1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
# mypy: allow-untyped-defs
from typing import List, Optional
import torch
import torch.distributed.distributed_c10d as c10d
"""
This file contains the op impls for the legacy (c10d_functional) functional collectives.
These impls simply call into the native (_c10d_functional) functional collectives.
"""
def _broadcast(input, src, tag, ranks, group_size):
group_name = c10d._resolve_group_name_by_ranks_and_tag(ranks, tag)
return torch.ops._c10d_functional.broadcast(
input,
src,
group_name,
)
def _all_reduce(input, reduce_op, tag, ranks, group_size):
group_name = c10d._resolve_group_name_by_ranks_and_tag(ranks, tag)
return torch.ops._c10d_functional.all_reduce(
input,
reduce_op,
group_name,
)
def _all_reduce_coalesced(inputs, reduce_op, tag, ranks, group_size):
group_name = c10d._resolve_group_name_by_ranks_and_tag(ranks, tag)
return torch.ops._c10d_functional.all_reduce_coalesced(
inputs,
reduce_op,
group_name,
)
def _all_gather_into_tensor(input, tag, ranks, group_size):
group_name = c10d._resolve_group_name_by_ranks_and_tag(ranks, tag)
return torch.ops._c10d_functional.all_gather_into_tensor(
input,
group_size,
group_name,
)
def _all_gather_into_tensor_coalesced(input, tag, ranks, group_size):
group_name = c10d._resolve_group_name_by_ranks_and_tag(ranks, tag)
return torch.ops._c10d_functional.all_gather_into_tensor_coalesced(
input,
group_size,
group_name,
)
def _reduce_scatter_tensor(
input: torch.Tensor,
reduce_op: str,
tag: str,
ranks: List[int],
group_size: int,
):
group_name = c10d._resolve_group_name_by_ranks_and_tag(ranks, tag)
return torch.ops._c10d_functional.reduce_scatter_tensor(
input,
reduce_op,
group_size,
group_name,
)
def _reduce_scatter_tensor_coalesced(
inputs: List[torch.Tensor],
reduce_op: str,
tag: str,
ranks: List[int],
group_size: int,
):
group_name = c10d._resolve_group_name_by_ranks_and_tag(ranks, tag)
return torch.ops._c10d_functional.reduce_scatter_tensor_coalesced(
inputs,
reduce_op,
group_size,
group_name,
)
def _all_to_all_single(
input: torch.Tensor,
output_split_sizes: Optional[List[int]],
input_split_sizes: Optional[List[int]],
tag: str,
ranks: List[int],
group_size: int,
):
if output_split_sizes is None or input_split_sizes is None:
assert output_split_sizes is None and input_split_sizes is None, (
"output_split_sizes and input_split_sizes must either be "
"specified together or both set to None"
)
output_split_sizes = [input.shape[0] // group_size] * group_size
input_split_sizes = output_split_sizes
group_name = c10d._resolve_group_name_by_ranks_and_tag(ranks, tag)
return torch.ops._c10d_functional.all_to_all_single(
input,
output_split_sizes,
input_split_sizes,
group_name,
)
def _wait_tensor(tensor: torch.Tensor) -> torch.Tensor:
return torch.ops._c10d_functional.wait_tensor(tensor)
|