File: runtime_estimator.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (527 lines) | stat: -rw-r--r-- 21,168 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# Owner(s): ["module: unknown"]
import math
import os
from collections import defaultdict
from typing import Any, Callable, Dict, List, Set, Tuple
from typing_extensions import Self

import torch
import torch.utils._pytree as pytree
from torch._guards import active_fake_mode
from torch._inductor.utils import get_device_tflops, get_gpu_dram_gbps
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.distributed._tools.mod_tracker import ModTracker
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils.flop_counter import flop_registry


aten = torch.ops.aten

# This value is hard-coded here:
# https://github.com/pytorch/pytorch/blob/5fba5d83f0703ff8077ab65448a998e9ad6598fd/c10/cuda/CUDACachingAllocator.cpp#L117
_PYTORCH_MIN_ALLOCATE = (
    2**9 if int(os.environ.get("PYTORCH_NO_CUDA_MEMORY_CACHING", 0)) == 0 else 1
)

# No fall-back kernel needed/exists for view ops
_VIEW_OPS = {
    aten.lift_fresh,
    aten.t,
    aten.transpose,
    aten.view,
    aten.detach,
    aten._unsafe_view,
    aten.split,
    aten.adjoint,
    aten.as_strided,
    aten.diagonal,
    aten.expand,
    aten.expand_as,
    aten.movedim,
    aten.permute,
    aten.select,
    aten.squeeze,
    aten.mT,
    aten.mH,
    aten.real,
    aten.imag,
    aten.view_as,
    aten.unflatten,
    aten.unfold,
    aten.unbind,
    aten.unsqueeze,
    aten.vsplit,
    aten.hsplit,
    aten.split_with_sizes,
    aten.swapaxes,
    aten.swapdims,
    aten.chunk,
}
# We can ignore benchmarking tensor create ops
_CREATE_OPS = {
    aten.randint,
    aten.randn,
    aten.rand,
    aten.randn_like,
    aten.rand_like,
    aten.randint_like,
    aten.arange,
    aten.ones_like,
    aten.zeros_like,
}

_IGNORE_OPS = _VIEW_OPS | _CREATE_OPS

__all__ = ["RuntimeEstimator"]


class RuntimeEstimator(TorchDispatchMode):
    """
    Estimates the GPU runtime in milliseconds using various estimation methods under the ``FakeTensorMode``.

    This class provides a ``TorchDispatchMode`` based context manager that can be used to estimate the eager
    runtime of PyTorch functions. It supports two estimation modes, benchmarking (`operator-level-benchmark`) and
    roofline cost modeling (`operator-level-cost-model`).
    For modules executed under this context manager, it agggregates the forward and backward operation runtimes
    and also records their execution orders.

    Attributes:
        mod_runtimes (Dict[str, Dict[str, float]]): A dictionary of module runtimes. The key to the outer dictionary
            is the fully qualified name (FQN) of the module. For each module the forward and backward runtimes of the
            operations are aggregated in the inner dictionary keyed by 'fw' and 'bw'.
        mod_fw_pre_order (List[str]): List of module FQNs in pre-forward execution order.
        mod_bw_pre_order (List[str]): List of module FQNs in pre-backward execution order.
        mod_fw_post_order (List[str]): List of module FQNs in post-forward execution order.
        mod_bw_post_order (List[str]): List of module FQNs in post-backward execution order.
        total_runtime (float): The total estimated runtime in milliseconds.

    Note:
        1) The benchmarking estimate mode will execute kernels on GPU and assumes that every operation can run in
            isolation without causing an OOM error. It is also designed to be used only under ``FakeTensorMode``.
        2) Currently wrapper tensor sub-classes such as ``DTensor`` won't produce correct estimates. We plan to support
            them in future PRs.
        3) We only estimate the compute time, if your code has communication, it will not be considered. Again, we will
            support this in future PRs.

