1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
# mypy: allow-untyped-defs
import pickle
import sys
import os
import io
import subprocess
import json
from functools import lru_cache
from typing import Any
from itertools import groupby
import base64
import warnings
import operator
cache = lru_cache(None)
__all__ = ["format_flamegraph", "segments", "memory", "compare"]
def _frame_fmt(f, full_filename=False):
i = f['line']
fname = f['filename']
if not full_filename:
fname = fname.split('/')[-1]
func = f['name']
return f'{fname}:{i}:{func}'
@cache
def _frame_filter(name, filename):
omit_functions = [
"unwind::unwind",
"CapturedTraceback::gather",
"gather_with_cpp",
"_start",
"__libc_start_main",
"PyEval_",
"PyObject_",
"PyFunction_",
]
omit_filenames = [
"core/boxing",
"/Register",
"/Redispatch",
"pythonrun.c",
"Modules/main.c",
"Objects/call.c",
"Objects/methodobject.c",
"pycore_ceval.h",
"ceval.c",
"cpython/abstract.h",
]
for of in omit_functions:
if of in name:
return False
for of in omit_filenames:
if of in filename:
return False
return True
def _frames_fmt(frames, full_filename=False, reverse=False):
if reverse:
frames = reversed(frames)
return [_frame_fmt(f, full_filename) for f in frames if _frame_filter(f['name'], f['filename'])]
def _block_extra_legacy(b):
if 'history' in b:
frames = b['history'][0].get('frames', [])
real_size = b['history'][0]['real_size']
else:
real_size = b.get('requested_size', b['size'])
frames = []
return frames, real_size
def _block_extra(b):
if 'frames' not in b:
# old snapshot format made it more complicated to get frames/allocated size
return _block_extra_legacy(b)
return b['frames'], b['requested_size']
def format_flamegraph(flamegraph_lines, flamegraph_script=None):
if flamegraph_script is None:
flamegraph_script = f'/tmp/{os.getuid()}_flamegraph.pl'
if not os.path.exists(flamegraph_script):
import urllib.request
print(f"Downloading flamegraph.pl to: {flamegraph_script}")
urllib.request.urlretrieve(
'https://raw.githubusercontent.com/brendangregg/FlameGraph/master/flamegraph.pl', flamegraph_script)
subprocess.check_call(['chmod', '+x', flamegraph_script])
args = [flamegraph_script, '--countname', 'bytes']
p = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, encoding='utf-8')
assert p.stdin is not None
assert p.stdout is not None
p.stdin.write(flamegraph_lines)
p.stdin.close()
result = p.stdout.read()
p.stdout.close()
p.wait()
assert p.wait() == 0
return result
def _write_blocks(f, prefix, blocks):
def frames_fragment(frames):
if not frames:
return "<non-python>"
return ';'.join(_frames_fmt(frames, reverse=True))
for b in blocks:
if 'history' not in b:
frames, accounted_for_size = _block_extra(b)
f.write(f'{prefix};{b["state"]};{frames_fragment(frames)} {accounted_for_size}\n')
else:
accounted_for_size = 0
for h in b['history']:
sz = h['real_size']
accounted_for_size += sz
if 'frames' in h:
frames = h['frames']
f.write(f'{prefix};{b["state"]};{frames_fragment(frames)} {sz}\n')
else:
f.write(f'{prefix};{b["state"]};<no-context> {sz}\n')
gaps = b['size'] - accounted_for_size
if gaps:
f.write(f'{prefix};{b["state"]};<gaps> {gaps}\n')
def segments(snapshot, format_flamegraph=format_flamegraph):
f = io.StringIO()
for seg in snapshot['segments']:
prefix = f'stream_{seg["stream"]};seg_{seg["address"]}'
_write_blocks(f, prefix, seg['blocks'])
return format_flamegraph(f.getvalue())
def memory(snapshot, format_flamegraph=format_flamegraph):
f = io.StringIO()
for seg in snapshot['segments']:
prefix = f'stream_{seg["stream"]}'
_write_blocks(f, prefix, seg['blocks'])
return format_flamegraph(f.getvalue())
def compare(before, after, format_flamegraph=format_flamegraph):
def _seg_key(seg):
return (seg['address'], seg['total_size'])
def _seg_info(seg):
return f'stream_{seg["stream"]};seg_{seg["address"]}'
f = io.StringIO()
before_segs = {_seg_key(seg) for seg in before}
