File: sac_estimator.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (997 lines) | stat: -rw-r--r-- 43,560 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
import math
import os
import sys
import warnings
from collections import OrderedDict
from dataclasses import astuple, dataclass
from typing import Any, Dict, List, NamedTuple, Optional, Set, Tuple
from typing_extensions import Self

import torch
from torch import nan, nn, UntypedStorage
from torch._guards import active_fake_mode
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.distributed._tools.mod_tracker import ModTracker
from torch.distributed._tools.runtime_estimator import RuntimeEstimator
from torch.testing._internal.composite_compliance import (
    is_inplace,
    is_inplace_view_fn,
    is_view_fn,
)
from torch.utils._python_dispatch import (
    is_traceable_wrapper_subclass,
    TorchDispatchMode,
)
from torch.utils._pytree import tree_flatten
from torch.utils.checkpoint import SAC_IGNORED_OPS


__all__ = ["SACEstimator", "SACStats", "MSPS", "SACTradeOffStats", "SACGreedyOrderMeta"]
aten = torch.ops.aten

_ADDITIONAL_IGNORED_OPS = {
    aten.lift_fresh.default,  # type: ignore[attr-defined]
    torch.ops.profiler._record_function_exit._RecordFunction,  # type: ignore[attr-defined]
    aten.clone.default,  # type: ignore[attr-defined] # seems needed for torch.compile
}
OPS_TO_ALWAYS_SKIP = SAC_IGNORED_OPS | _ADDITIONAL_IGNORED_OPS
# This value is hard-coded here:
# https://github.com/pytorch/pytorch/blob/5fba5d83f0703ff8077ab65448a998e9ad6598fd/c10/cuda/CUDACachingAllocator.cpp#L117
_PYTORCH_MIN_ALLOCATE = (
    2**9 if int(os.environ.get("PYTORCH_NO_CUDA_MEMORY_CACHING", 0)) == 0 else 1
)


def _get_untyped_storages(t: torch.Tensor) -> Set[torch.UntypedStorage]:
    """
    Retrieves untyped storages from a `torch.Tensor` or one of its traceable wrapper-subclass.

    Args:
       t (torch.Tensor): Input `torch.Tensor` or traceable wrapper-subclass of `torch.Tensor`.

    Returns:
        Set[torch.UntypedStorage]: Set of untyped storages.

    Warns:
        UserWarning: If the flattened input is not a tensor or traceable wrapper-subclass.
    """
    unflattened_tensors = [t]
    flattened_tensor_storages = set()
    while len(unflattened_tensors) > 0:
        obj = unflattened_tensors.pop()
        if is_traceable_wrapper_subclass(obj):
            attrs, _ = obj.__tensor_flatten__()  # type: ignore[attr-defined]
            unflattened_tensors.extend([getattr(obj, attr) for attr in attrs])
        else:
            if not hasattr(obj, "untyped_storage"):
                warnings.warn(
                    f"Expected a tensor or a traceable wrapper-subclass of tensor, but got {type(obj)}",
                    category=UserWarning,
                    stacklevel=2,
                )
            else:
                flattened_tensor_storages.add(obj.untyped_storage())
    return flattened_tensor_storages


def _display_stats_tabular(headers: List[str], table_data: List[List[Any]]) -> None:
    try:
        from tabulate import tabulate
    except ImportError as err:
        raise ImportError("Please install tabulate.") from err

    # Use tabulate to print the table
    print(tabulate(table_data, headers=headers, tablefmt="rst"))


# Based on:
# https://github.com/fairinternal/xformers/blob/0ded5697a2ea15711ce45131002d04e72053cc6d/xformers/checkpoint.py#L62
@dataclass
class _SACMetadata:
    """
    Stores metadata for a single operator for SAC.

    Attributes:
        func (Any): The operator function.
        time_taken (float): The time taken by the operator.
        memory_used (float): The memory used by the operator.
        curr_idx (int): The current operator index.
        output_ids (Tuple[int, ...]): The storage IDs of the operator's outputs.
        inplace_info (Tuple[int, ...]): Tuple of self and parent operator for in-place operator.
        is_view_like (bool): Whether the operator is view-like.
        is_rand_op (bool): Whether the operator is a random operator.
    """

    func: Any
    time_taken: float
    memory_used: float
    curr_idx: int
    output_ids: Tuple[int, ...]
    inplace_info: Tuple[int, ...]
    is_view_like: bool
    is_rand_op: bool


@dataclass
class _SACModMetadata:
    """
    Stores metadata for a module for SAC.

