File: _utils.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (32 lines) | stat: -rw-r--r-- 1,061 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from typing import Sequence

import torch
from torch.distributed._shard.metadata import ShardMetadata


DEPRECATE_MSG = "Please use DTensor instead and we are deprecating ShardedTensor."


def narrow_tensor_by_index(
    tensor: torch.Tensor,
    offsets: Sequence[int],
    sizes: Sequence[int],
) -> torch.Tensor:
    """
    Narrow the tensor according to ``offsets`` and ``sizes``.
    """
    narrowed_tensor = tensor
    for idx, (offset, size) in enumerate(zip(offsets, sizes)):
        if size < tensor.size(idx):
            # Reshape to get shard for this rank and we don't want autograd
            # recording here for the narrow op and 'local_shard' should be a
            # leaf variable in the autograd graph.
            narrowed_tensor = narrowed_tensor.narrow(idx, offset, size)
    return narrowed_tensor


def narrow_tensor(tensor: torch.Tensor, metadata: ShardMetadata) -> torch.Tensor:
    """
    Narrow the tensor according to the metadata
    """
    return narrow_tensor_by_index(tensor, metadata.shard_offsets, metadata.shard_sizes)