    Example usage:

        .. code-block:: python

            runtime_estimator = RuntimeEstimator()
            with FakeTensorMode():
                module = ...
                optimizer = ...
                inp = ...
                with runtime_estimator(estimate_mode_type="operator-level-cost-model"):
                    loss = module(inp)
                    loss.backward()
                    optimizer.step()
                    optimizer.zero_grad()
                runtime_estimator.display_modulewise_stats()
    """

    _float_types: Set[torch.dtype] = {
        torch.float16,
        torch.bfloat16,
        torch.float32,
        torch.float64,
    }
    _no_fallback_kernel: Set[torch._ops._OpNamespace] = set()
    fake_mode: FakeTensorMode

    def __init__(self) -> None:
        super().__init__()
        self._estimate: Callable
        self._estimate_mode_type: str
        self._mod_tracker = ModTracker()
        self.mod_runtimes: Dict[str, Dict[str, float]] = defaultdict(
            lambda: defaultdict(lambda: 0.0)
        )
        self.mod_fw_pre_order: List[str] = []
        self.mod_bw_pre_order: List[str] = []
        self.mod_fw_post_order: List[str] = []
        self.mod_bw_post_order: List[str] = []
        self.total_runtime: float = 0.0

    # Adapted from: https://github.com/pytorch/pytorch/blob/9b902b3ee3bd608a19543362b66bf06c373dd374/torch/_subclasses/fake_tensor.py#L1969  # noqa: PGH004,B950
    # NB: returns fake tensors
    @classmethod
    def _maybe_run_and_benchmark_fallback_kernel(  # type: ignore[no-untyped-def]
        cls,
        func,
        args,
        kwargs,
        orig_not_implemented_exception,
    ):
        """
        Runs and benchmarks a fallback kernel for a given function.

        Args:
            func (Callable): The function to benchmark.
            args (Tuple): The arguments to pass to the function.
            kwargs (Dict[str, Any]): The keyword arguments to pass to the function.
            orig_not_implemented_exception (Exception): The original exception to raise if the fallback kernel
                is not implemented.

        Returns:
            Tuple[Any, float]: A tuple containing the result of the function and
                the mean operation time in milliseconds.
        """
        # these should all be supported, just to be safe
        # avoid fallback for operators which inplace modify metadata
        # because the input fake tensors would be umodified
        if torch.Tag.inplace_view in func.tags:  # type: ignore[attr-defined]
            raise orig_not_implemented_exception

        inp_impls = {}
        flat_args, args_spec = pytree.tree_flatten((args, kwargs))
        # Don't use in_kernel_invocation_manager(fake_mode) as we want to do
        # REAL compute (not with meta device)
        with no_dispatch():

            def to_real_tensor(e):  # type: ignore[no-untyped-def]
                if cls.fake_mode.is_our_fake(e):
                    if e.dtype in cls._float_types:
                        out = torch.rand_like(e, device=e.fake_device)
                    else:
                        out = torch.ones_like(e, device=e.fake_device)
                    if e.is_sparse:
                        out._coalesced_(e.is_coalesced())
                    inp_impls[id(out)] = e
                    return out
                return e

            flat_args = [to_real_tensor(a) for a in flat_args]
            args, kwargs = pytree.tree_unflatten(flat_args, args_spec)
            r = func(*args, **kwargs)
            warmup_iters, actual_iters = 2, 3
            for _ in range(warmup_iters):
                func(*args, **kwargs)
            start_event = torch.cuda.Event(enable_timing=True)
            end_event = torch.cuda.Event(enable_timing=True)
            start_event.record(torch.cuda.current_stream())
            for _ in range(actual_iters):
                func(*args, **kwargs)
            end_event.record(torch.cuda.current_stream())
            torch.cuda.synchronize()
            cuda_time = start_event.elapsed_time(end_event)
            mean_op_time = cuda_time / actual_iters

        storages = set()

        for e in flat_args:
            if isinstance(e, torch.Tensor):
                if not e.is_sparse:
                    storages.add(e._typed_storage()._cdata)

