File: sharder.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (29 lines) | stat: -rw-r--r-- 901 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import abc

import torch.nn as nn


class Sharder(abc.ABC):
    """
    This is an interface which allows user to create more advanced
    sharding strategies that are not easily be composed by the
    `ShardingSpec`.

    :class:`torch.distributed._shard.sharding_plan.ShardingPlan` could
    take an object of the `Sharder` and call `shard` to shard the module,
    then replace the original module with sharded module returned.
    """

    @abc.abstractmethod
    def shard(self, module: nn.Module) -> nn.Module:
        """
        Shard a module base on the implementation of this method, and
        return the sharded version of the module.

        Args:
            module (:class:`torch.nn.Module`):
                The module to apply sharding to.
        Returns:
            A :class:`torch.nn.Module` object that represents a module
            that's already been sharded.
        """