after_segs = {_seg_key(seg) for seg in after}
print(f'only_before = {[a for a, _ in (before_segs - after_segs)]}')
print(f'only_after = {[a for a, _ in (after_segs - before_segs)]}')
for seg in before:
if _seg_key(seg) not in after_segs:
_write_blocks(f, f'only_before;{_seg_info(seg)}', seg['blocks'])
for seg in after:
if _seg_key(seg) not in before_segs:
_write_blocks(f, f'only_after;{_seg_info(seg)}', seg['blocks'])
return format_flamegraph(f.getvalue())
def _format_size(num):
# https://stackoverflow.com/questions/1094841/get-human-readable-version-of-file-size
for unit in ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi"]:
if abs(num) < 1024.0:
return f"{num:3.1f}{unit}B"
num /= 1024.0
return f"{num:.1f}YiB"
class Bytes:
def __init__(self, value):
self.value = value
def __add__(self, rhs):
return Bytes(self.value + rhs)
def __repr__(self):
return _format_size(self.value)
def calc_active(seg):
return sum(b['size'] for b in seg['blocks'] if b['state'] == 'active_allocated')
def _report_free(free_external, free_internal):
total = free_external + free_internal
suffix = ''
if total != 0:
pct = (free_internal / total) * 100
suffix = f' ({pct:.1f}% internal)'
return f'{Bytes(total)}{suffix}'
PAGE_SIZE = 1024 * 1024 * 20
legend = f"""\
Legend:
[a ] - a segment in the allocator
^-- a page {Bytes(PAGE_SIZE)} of memory in the segment
a-z: pages filled with a single block's content
' ': page is completely free
*: page if completely full with multiple blocks
0-9: page is partially full with tensors of multiple blocks (9 == 90% full)
(X% internal) - of the free memory, X% is free because we rounded the size of the allocation.
"""
def segsum(data):
r"""Visually reports how the allocator has filled its segments.
This printout can help debug fragmentation issues since free fragments
will appear as gaps in this printout. The amount of free space is reported
for each segment.
We distinguish between internal free memory which occurs because the
allocator rounds the allocation size, and external free memory, which are
the gaps between allocations in a segment.
Args:
data: snapshot dictionary created from _snapshot()
"""
out = io.StringIO()
out.write(f"Summary of segments >= {Bytes(PAGE_SIZE)} in size\n")
total_reserved = 0
total_allocated = 0
free_external = 0
free_internal = 0
for seg in sorted(data['segments'], key=lambda x: (x['total_size'], calc_active(x))):
total_reserved += seg['total_size']
seg_free_external = 0
seg_free_internal = 0
seg_allocated = 0
all_ranges = []
boffset = 0
for b in seg['blocks']:
active = b['state'] == 'active_allocated'
if active:
_, allocated_size = _block_extra(b)
all_ranges.append((boffset, allocated_size, True))
seg_allocated += allocated_size
seg_free_internal += b['size'] - allocated_size
else:
seg_free_external += b['size']
boffset += b['size']
total_allocated += seg_allocated
free_external += seg_free_external
free_internal += seg_free_internal
nseg = (seg['total_size'] - 1) // PAGE_SIZE + 1
occupied = [' ' for _ in range(nseg)]
frac = [0.0 for _ in range(nseg)]
active_size = 0
for i, (start_, size, active) in enumerate(all_ranges):
active_size += size
finish_ = (start_ + size)
start = start_ // PAGE_SIZE
finish = (finish_ - 1) // PAGE_SIZE + 1
m = chr(ord('a' if active else 'A') + (i % 26))
for j in range(start, finish):
s = max(start_, j * PAGE_SIZE)
e = min(finish_, (j + 1) * PAGE_SIZE)
frac[j] += (e - s) / PAGE_SIZE
if occupied[j] != ' ':
occupied[j] = '0123456789*'[int(frac[j] * 10)]
else:
occupied[j] = m
stream = '' if seg['stream'] == 0 else f', stream_{seg["stream"]}'
body = ''.join(occupied)
assert seg_free_external + seg_free_internal + seg_allocated == seg['total_size']
stream = f' stream_{seg["stream"]}' if seg['stream'] != 0 else ''
if seg['total_size'] >= PAGE_SIZE:
out.write(f'[{body}] {Bytes(seg["total_size"])} allocated, '