        # TODO: also check metadata change on inputs
        # proper aliasing/metadata relationship between outputs and inputs will
        # not be set up, bc of conversion to device, unless we can reuse an
        # input impl

        def map_out(e):  # type: ignore[no-untyped-def]
            if id(e) not in inp_impls and (
                isinstance(e, torch.Tensor)
                and not e.is_sparse
                and e._typed_storage()._cdata in storages
            ):
                raise orig_not_implemented_exception

            if isinstance(e, torch.Tensor):
                if id(e) in inp_impls:
                    return inp_impls[id(e)]
                else:
                    return cls.fake_mode.fake_tensor_converter.from_real_tensor(
                        cls.fake_mode, e
                    )
            else:
                return e

        return (pytree.tree_map(map_out, r), mean_op_time)

    @classmethod
    def _benchmark_estimate(cls, func, args, kwargs) -> Tuple[Any, float]:  # type: ignore[no-untyped-def]
        """
        Estimates the runtime of a function using benchmarking.

        Args:
            func: The function to estimate.
            args: The arguments to pass to the function.
            kwargs: The keyword arguments to pass to the function.
            res: The result of the function.

        Returns:
            Tuple[Any, float]: A tuple containing the result of the function and
                the mean operation time in milliseconds.
        """
        assert isinstance(
            cls.fake_mode, FakeTensorMode
        ), "Initialize/Assign FakeTensorMode before using this function"
        mean_op_time = 0.0
        if func._overloadpacket not in _VIEW_OPS:
            try:
                res, mean_op_time = cls._maybe_run_and_benchmark_fallback_kernel(
                    func,
                    args,
                    kwargs,
                    NotImplementedError,
                )
                return (res, mean_op_time)
            except NotImplementedError:
                cls._no_fallback_kernel.add(func._overloadpacket)
        res = func(*args, **kwargs or {})
        return (res, mean_op_time)

    # Adapted from: https://github.com/pytorch/pytorch/blob/9b902b3ee3bd608a19543362b66bf06c373dd374/torch/_inductor/scheduler.py#L589  # noqa: PGH004,B950
    @classmethod
    def _roofline_estimate(cls, func, args, kwargs) -> Tuple[Any, float]:  # type: ignore[no-untyped-def]
        """
        Estimates the runtime of a function using a roofline cost model.

        Args:
            func: The function to estimate.
            args: The arguments to pass to the function.
            kwargs: The keyword arguments to pass to the function.
            out: The output of the function.

        Returns:
            Tuple[Any, float]: A tuple containing the result of the function and
                the mean operation time in milliseconds.
        """
        assert (
            torch.cuda.is_available()
        ), "Roofline estimation needs to access CUDA capabilities to make estimations"

        def get_num_bytes(t: torch.Tensor) -> int:
            """
            Calculates the memory consumption of a tensor.

            Args:
                t (torch.Tensor): The input tensor.

            Returns:
                int: The memory consumption of the tensor in bytes.
            """
            num_bytes = t.untyped_storage().nbytes()
            mem_consumed = (
                math.ceil(num_bytes / _PYTORCH_MIN_ALLOCATE) * _PYTORCH_MIN_ALLOCATE
            )
            return mem_consumed

        def get_compute_time(func_packet, args, kwargs, out, out_dtypes) -> float:  # type: ignore[no-untyped-def]
            """
            Estimates the compute time of an aten operator.

            Args:
                func_packet: The operator overload packet.
                args: The arguments to the operator.
                kwargs: The keyword arguments to the operator.
                out: The output of the operator.
                out_dtypes: The output data types.

            Returns:
                float: The estimated compute time in nanoseconds.
            """
            if func_packet in flop_registry:
                assert (
                    len(out_dtypes) == 1
                ), f"Only support single out dtype got {out_dtypes} for {func_packet}"
                dtype = out_dtypes.pop()
                # This actually gives peta-FLOPs/s hence multiply by 1e15 to get the FLOPs/s
                peak_gpu_flops = get_device_tflops(dtype) * 1e15
                # We can expect to achieve 75% of theoretical peak flops
                factor = 0.75
                peak_empirical_flops = factor * peak_gpu_flops
                flop_count_func = flop_registry[func_packet]
                # We divide by a factor of 2 to get the MACs (multiply and accumulate)
                flop_count = flop_count_func(*args, **kwargs, out_val=out) / 2
                # We multiply by 1e9 to get the time in nano seconds
                compute_time = (flop_count / peak_empirical_flops) * 1e9
                return compute_time
            return 0.0

        def get_transfer_time(flat_args_kwargs, flat_outs) -> float:  # type: ignore[no-untyped-def]
            """
            Estimates the memory transfer time of input and output tensors.