    Attributes:
        start_idx (int): The starting index of the module's operators.
        force_store_random (bool): Whether to force store random operators in the module.
        sac_metadata (List[_SACMetadata]): List of metadata for each operator in the module.
    """

    start_idx: int
    force_store_random: bool
    sac_metadata: List[_SACMetadata]


@dataclass
class SACStats:
    """
    A class for storing Activation Checkpointing statistics corresponding to a module.

    Attributes:
        func_names (List[str]): List of operator names.
        runtimes (List[float]): List of operator runtimes in millliseconds.
        memory (List[int]): List of operator memory usage in bytes.
        view_like_ops (List[int]): Indices of view-like operators.
        rand_ops (List[int]): Indices of random operators.
        saved_autograd_ops (List[int]): Indices of operator results saved by autograd engine.
        inplace_ops (List[Tuple[int, int]]): Tuple of indices of op and its first parent for Inplace operators.
        force_store_random (bool): Whether to force store random operator results.
    """

    func_names: List[str]
    runtimes: List[float]
    memory: List[int]
    view_like_ops: List[int]
    rand_ops: List[int]
    saved_autograd_ops: List[int]
    inplace_ops: List[Tuple[int, int]]
    force_store_random: bool


class MSPS(NamedTuple):
    """
    Represents Memory and Runtime Statistics for an operator/operator group.

    Attributes:
        func_names (Set[str]): Set of operator/operator group names.
        op_idx (int): Operator index (group head index incase of operator groups).
        memory (int): Memory usage in bytes.
        runtime (float): Runtime in milliseconds.
        msps (float): Memory per second calculated as memory/runtime.
    """

    func_names: Set[str]
    op_idx: int
    memory: int
    runtime: float
    msps: float


@dataclass
class SACTradeOffStats:
    """
    Stores statistics for activation-checkpointing trade-off.

    Attributes:
        n_segments (int): Number of piecewise linear segments fitted to the trade-off curve.
        slopes (List[float]): Slopes of the pieces of linear segments fitted to the trade-off curve.
        intercepts (List[float]): Intercepts of the of the pieces of linear segments fitted to the trade-off curve.
        fit_breaks (List[float]): Breakpoints of the of the pieces of linear segments fitted to the trade-off curve.
        tradeoff_curve (OrderedDict[float, float]): Trade-off curve data of memory discarded vs recomputation time.
        sac_memory (int): Total memory of operations available for activation checkpointing in bytes.
        sac_runtime (float): Total runtime of operations available for activation checkpointing in milliseconds.
    """

    n_segments: int
    slopes: List[float]
    intercepts: List[float]
    fit_breaks: List[float]
    tradeoff_curve: OrderedDict[float, float]
    sac_memory: int
    sac_runtime: float


@dataclass
class SACGreedyOrderMeta:
    """
    Stores metadata for Greedy-order SAC.

    Attributes:
        recomputed_ops (Set[int]): Set of operator indices to be recomputed.
        stored_ops (Set[int]): Set of operator indices to be stored.
        inplace_op_groups (Dict[int, Set[int]]): Dictionary of inplace operator groups from group-head to operators.
        random_ops_group (Dict[int, Set[int]]): Dictionary of random op group head to random ops.
        msps_meta (List[MSPS]): List of Memory and Runtime Statistics for operators.
    """

    recomputed_ops: Set[int]
    stored_ops: Set[int]
    inplace_op_groups: Dict[int, Set[int]]
    random_ops_group: Dict[int, Set[int]]
    msps_meta: List[MSPS]


class SACEstimator(TorchDispatchMode):
    """
    Estimates the memory and recomputation time trade-offs for applying Selective Activation Checkpointing (SAC).

    This class provides a ``TorchDispatchMode`` based context manager that can be used to estimate the memory and
    runtime trade-offs of functions or ``torch.nn.Module``s for Selective Activation Checkpointing (SAC). It provides
    detailed statistics and metadata information for operators of each module and provides a greedy order for selecting
    the operators to be recomputed/checkpointed.  It also constructs the per-module trade-off graph of discarded memory
    vs recomputation time for the obtained greedy order. Using ``RuntimeEstimator`` under the hood, it supports two
    estimation modes, `operator-level-benchmark` and (`operator-level-cost-model` (roofline model).

    Attributes:
        sac_mod_stats (Dict[str, SACStats]): Dictionary from module FQN (fuly qualified name) to ``SACStats``.
        sac_mod_tradeoff_stats (Dict[str, SACTradeOffStats]): Dictionary from module FQN to ``SACTradeOffStats``.
        sac_mod_greedy_order_meta (Dict[str, SACGreedyOrderMeta]): Dictionary from module FQN to ``SACGreedyOrderMeta``.

    Note:
        1) This class is designed to be used under ``FakeTensorMode``.
        2) Currently, it only supports estimation of compute time and memory usage, and does not consider communication.