f'{_report_free(seg_free_external, seg_free_internal)} free{stream}\n')
out.write(f'segments: {len(data["segments"])}\n')
out.write(f'total_reserved: {Bytes(total_reserved)}\n')
out.write(f'total_allocated: {Bytes(total_allocated)}\n')
out.write(f'total_free: {_report_free(free_external, free_internal)}\n')
out.write(legend)
assert free_internal + free_external + total_allocated == total_reserved
return out.getvalue()
def trace(data):
out = io.StringIO()
def format(entries):
segment_intervals : list = []
segment_addr_to_name = {}
allocation_addr_to_name = {}
free_names : list = []
next_name = 0
def _name():
nonlocal next_name
if free_names:
return free_names.pop()
r, m = next_name // 26, next_name % 26
next_name += 1
return f'{chr(ord("a") + m)}{"" if r == 0 else r}'
def find_segment(addr):
for name, saddr, size in segment_intervals:
if addr >= saddr and addr < saddr + size:
return name, saddr
for i, seg in enumerate(data['segments']):
saddr = seg['address']
size = seg['allocated_size']
if addr >= saddr and addr < saddr + size:
return f'seg_{i}', saddr
return None, None
count = 0
out.write(f'{len(entries)} entries\n')
total_reserved = 0
for seg in data['segments']:
total_reserved += seg['total_size']
for count, e in enumerate(entries):
if e['action'] == 'alloc':
addr, size = e['addr'], e['size']
n = _name()
seg_name, seg_addr = find_segment(addr)
if seg_name is None:
seg_name = "MEM"
offset = addr
else:
offset = addr - seg_addr
out.write(f'{n} = {seg_name}[{offset}:{Bytes(size)}]\n')
allocation_addr_to_name[addr] = (n, size, count)
count += size
elif e['action'] == 'free_requested':
addr, size = e['addr'], e['size']
name, _, _ = allocation_addr_to_name.get(addr, (addr, None, None))
out.write(f'del {name} # {Bytes(size)}\n')
elif e['action'] == 'free_completed':
addr, size = e['addr'], e['size']
count -= size
name, _, _ = allocation_addr_to_name.get(addr, (addr, None, None))
out.write(f'# free completed for {name} {Bytes(size)}\n')
if name in allocation_addr_to_name:
free_names.append(name)
del allocation_addr_to_name[name]
elif e['action'] == 'segment_alloc':
addr, size = e['addr'], e['size']
name = _name()
out.write(f'{name} = cudaMalloc({addr}, {Bytes(size)})\n')
segment_intervals.append((name, addr, size))
segment_addr_to_name[addr] = name
elif e['action'] == 'segment_free':
addr, size = e['addr'], e['size']
name = segment_addr_to_name.get(addr, addr)
out.write(f'cudaFree({name}) # {Bytes(size)}\n')
if name in segment_addr_to_name:
free_names.append(name)
del segment_addr_to_name[name]
elif e['action'] == 'oom':
size = e['size']
free = e['device_free']
out.write(f'raise OutOfMemoryError # {Bytes(size)} requested, {Bytes(free)} free in CUDA\n')
else:
out.write(f'{e}\n')
out.write(f"TOTAL MEM: {Bytes(count)}")
for i, d in enumerate(data['device_traces']):
if d:
out.write(f'Device {i} ----------------\n')
format(d)
return out.getvalue()
_memory_viz_template = r"""
<!DOCTYPE html>
<html>
<head>
</head>
<body>
<script type="module">
import {add_local_files} from "https://cdn.jsdelivr.net/gh/pytorch/pytorch@main/torch/utils/viz/MemoryViz.js"
const local_files = $SNAPSHOT
add_local_files(local_files, $VIZ_KIND)
</script>
</body>
"""
def _format_viz(data, viz_kind, device):
if device is not None:
warnings.warn(
'device argument is deprecated, plots now contain all device',
FutureWarning,
stacklevel=3,
)
buffer = pickle.dumps(data)
buffer += b'\x00' * (3 - len(buffer) % 3)
# Encode the buffer with base64
encoded_buffer = base64.b64encode(buffer).decode('utf-8')
json_format = json.dumps([{"name": 'snapshot.pickle', "base64": encoded_buffer}])
return _memory_viz_template.replace('$VIZ_KIND', repr(viz_kind)) \
.replace('$SNAPSHOT', json_format)
def trace_plot(data, device=None, plot_segments=False):
"""Generate a visualization over time of the memory usage recorded by the trace as an html file.