            Args:
                flat_args_kwargs (List[torch.Tensor]): The flat list of arguments and keyword arguments.
                flat_outs (List[torch.Tensor]): The flat list of outputs.

            Returns:
                float: The estimated memory transfer time in nanoseconds.
            """
            gpu_memory_bandwidth = get_gpu_dram_gbps()
            read_bytes = sum(
                get_num_bytes(t)
                for t in flat_args_kwargs
                if isinstance(t, torch.Tensor)
            )
            write_bytes = sum(
                get_num_bytes(t) for t in flat_outs if isinstance(t, torch.Tensor)
            )
            counted_bytes = read_bytes + write_bytes
            # The GPU memory bandwidth is in GB/s so the transfer time is in nanoseconds
            transfer_time = counted_bytes / gpu_memory_bandwidth
            return transfer_time

        # Roofline Cost Model Explanation

        # The roofline cost model estimates the execution time of an operator based on
        # the device's empirical maximum FLOPs/sec (pi) and device DRAM bandwidth (beta).

        # Variables:
        # - pi: Maximum empirical FLOPs/sec of the device
        # - beta: Maximum empirical device DRAM bandwidth (bytes/sec) of the device
        # - I: Arithmetic intensity of the operator (FLOPs/bytes)
        # - op_flops: FLOPs required by the operator
        # - op_bytes: Bytes transferred to and from DRAM for the operator

        # Calculation Steps:
        # 1. Calculate arithmetic intensity: I = op_flops / op_bytes
        # 2. Calculate estimated FLOPs/sec: est_flops_sec = min(pi, beta * I)
        # 3. Calculate estimated operator time: estimated_op_time = op_flops / est_flops_sec
        #    This simplifies to: estimated_op_time = max(op_flops / pi, op_flops / (beta * I))
        #    Further simplifying: estimated_op_time = max(op_flops / pi, op_bytes / beta)

        # Simplified Formulas:
        # - compute_time = op_flops / pi
        # - transfer_time = op_bytes / beta
        # - estimated_op_time = max(compute_time, transfer_time)

        kwargs = kwargs if kwargs else {}
        out = func(*args, **kwargs)
        op_time = 0.0
        func_packet = func._overloadpacket
        if func_packet not in _IGNORE_OPS:
            flat_args_kwargs, args_spec = pytree.tree_flatten((args, kwargs))
            flat_outs, out_spec = pytree.tree_flatten(out)
            transfer_time = get_transfer_time(flat_args_kwargs, flat_outs)

            out_dtypes = {
                t.dtype
                for t in flat_outs
                if isinstance(t, torch.Tensor) and t.dtype in cls._float_types
            }

            args, kwargs = pytree.tree_unflatten(flat_args_kwargs, args_spec)
            out = pytree.tree_unflatten(flat_outs, out_spec)

            compute_time = get_compute_time(func_packet, args, kwargs, out, out_dtypes)
            # We get the estimated time as the max of the transfer time and
            # compute time. We divide by 1e6 to get the time in ms
            op_time = max(transfer_time, compute_time) / 1e6

        return (out, op_time)

    def display_modulewise_stats(self, depth: int = 2) -> None:
        """
        Displays module-wise statistics collected by ``RuntimeEstimator``.

        Prints the pre-forward and pre-backward execution orders.
        Displays the module-wise forward and backward runtimes in milliseconds.