    Example usage:

        .. code-block:: python

            sac_estimator = SACEstimator()
            with FakeTensorMode():
                module = ...
                inp = ...
                with sac_estimator('operator-level-cost-model'):
                    output = module(inp)
                sac_estimator.display_modulewise_sac_stats(depth=4, print_tabular=True)
    """

    def __init__(self) -> None:
        self.sac_mod_stats: Dict[str, SACStats] = {}
        self.sac_mod_tradeoff_stats: Dict[str, SACTradeOffStats] = {}
        self.sac_mod_greedy_order_meta: Dict[str, SACGreedyOrderMeta] = {}
        self._mod_tracker = ModTracker()
        self._sac_metadata: List[_SACMetadata] = []
        self._sac_mod_metadata: Dict[str, _SACModMetadata] = {}
        self._leaf_modules: Set[str] = set()
        self._saved_tensor_hook_ctx = torch.autograd.graph.saved_tensors_hooks(
            self._pack_hook, lambda x: x
        )
        self._saved_tensor_ids: Set[int] = set()
        self._estimate_runtime = RuntimeEstimator._roofline_estimate

    def _pack_hook(self, x: torch.Tensor) -> torch.Tensor:
        # Hook function to track underlying storage IDs of tensors
        # Updates the _saved_tensor_ids set with the IDs of the tensor's storages
        # Used in conjunction with torch.autograd.graph.saved_tensors_hooks
        untyped_storages = _get_untyped_storages(x)
        storage_ids = (hash(st) for st in untyped_storages)
        self._saved_tensor_ids.update(storage_ids)
        return x

    def _pre_fw_hook(self, mod: nn.Module, inputs: Any) -> None:
        # Pre-forward hook function to prepare module metadata
        # Tracks module FQN, force store random flag, and ``SACModMetadata``
        # Initializes metadata for non-leaf modules, marks leaf modules
        mod_fqn = self._mod_tracker.get_known_fqn(mod)
        assert mod_fqn is not None
        num_children = sum(1 for _ in mod.children())
        if num_children > 0:
            force_store_random = self._get_force_store_random(inputs)
            self._sac_mod_metadata[mod_fqn] = _SACModMetadata(
                start_idx=len(self._sac_metadata),
                force_store_random=force_store_random,
                sac_metadata=[],
            )
        else:
            self._leaf_modules.add(mod_fqn)

    def _post_fw_hook(self, mod: nn.Module, inputs: Any, outputs: Any) -> None:
        # 1. Retrieves the module's FQN and checks if it's a leaf module
        # 2. If not a leaf module, computes:
        #    - ``SACStats`` using the module's metadata and force store random flag
        #    - ``SACGreedyOrderMeta`` using the computed SAC statistics
        mod_fqn = self._mod_tracker.get_known_fqn(mod)
        assert mod_fqn is not None
        if mod_fqn in self._leaf_modules:
            return
        else:
            self.sac_mod_stats[mod_fqn] = self._get_sac_stats(
                data=self._sac_mod_metadata[mod_fqn].sac_metadata,
                force_store_random=self._sac_mod_metadata[mod_fqn].force_store_random,
            )
            self.sac_mod_greedy_order_meta[mod_fqn] = self._get_greedy_order_meta(
                self.sac_mod_stats[mod_fqn]
            )

    def _get_force_store_random(self, inputs: Any) -> bool:
        flat_inputs, _ = tree_flatten(inputs)
        return all(not isinstance(x, torch.Tensor) for x in flat_inputs)

    def _get_sac_stats(
        self, data: List[_SACMetadata], force_store_random: bool
    ) -> SACStats:
        # 1. Ignore the operations that should be skipped by SAC such as aten.detach.default because autograd
        # inserts those during backward and it breaks the fwd-bwd alignment
        filtered_data = [x for x in data if x.func not in OPS_TO_ALWAYS_SKIP]

        (
            ops,
            runtimes_,
            memory_,
            new_ids,
            output_ids,
            inplace_ops_,
            view_like_ops_,
            rand_ops_,
        ) = zip(*[astuple(x) for x in filtered_data], strict=True)

        # 2. Extract the metadata information
        runtimes = list(runtimes_)
        memory = list(memory_)
        func_names = [op._overloadpacket.__name__ for op in ops]
        view_like_ops = [i for i, x in enumerate(view_like_ops_) if x]
        rand_ops = [i for i, x in enumerate(rand_ops_) if x]
        saved_autograd_ops = [
            i
            for i, out_ids in enumerate(output_ids)
            if set(out_ids).issubset(self._saved_tensor_ids)
        ]