Args:
data: Memory snapshot as generated from torch.cuda.memory._snapshot()
device (torch.device, optional): Generate the trace for this device, needed if multiple devices have allocations.
plot_segments (bool, optional): Plots memory returned from cudaMalloc, rather than individual allocations.
Defaults to False.
Returns:
str: HTML of visualization
"""
return _format_viz(data, 'Active Memory Timeline' if not plot_segments else 'Active Cached Memory Timeline', device)
def _profile_to_snapshot(profile):
import torch
from torch.profiler._memory_profiler import Action, TensorKey
from torch._C._profiler import _EventType
memory_profile = profile._memory_profile()
allocation_stacks = {}
for event in memory_profile._op_tree.sorted_nodes:
if event.tag == _EventType.Allocation:
parent = event.parent
python_parents = []
while parent:
if parent.tag in (_EventType.PyCall, _EventType.PyCCall):
python_parents.append(parent)
parent = parent.parent
key = TensorKey.from_allocation(event.extra_fields)
# Corner case: If allocation doesn't have an ID (can't prove it was used as a Tensor)
# key will be None. I should add some way to identify these, I just haven't yet.
if key and event.extra_fields.alloc_size > 0:
allocation_stacks[key] = python_parents
device_count = torch.cuda.device_count()
snapshot = {
'device_traces': [[] for _ in range(device_count + 1)],
'segments': [{'device': device,
'address': None,
'total_size': 0,
'stream': 0,
'blocks': []} for device in range(device_count + 1)]
}
def to_device(device):
if device.type == 'cuda':
return device.index
else:
return device_count
def allocate(size, tensor_key, version, during_trace=True):
device = to_device(tensor_key.device)
addr = tensor_key.storage.ptr
seg = snapshot['segments'][device] # type: ignore[index]
if seg['address'] is None or seg['address'] > addr:
seg['address'] = addr
seg['total_size'] = max(seg['total_size'], addr + size) # record max addr for now, we will make it the size later
category = memory_profile._categories.get(tensor_key, version)
category = category.name.lower() if category is not None else "unknown"
stack = allocation_stacks.get(tensor_key, ())
stack = [{'filename': 'none', 'line': 0, 'name': p.name} for p in stack]
r = {'action': 'alloc', 'addr': addr, 'size': size, 'stream': 0, 'frames': stack, 'category': category}
if during_trace:
snapshot['device_traces'][device].append(r) # type: ignore[index]
return r
def free(alloc, device):
for e in ('free_requested', 'free_completed'):
snapshot['device_traces'][device].append({'action': e, # type: ignore[index]
'addr': alloc['addr'],
'size': alloc['size'],
'stream': 0,
'frames': alloc['frames']})
kv_to_elem = {}
# create the device trace
for _time, action, (tensor_key, version), size in memory_profile.timeline:
if not isinstance(tensor_key, TensorKey):
continue
if action == Action.CREATE:
kv_to_elem[(tensor_key, version)] = allocate(size, tensor_key, version)
elif action == Action.DESTROY:
free(kv_to_elem.pop((tensor_key, version)), to_device(tensor_key.device))
elif action == Action.INCREMENT_VERSION:
free(kv_to_elem.pop((tensor_key, version)), to_device(tensor_key.device))
kv_to_elem[(tensor_key, version + 1)] = allocate(size, tensor_key, version + 1)
elif action == Action.PREEXISTING:
kv_to_elem[(tensor_key, version)] = allocate(size, tensor_key, version, during_trace=False)
# create the final snapshot state
blocks_at_end = [(to_device(tensor_key.device), event['addr'], event['size'], event['frames'])
for (tensor_key, version), event in kv_to_elem.items()]
for device, blocks in groupby(sorted(blocks_at_end), key=operator.itemgetter(0)):
seg = snapshot['segments'][device] # type: ignore[index]
last_addr = seg['address']
for _, addr, size, frames in blocks:
if last_addr < addr:
seg['blocks'].append({'size': addr - last_addr, 'state': 'inactive'})
seg['blocks'].append({'size': size, 'state': 'active_allocated', 'requested_size': size, 'frames': frames})
last_addr = addr + size
if last_addr < seg['total_size']:
seg['blocks'].append({'size': seg['total_size'] - last_addr, 'state': 'inactive'})
snapshot['segments'] = [seg for seg in snapshot['segments'] if seg['blocks']] # type: ignore[attr-defined]
for seg in snapshot['segments']: # type: ignore[attr-defined, name-defined, no-redef]
seg['total_size'] -= seg['address']
if not seg['blocks']:
seg['blocks'].append({'size': seg['total_size'], 'state': 'inactive'})
return snapshot
def profile_plot(profile, device=None):
"""Generate a visualization over time of the memory usage recorded by kineto memory profiling as an html file.
