntArrayRef strides;
  int64_t elementSize;

  void step(int dim) {
    data = (char*)data + (strides[dim] * elementSize);
  }
};

template <size_t N>
static void recursive_apply(
    IntArrayRef sizes,
    ScalarType scalarType,
    int64_t dim,
    PyObject* fn,
    std::array<StridedData, N> strided_data) {
  int64_t ndim = static_cast<int64_t>(sizes.size());
  if (dim == ndim) {
    auto args = THPObjectPtr(PyTuple_New(N));
    if (!args)
      throw python_error();
    for (const auto i : c10::irange(N)) {
      PyObject* arg = load_scalar(strided_data[i].data, scalarType);
      if (!arg)
        throw python_error();
      PyTuple_SET_ITEM(args.get(), i, arg);
    }
    auto ret = THPObjectPtr(PyObject_CallObject(fn, args.get()));
    if (!ret)
      throw python_error();
    store_scalar(strided_data[0].data, scalarType, ret.get());
    return;
  }

  auto n = sizes[dim];
  for ([[maybe_unused]] const auto i : c10::irange(n)) {
    recursive_apply(sizes, scalarType, dim + 1, fn, strided_data);
    for (auto& td : strided_data) {
      td.step(dim);
    }
  }
}

const Tensor& apply_(const Tensor& self, PyObject* fn) {
  if (self.is_meta()) {
    return self; // Just skip
  }
  TORCH_CHECK_TYPE(
      self.device().is_cpu(), "apply_ is only implemented on CPU tensors");
  auto scalarType = self.scalar_type();
  recursive_apply<1>(self.sizes(), scalarType, 0, fn, {{self}});
  return self;
}

const Tensor& map_(const Tensor& self, const Tensor& other_, PyObject* fn) {
  TORCH_CHECK_TYPE(
      other_.options().type_equal(self.options()),
      "map_: expected ",
      self.toString(),
      " for 'other' (got ",
      other_.toString(),
      ")");
  if (self.is_meta()) {
    return self; // Just skip
  }
  TORCH_CHECK_TYPE(
      self.device().is_cpu(), "map_ is only implemented on CPU tensors");
  c10::MaybeOwned<Tensor> other = expand_inplace(self, other_, "map_");
  auto scalarType = self.scalar_type();
  recursive_apply<2>(self.sizes(), scalarType, 0, fn, {{self, *other}});
  return self;
}

const Tensor& map2_(
    const Tensor& self,
    const Tensor& x_,
    const Tensor& y_,
    PyObject* fn) {
  TORCH_CHECK_TYPE(
      x_.options().type_equal(self.options()),
      "map2_: expected ",
      self.toString(),
      " for argument 'x' (got ",
      x_.toString(),
      ")");
  TORCH_CHECK_TYPE(
      y_.options().type_equal(self.options()),
      "map2_: expected ",
      self.toString(),
      " for argument 'y' (got ",
      y_.toString(),
      ")");
  if (self.is_meta()) {
    return self; // Just skip
  }
  TORCH_CHECK_TYPE(
      (self.device().is_cpu() && x_.device().is_cpu() && y_.device().is_cpu()),
      "map2_ is only implemented on CPU tensors");
  auto others = expand_inplace(self, x_, y_, "map2_");
  auto scalarType = self.scalar_type();
  recursive_apply<3>(
      self.sizes(),
      scalarType,
      0,
      fn,
      {{self, *std::get<0>(others), *std::get<1>(others)}});
  return self;
}

} // namespace torch::utils