        # 3. Remap the inplace indices as we have removed OPS_TO_ALWAYS_SKIP
        # FIXME @sanketpurandare: Fix this by changing the parent of the inplace-op
        # to itself if the original parent is in OPS_TO_ALWAYS_SKIP.
        try:
            inplace_ops = [tuple(map(new_ids.index, x)) for x in inplace_ops_ if x]
        except ValueError as err:
            raise ValueError(
                f"The remapping of inplace ops failed since one of the inplace op parents"
                f" must have been present in {OPS_TO_ALWAYS_SKIP}"
            ) from err

        # 4. The last operation is always stored as the output of the checkpoint
        # block, so we can avoid recomputing it. We set the memory to zero
        # instead of adding a new constraint because we want both the 0 and 1
        # endpoints for memory_budget to be valid
        # FIXME @sanketpurandare: this heuristic for finding the last non-view non-inplace op
        # might not always be correct, which would yield suboptimal policies
        last_op = len(ops) - 1
        skip_ops_ = set(view_like_ops) | set({x[0] for x in inplace_ops})
        reversed_skip_ops = sorted(skip_ops_, reverse=True)
        for op in reversed_skip_ops:
            if op == last_op:
                last_op -= 1

        memory[last_op] = 0

        # 5. Create a single ``SACStats`` object for the entire block of ``_SACMetadata``.
        return SACStats(
            func_names=func_names,
            runtimes=runtimes,
            memory=memory,
            view_like_ops=view_like_ops,
            rand_ops=rand_ops,
            saved_autograd_ops=saved_autograd_ops,
            inplace_ops=inplace_ops,  # type: ignore[arg-type]
            force_store_random=force_store_random,
        )

    def _get_inplace_metadata(
        self, func: Any, out_storages: Set[UntypedStorage]
    ) -> Tuple[int, Tuple[int, ...], Dict[str, Tuple[int, ...]]]:
        # 1. Get the current index of the metadata obtained so far
        curr_idx = len(self._sac_metadata)
        # 2. Get the set of active modules that are not leaf
        active_mod_fqns: Set[str] = {
            par for par in self._mod_tracker.parents if par not in self._leaf_modules
        }
        # 3. Output ids are the identifies of the storage objects corresponding to the tensors
        output_ids = tuple(hash(st) for st in out_storages)
        # 4. If the function is not inplace, return
        if not is_inplace(func):
            return curr_idx, output_ids, {mod_fqn: () for mod_fqn in active_mod_fqns}

        op_idx = curr_idx
        # 5. Initialize the parent op ids of the inplace op for each of the active modules
        mod_op_parent_idxs: Dict[str, int] = {
            mod_fqn: -1 for mod_fqn in active_mod_fqns
        }
        for i, d in enumerate(self._sac_metadata):
            # 6. Find the first occurence of a tensor corresponding to each module that
            # shares the same storage as the current tensor
            past_output_ids = d.output_ids
            if set(output_ids).issubset(set(past_output_ids)):
                for mod_fqn, op_parent_idx in mod_op_parent_idxs.items():
                    if op_parent_idx == -1:
                        if acm_stats := self._sac_mod_metadata.get(mod_fqn, None):
                            if i >= acm_stats.start_idx:
                                mod_op_parent_idxs[mod_fqn] = i
                        else:
                            assert mod_fqn == "Global"
                            mod_op_parent_idxs[mod_fqn] = i
        # 7. If no parent tensor is found, then it's probably an inplace op on the arguments
        # so one can just store the current-op idx as parent idx
        for mod_fqn, op_parent_idx in mod_op_parent_idxs.items():
            if op_parent_idx < 0:
                mod_op_parent_idxs[mod_fqn] = op_idx
        mod_inplace_info = {
            mod_fqn: (op_idx, mod_op_parent_idxs[mod_fqn])
            for mod_fqn in active_mod_fqns
        }
        return curr_idx, output_ids, mod_inplace_info  # type: ignore[return-value]

    def __torch_dispatch__(  # type: ignore[no-untyped-def]
        self, func, types, args=..., kwargs=None
    ):
        # 1. Get the runtime estimate
        out, op_time = self._estimate_runtime(func, args, kwargs)
        flat_outs, _ = tree_flatten(out)
        out_storages_cuda: Set[UntypedStorage] = set()
        out_storages_cpu: Set[UntypedStorage] = set()
        cuda_devices: Set[torch.device] = set()
        for o in flat_outs:
            if isinstance(o, torch.Tensor):
                if o.device.type == "cuda":
                    out_storages_cuda.update(_get_untyped_storages(o))
                    cuda_devices.add(o.device)
                else:
                    out_storages_cpu.update(_get_untyped_storages(o))