Args:
profile: profile as generated by `torch.profiler.profile(profile_memory=True)`
device (torch.device, optional): Generate the trace for this device, needed if multiple devices have allocations.
Returns:
str: HTML of visualization
"""
snapshot = _profile_to_snapshot(profile)
return _format_viz(snapshot, 'Active Memory Timeline', device)
def segment_plot(data: Any, device=None):
return _format_viz(data, 'Allocator State History', device)
if __name__ == "__main__":
import os.path
thedir = os.path.realpath(os.path.dirname(__file__))
if thedir in sys.path:
# otherwise we find cuda/random.py as random...
sys.path.remove(thedir)
import argparse
fn_name = 'torch.cuda.memory._snapshot()'
pickled = f'pickled memory statistics from {fn_name}'
parser = argparse.ArgumentParser(description=f'Visualize memory dumps produced by {fn_name}')
subparsers = parser.add_subparsers(dest='action')
def _output(p):
p.add_argument('-o', '--output', default='output.svg', help='flamegraph svg (default: output.svg)')
description = 'Prints overall allocation statistics and a visualization of how the allocators segments are currently filled.'
stats_a = subparsers.add_parser('stats', description=description)
stats_a.add_argument('input', help=pickled)
description = 'Prints buffer of the most recent allocation events embedded in the snapshot in a Pythonic style.'
trace_a = subparsers.add_parser('trace', description=description)
trace_a.add_argument('input', help=pickled)
description = 'Generate a flamegraph that visualizes what memory is stored in each allocator segment (aka block)'
segments_a = subparsers.add_parser('segments', description=description)
segments_a.add_argument('input', help=pickled)
_output(segments_a)
description = "Generate a flamegraph the program locations contributing to CUDA memory usage."
memory_a = subparsers.add_parser('memory', description=description)
memory_a.add_argument('input', help=pickled)
_output(memory_a)
description = 'Generate a flamegraph that shows segments (aka blocks) that have been added ' \
'or removed between two different memorys snapshots.'
compare_a = subparsers.add_parser('compare', description=description)
compare_a.add_argument('before', help=pickled)
compare_a.add_argument('after', help=pickled)
_output(compare_a)
plots = (
("trace_plot", "Generate a visualization over time of the memory usage recorded by the trace as an html file."),
("segment_plot", "Visualize how allocations are packed into allocator segments at each point in a trace as an html file.")
)
for cmd, description in plots:
trace_plot_a = subparsers.add_parser(cmd, description=description)
trace_plot_a.add_argument('input', help=pickled)
help = 'visualize trace from this device (default: chooses the only device with trace info or errors)'
trace_plot_a.add_argument('-d', '--device', type=int, default=None, help=help)
help = 'path to save the visualization(default: output.html)'
trace_plot_a.add_argument('-o', '--output', default='output.html', help=help)
if cmd == "trace_plot":
help = 'visualize change to segments rather than individual allocations'
trace_plot_a.add_argument('-s', '--segments', action='store_true', help=help)
args = parser.parse_args()
def _read(name):
if name == '-':
f = sys.stdin.buffer
else:
f = open(name, 'rb')
data = pickle.load(f)
if isinstance(data, list): # segments only...
data = {'segments': data, 'traces': []}
return data
def _write(name, data):
with open(name, 'w') as f:
f.write(data)
if args.action == 'segments':
data = _read(args.input)
_write(args.output, segments(data))
elif args.action == 'memory':
data = _read(args.input)
_write(args.output, memory(data))
elif args.action == 'stats':
data = _read(args.input)
print(segsum(data))
elif args.action == 'trace':
data = _read(args.input)
print(trace(data))
elif args.action == 'compare':
before = _read(args.before)
after = _read(args.after)
_write(args.output, compare(before, after))
elif args.action == 'trace_plot':
data = _read(args.input)
_write(args.output, trace_plot(data, device=args.device, plot_segments=args.segments))
elif args.action == 'segment_plot':
data = _read(args.input)
_write(args.output, segment_plot(data, device=args.device))
|