1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
from contextlib import contextmanager, nullcontext
from typing import Any, ContextManager, Dict, Optional, Tuple
import torch
import torch.nn as nn
from torch.utils.checkpoint import (
_checkpoint_without_reentrant_generator,
_DEFAULT_DETERMINISM_MODE,
)
from .contract import contract
@contextmanager
def _no_hook(module: nn.Module, user_ctx: Optional[ContextManager] = None):
r"""
Disable hooks installed by checkpoint to avoid unintentional recursion
during backward recomputation.
"""
with user_ctx if user_ctx else nullcontext():
orig_enable_hook = checkpoint.state(module).enable_hook
checkpoint.state(module).enable_hook = False
try:
yield
finally:
checkpoint.state(module).enable_hook = orig_enable_hook
@contract()
def checkpoint(module: nn.Module, **kwargs) -> nn.Module:
r"""
This is a composable activation checkpointing API. Unlike functional
activation checkpointing APIs, this one does not require changing model
source code. Unlike ``nn.Module`` wrapper activation checkpointing APIs,
this one does not modify model structure or fully-qualified names either.
Under the hood, it registers activation checkpointing logic as pre- and
post-forward hooks. Hence, this API can be easily applied to any model or
sub-modules in the model.
Args:
module (nn.Module): the target model or sub-module to apply activation
checkpointing.
Example::
>>> # xdoctest: +SKIP
>>> import torch.nn as nn
>>>
>>> class MyModel(nn.Module):
>>> def __init__(self) -> None:
>>> super().__init__()
>>> self.l1 = nn.Linear(10, 10)
>>> self.l2 = nn.Linear(10, 10)
>>>
>>> def forward(self, x):
>>> return self.l2(self.l1(x))
>>>
>>> model = MyModel()
>>> checkpoint(model.l1) # apply activation checkpointing only to l1
>>> model(torch.zeros(2, 10)).sum().backward()
"""
torch._C._log_api_usage_once("torch.distributed.checkpoint")
use_reentrant = kwargs.pop("use_reentrant", False)
if use_reentrant:
raise NotImplementedError(
"use_reentrant=True is not supported in composable checkpoint. "
"Please use torch.utils.checkpoint.checkpoint instead."
)
preserve_rng_state = kwargs.pop("preserve_rng_state", True)
user_context_fns = kwargs.pop("context_fn", None)
determinism_check = kwargs.pop("determinism_check", _DEFAULT_DETERMINISM_MODE)
debug = kwargs.pop("debug", False)
if kwargs:
raise ValueError(
"Unexpected keyword arguments: " + ",".join(arg for arg in kwargs)
)
def forward_pre_hook(
module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
) -> None:
if checkpoint.state(module).enable_hook:
def context_fns():
if user_context_fns is not None:
ctx1, ctx2 = user_context_fns()
return ctx1, _no_hook(module, ctx2)
else:
return nullcontext(), _no_hook(module)
checkpoint.state(
module
)._ac_generator = _checkpoint_without_reentrant_generator(
module,
preserve_rng_state,
context_fns,
determinism_check,
debug,
*args,
**kwargs,
)
next(checkpoint.state(module)._ac_generator)
def forward_hook(module: nn.Module, inputs: Tuple[Any, ...], output: Any) -> Any:
if checkpoint.state(module).enable_hook:
try:
next(checkpoint.state(module)._ac_generator)
except StopIteration:
pass
else:
raise RuntimeError(
"Expected non-reentrant activation checkpoint generator to be exhausted, but it was not!"
)
# Ensure that we no longer hold on to the generator. always_call=True helps ensure we
# clear this even in the case of exception in fwd pass.
checkpoint.state(module)._ac_generator = None
checkpoint.state(module).enable_hook = True
module.register_forward_pre_hook(forward_pre_hook, with_kwargs=True)
module.register_forward_hook(forward_hook, prepend=True, always_call=True)
return module
|