        # Check if there's more than 1 CUDA device
        assert (
            len(cuda_devices) <= 1
        ), f"{func.__name__}'s output has more than 1 CUDA devices {cuda_devices}"

        # 2. Get the memory consumed by output
        nbytes_cuda = sum(
            math.ceil(st.nbytes() / _PYTORCH_MIN_ALLOCATE) * _PYTORCH_MIN_ALLOCATE
            for st in out_storages_cuda
        )
        nbytes_cpu = sum(st.nbytes() for st in out_storages_cpu)
        nbytes = nbytes_cuda + nbytes_cpu
        # 3. Get the current operator index, output storage identifiers and inplace metadata
        out_storages = out_storages_cuda | out_storages_cpu
        curr_idx, output_ids, mod_inplace_info = self._get_inplace_metadata(
            func, out_storages
        )
        # 4. Determine if the function is in-place, random-op or a view-like
        is_view_like = is_view_fn(func) or is_inplace_view_fn(func)
        is_rand_op = torch.Tag.nondeterministic_seeded in func.tags
        if is_view_like:
            nbytes = 0
        # sdpa has non-deterministic seed, but might be deterministic
        # if no dropout is applied
        if func.overloadpacket.__name__ == "_scaled_dot_product_flash_attention":
            is_rand_op = kwargs.get("dropout_p", 0) != 0
        # 5. Create metadata information per active non-leaf module
        for mod_fqn in self._mod_tracker.parents:
            if mod_fqn in self._leaf_modules:
                continue
            acm = _SACMetadata(
                func=func,
                time_taken=op_time,
                memory_used=nbytes,
                curr_idx=curr_idx,
                output_ids=output_ids,
                inplace_info=mod_inplace_info[mod_fqn],
                is_view_like=is_view_like,
                is_rand_op=is_rand_op,
            )
            if acm_stats := self._sac_mod_metadata.get(mod_fqn, None):
                acm_stats.sac_metadata.append(acm)
            else:
                assert (
                    mod_fqn == "Global"
                ), f"Module {mod_fqn} not found in AC Mod Stats"
                self._sac_metadata.append(acm)

        return out

    def _get_greedy_order_meta(self, sac_stats: SACStats) -> SACGreedyOrderMeta:
        # An inplace-op group is a set of inplace-ops that operate on the same underlying tensor storage.
        # 1. inplace_op_groups: A dictionary from the top-most parent of inplace-ops to the inplace-ops in the group
        #   The top-most op can itself be an inplace-op or can be a non-inplace op.
        # 2. inplace_op_to_group_head: A dictionary that maps all the inplace-ops to their respective group heads.
        inplace_op_groups: Dict[int, Set[int]] = {}
        inplace_op_to_group_head: Dict[int, int] = dict(sac_stats.inplace_ops)

        # Initialize inplace_op_groups using inplace_op_to_group_head
        for op_idx, group_head_idx in inplace_op_to_group_head.items():
            op_group = inplace_op_groups.setdefault(group_head_idx, {group_head_idx})
            op_group.add(op_idx)

        # Like inplace ops, all of the random ops in the function/module should all be either recomputed or saved
        # as a group. This is because, they affect the ranom seed generator. If force_store_random is set True,
        # all of the random ops will be stored by default. For easy of manageability, we store the top-most random op
        # as the leader of the random_ops_group.
        random_ops_group: Dict[int, Set[int]] = {}
        random_group_head_idx = min(sac_stats.rand_ops, default=-1)
        has_rand_ops = bool(sac_stats.rand_ops)
        if has_rand_ops:
            random_ops_group[random_group_head_idx] = set(sac_stats.rand_ops)

        # 1. Random ops are stored if force_store_random is set
        # 2. View-like ops are recomputed by default
        # 3. For inplace_op_groups:
        #   a) If the head of this group is an inplace op, then we have to store the entire group.
        #   b) If any op in the group is random and force_store_random is set, then entire group will be stored.
        #   c) If none of ops in the group are random and the head of the group is not an in-place op, then
        #       this group can be considered for recomputation in its entireity
        stored_ops: Set[int] = set()
        recomputed_ops: Set[int] = set()
        # Case 1:
        if has_rand_ops and sac_stats.force_store_random:
            stored_ops.add(random_group_head_idx)
        # Case 2:
        recomputed_ops.update(set(sac_stats.view_like_ops))

        for group_head_idx, op_group in inplace_op_groups.items():
            # Case 3a:
            if group_head_idx in inplace_op_to_group_head:
                stored_ops.add(group_head_idx)
            # Case 3b:
            if (
                sac_stats.force_store_random & len(op_group & set(sac_stats.rand_ops))
                > 0
            ):
                stored_ops.add(group_head_idx)