        Args:
            depth (int): The maximum depth of module hierarchy to display (default to 2).
        """
        print("Pre-Forward Execution Order: ")
        for mod_fqn in self.mod_fw_pre_order:
            mod_depth = mod_fqn.count(".") + 1
            if mod_depth > depth:
                continue
            print(mod_fqn)
        print("Pre-Backward Execution Order: ")
        for mod_fqn in self.mod_bw_pre_order:
            mod_depth = mod_fqn.count(".") + 1
            if mod_depth > depth:
                continue
            print(mod_fqn)
        for mod_fqn, runtimes in self.mod_runtimes.items():
            mod_depth = mod_fqn.count(".") + 1
            if mod_depth > depth:
                continue
            print(
                f"{mod_fqn} fw: {runtimes.get('fw', 0.0):.3f}ms bw: {runtimes.get('bw', 0.0):.3f}ms"
            )

    def __torch_dispatch__(self, func, types, args=..., kwargs=None):  # type: ignore[no-untyped-def]
        # TODO: @sanketpurandare: Flatten tensors by desugaring the tensor subclasses
        # TODO: @sanketpurandare: Add logic for incorporating communication time
        res, op_time = self._estimate(func, args, kwargs)
        for par in self._mod_tracker.parents:
            if self._mod_tracker.is_bw:
                self.mod_runtimes[par]["bw"] += op_time
            else:
                self.mod_runtimes[par]["fw"] += op_time
        self.total_runtime += op_time
        return res

    def __call__(self, estimate_mode_type: str) -> Self:
        """
        Sets the estimate mode type.

        Currently supported modes:
            - "operator-level-benchmark": Estimates runtime using operator benchmarking.
            - "operator-level-cost-model": Estimates runtime using roofline cost model.

        Args:
            estimate_mode_type (str): The type of estimate mode to use.

        Returns:
            RuntimeEstimator: The runtime estimator instance.

        Raises:
            NotImplementedError: If the estimate mode type is not supported.
        """
        if estimate_mode_type == "operator-level-benchmark":
            self._estimate = RuntimeEstimator._benchmark_estimate
        elif estimate_mode_type == "operator-level-cost-model":
            self._estimate = RuntimeEstimator._roofline_estimate
        else:
            raise NotImplementedError(
                f"estimate_mode_type {estimate_mode_type} not supported"
            )
        self._estimate_mode_type = estimate_mode_type
        return self

    def __enter__(self) -> Self:
        fake_mode = active_fake_mode()
        assert isinstance(
            fake_mode, FakeTensorMode
        ), "No FakeTensorMode found, designed to used under FakeTensorMode"
        RuntimeEstimator.fake_mode = fake_mode
        self.total_runtime = 0.0
        self.mod_runtimes = defaultdict(lambda: defaultdict(lambda: 0.0))
        self.mod_fw_pre_order.clear()
        self.mod_bw_pre_order.clear()
        self.mod_fw_post_order.clear()
        self.mod_bw_post_order.clear()
        self._mod_tracker.register_user_hooks(
            pre_fw_hook=lambda mod, inp: self.mod_fw_pre_order.append(
                self._mod_tracker.get_known_fqn(mod)
            ),
            pre_bw_hook=lambda mod, g_out: self.mod_bw_pre_order.append(
                self._mod_tracker.get_known_fqn(mod)
            ),
            post_fw_hook=lambda mod, inp, out: self.mod_fw_post_order.append(
                self._mod_tracker.get_known_fqn(mod)
            ),
            post_bw_hook=lambda mod, g_inp: self.mod_bw_post_order.append(
                self._mod_tracker.get_known_fqn(mod)
            ),
        )
        self._mod_tracker.__enter__()
        super().__enter__()
        return self

    def __exit__(self, *args: Any) -> None:
        print(
            f"Estimated ({self._estimate_mode_type})"
            f"total_time: {self.total_runtime:.3f} ms"
        )
        if len(self._no_fallback_kernel) > 0:
            print("no_fallback_kernel: ", list(self._no_fallback_kernel))
        super().__exit__(*args)
        self._mod_tracker.clear_user_hooks()
        self._mod_tracker.__exit__()