        # The potential recompute candidates are populated as:
        recompute_candidates: Set[int] = set()
        # 1) The random group head if it is not stored
        if has_rand_ops and random_group_head_idx not in stored_ops:
            recompute_candidates.add(random_group_head_idx)
        # 2) The in-place op group heads that are not stored
        recompute_candidates.update(set(inplace_op_groups.keys()) - stored_ops)
        # 3) The non-inplace and non-random ops that are neither stored nor recomputed by default
        recompute_candidates.update(
            set(range(len(sac_stats.memory)))
            - recomputed_ops
            - stored_ops
            - set(inplace_op_to_group_head.keys())
            - set(sac_stats.rand_ops)
        )

        # We define msps for a recomp candidate as the ratio of memory/runtime aka memory savings per second
        msps_meta: List[MSPS] = []
        for cand_idx in recompute_candidates:
            op_indices = {cand_idx}
            if cand_idx in inplace_op_groups:
                op_indices.update(inplace_op_groups[cand_idx])
            if has_rand_ops and cand_idx == random_group_head_idx:
                op_indices.update(sac_stats.rand_ops)

            mem = sum(sac_stats.memory[op_idx] for op_idx in op_indices)
            runtime = sum(sac_stats.runtimes[op_idx] for op_idx in op_indices)
            func_names = {sac_stats.func_names[op_idx] for op_idx in op_indices}
            msps = (mem / runtime) if runtime > 0 else sys.float_info.max
            msps_meta.append(MSPS(func_names, cand_idx, mem, runtime, msps))
        # We choose canidates to be recomputed based on increasing msps
        msps_meta.sort(key=lambda x: x.msps, reverse=True)
        return SACGreedyOrderMeta(
            recomputed_ops, stored_ops, inplace_op_groups, random_ops_group, msps_meta
        )

    def _get_sac_tradeoff_pwlf_stats(
        self,
        sac_stats: SACStats,
        greedy_order_meta: SACGreedyOrderMeta,
        n_segments: int = 2,
        save_tradeoff_graph: bool = False,
        filename: str = "ac_tradeoff",
    ) -> SACTradeOffStats:
        try:
            import numpy as np  # type: ignore[import-not-found]
            import pwlf  # type: ignore[import-untyped, import-not-found]
        except ImportError as err:
            raise ImportError("Please install pwlf and numpy package.") from err

        stored_ops, recomputed_ops, inplace_op_groups, random_ops_group, msps_meta = (
            greedy_order_meta.stored_ops,
            greedy_order_meta.recomputed_ops,
            greedy_order_meta.inplace_op_groups,
            greedy_order_meta.random_ops_group,
            greedy_order_meta.msps_meta,
        )
        # 1. Intitialize the discarded memory and recomputation runtime to sum of already chosen recomputed_ops
        recomp_indices: Set[int] = set()
        for r_idx in recomputed_ops:
            recomp_indices.add(r_idx)
            if r_idx in inplace_op_groups:
                recomp_indices.update(inplace_op_groups[r_idx])
            if r_idx in random_ops_group:
                recomp_indices.update(random_ops_group[r_idx])

        discarded_mem = sum(sac_stats.memory[op_idx] for op_idx in recomp_indices)
        recomp_runtime = sum(sac_stats.runtimes[op_idx] for op_idx in recomp_indices)
        # 2. Initialize the max recomputation time and total recomputation memory
        sac_runtime = sum(sac_stats.runtimes)
        sac_memory = sum(sac_stats.memory)
        # 3. Tradeoff curve stores the KV pair of the dicarded memory to total memory and,
        # recomputation time to total runtime incurred.
        delta = 1e-2
        tradeoff_curve = OrderedDict()
        # 4. Initialize the trade-off curve with the stats of of already chosen recomputed_ops
        tradeoff_curve[(discarded_mem / sac_memory) + delta] = (
            recomp_runtime / sac_runtime
        )
        # 5. Update the trade-off curve with memory and runtime stats of SAC candidates in the
        # greedy order of their ``MSPS``.
        for cand in msps_meta:
            discarded_mem += cand.memory
            recomp_runtime += cand.runtime
            tradeoff_curve[(discarded_mem / sac_memory) + delta] = (
                recomp_runtime / sac_runtime
            )
        # 6. Finally, we add the memory and recomputation time of the always stored ops.
        stored_indices: Set[int] = set()
        for s_idx in stored_ops:
            stored_indices.add(s_idx)
            if s_idx in inplace_op_groups:
                stored_indices.update(inplace_op_groups[s_idx])
            if s_idx in random_ops_group:
                stored_indices.update(random_ops_group[s_idx])
        discarded_mem += sum(sac_stats.memory[op_idx] for op_idx in stored_indices)
        recomp_runtime += sum(sac_stats.runtimes[op_idx] for op_idx in stored_indices)
        tradeoff_curve[(discarded_mem / sac_memory) + delta] = (
            recomp_runtime / sac_runtime
        )
        x_ = list(tradeoff_curve.keys())
        y_ = list(tradeoff_curve.values())
        # 7. We shift the y values to left and x values to right to upperbound the trade-off function
        # TODO: Write a better explanation why this needs to be done
        x = x_[: len(x_) - 1]
        y = y_[1:]
        tradeoff_pwlf = pwlf.PiecewiseLinFit(x, y)
        # 8. Fit a piecewise linear function with the specified number of segments to the trade-off curve.
        n_segments = max(min(len(x) - 2, n_segments), 1)
        tradeoff_pwlf.fit(n_segments=n_segments)

        # save prediction graph
        def save_prediction_graph(
            pwlf_: pwlf.PiecewiseLinFit, x: List[float], y: List[float], filename: str
        ) -> None:
            try:
                import matplotlib.pyplot as plt  # type: ignore[import-not-found]
                import numpy as np  # type: ignore[import-not-found]
            except ImportError as err:
                raise ImportError(
                    "Install matplotlib and numpy using pip: pip install matplotlib numpy"
                ) from err
            # predict for the determined points
            xHat = np.linspace(min(x), max(x), num=10000)
            yHat = pwlf_.predict(xHat)

            # plot the results
            plt.figure()
            plt.plot(x, y, "o", label="Shifted")
            plt.plot(xHat, yHat, "-", label="Predicted")
            plt.plot(x_, y_, "x", label="Original")
            plt.ylabel("Recomp time / Total recomp time")
            plt.xlabel("Memory discarded / Total memory")
            plt.legend()
            plt.title(f"{filename}")
            plt.suptitle(
                f"Total Memory = {sac_memory} B Total Runtime = {sac_runtime:.4f} ms",
                fontsize=10,
            )
            folder_name = "tradeoff_graphs"
            if not os.path.exists(folder_name):
                os.makedirs(folder_name)
            # Save the plots in the folder
            plt.savefig(os.path.join(folder_name, f"{filename}.png"))

        if save_tradeoff_graph:
            save_prediction_graph(tradeoff_pwlf, x, y, filename)
        # 9. Obtain the slopes, intercepts and breakpoints of the fitted piecewise linear functions
        slopes = tradeoff_pwlf.calc_slopes().tolist()
        assert isinstance(tradeoff_pwlf.intercepts, np.ndarray) and isinstance(
            tradeoff_pwlf.fit_breaks, np.ndarray
        )
        intercepts = tradeoff_pwlf.intercepts.tolist()
        fit_breaks = tradeoff_pwlf.fit_breaks.tolist()
        return SACTradeOffStats(
            n_segments=n_segments,
            slopes=slopes,
            intercepts=intercepts,
            fit_breaks=fit_breaks,
            tradeoff_curve=tradeoff_curve,
            sac_memory=sac_memory,
            sac_runtime=sac_runtime,
        )

    def display_sac_stats(
        self, sac_stats: SACStats, print_tabular: bool = False
    ) -> None:
        """
        Displays the SAC statistics.

        Args:
            sac_stats (SACStats): The SAC statistics to display.
            print_tabular (bool, optional): Whether to print the statistics in a tabular format. Defaults to False.

        Prints:
            1. Total Memory: The total memory usage in bytes.
            2. Total Runtime: The total runtime in milliseconds.
            3. Store Random: A flag indicating whether to force store random operator results.

            Followed by a table with the following columns:
            1. Op Idx: The operator index.
            2. Op Name: The operator name.
            3. Runtimes (ms): The operator runtime in milliseconds.
            4. Memory (B): The operator memory usage in bytes.
            5. View-like: A flag indicating whether the operator is view-like.
            6. Random: A flag indicating whether the operator is random.
            7. Saved Autograd: A flag indicating whether the operator's result is saved by autograd engine.
            8. In-place: The index of the operator's first parent, or None if not in-place.

        If print_tabular is True, the table is printed in a tabular format.
        Otherwise, the table is printed in a plain text format.
        """
        print(
            f"Total Memory: {sum(sac_stats.memory)} B Total Runtime: {sum(sac_stats.runtimes)} ms"
            f" Store Random: {sac_stats.force_store_random}"
        )
        table_data = []
        op_parent = dict(sac_stats.inplace_ops)
        for i, fn_name in enumerate(sac_stats.func_names):
            row = [
                str(i),
                fn_name,
                f"{sac_stats.runtimes[i]:.4f}",
                str(sac_stats.memory[i]),
                str(i in sac_stats.view_like_ops),
                str(i in sac_stats.rand_ops),
                str(i in sac_stats.saved_autograd_ops),
                str(op_parent.get(i, None)),
            ]
            table_data.append(row)
        # Define headers
        headers = [
            "Op Idx",
            "Op Name",
            "Runtimes(ms)",
            "Memory (B)",
            "View-like",
            "Random",
            "Saved Autograd",
            "In-place",
        ]
        if print_tabular:
            _display_stats_tabular(headers, table_data)
        else:
            max_widths = [0 for _ in range(len(headers))]
            table_data.insert(0, headers)
            for row in table_data:
                for i, elem in enumerate(row):
                    max_widths[i] = max(max_widths[i], len(elem))
            for row in table_data:
                print(
                    "\t".join(
                        [f"{elem:<{max_widths[i]}}" for i, elem in enumerate(row)]
                    )
                )

    def display_sac_tradeoff_stats(
        self,
        greedy_order_meta: SACGreedyOrderMeta,
        sac_stats: SACStats,
        print_tabular: bool = False,
    ) -> None:
        """
        Displays the SAC trade-off statistics.

        Args:
            greedy_order_meta (SACGreedyOrderMeta): The SAC greedy order metadata.
            sac_stats (SACStats): The SAC statistics.
            print_tabular (bool, optional): Whether to print the statistics in a tabular format. Defaults to False.

        Prints:
            A table with the following columns:
            1. Op Id(s): The operator index(es).
            2. Op Name(s): The operator name(s).
            3. Discarded Mem (%): The percentage of discarded memory.
            4. Discarded Mem (B): The discarded memory in bytes.
            5. Recomp time (%): The percentage of recomputed time.
            6. Recomp time (ms): The recomputed time in milliseconds.
            7. MSPS: The memory per second.
            8. Always Stored: A flag indicating whether the operator is always stored.
            9. Always Recomputed: A flag indicating whether the operator is always recomputed.

        If print_tabular is True, the table is printed in a tabular format.
        Otherwise, the table is printed in a plain text format.
        """
        table_data = []
        total_memory, total_runtime = sum(sac_stats.memory), sum(sac_stats.runtimes)
        discarded_mem: int = 0
        recomp_runtime: float = 0.0

        def append_row(
            op_indices: Set[int],
            func_names: Set[str],
            msps: Optional[float] = None,
            stored: Optional[bool] = False,
            recomputed: Optional[bool] = False,
        ) -> None:
            row = [
                str(op_indices),
                str(func_names),
                f"{discarded_mem / total_memory:.4f}",
                str(discarded_mem),
                f"{recomp_runtime / total_runtime:.4f}",
                str(recomp_runtime),
                f"{msps:.2e}" if msps is not None else str(nan),
                str(stored),
                str(recomputed),
            ]
            table_data.append(row)

        stored_ops, recomputed_ops, inplace_op_groups, random_ops_group, msps_meta = (
            greedy_order_meta.stored_ops,
            greedy_order_meta.recomputed_ops,
            greedy_order_meta.inplace_op_groups,
            greedy_order_meta.random_ops_group,
            greedy_order_meta.msps_meta,
        )

        for op_idx in recomputed_ops:
            op_indices: Set[int] = {op_idx}
            if op_idx in inplace_op_groups:
                op_indices.update(inplace_op_groups[op_idx])
            if op_idx in random_ops_group:
                op_indices.update(random_ops_group[op_idx])
            discarded_mem += sum(sac_stats.memory[i] for i in op_indices)
            recomp_runtime += sum(sac_stats.runtimes[i] for i in op_indices)
            func_names = {sac_stats.func_names[i] for i in op_indices}
            append_row(op_indices, func_names, recomputed=True)

        for cand in msps_meta:
            discarded_mem += cand.memory
            recomp_runtime += cand.runtime
            op_indices = {cand.op_idx}
            if cand.op_idx in inplace_op_groups:
                op_indices.update(inplace_op_groups[cand.op_idx])
            if cand.op_idx in random_ops_group:
                op_indices.update(random_ops_group[cand.op_idx])
            append_row(op_indices, cand.func_names, msps=cand.msps)

        for op_idx in stored_ops:
            op_indices = {op_idx}
            if op_idx in inplace_op_groups:
                op_indices.update(inplace_op_groups[op_idx])
            if op_idx in random_ops_group:
                op_indices.update(random_ops_group[op_idx])
            discarded_mem += sum(sac_stats.memory[i] for i in op_indices)
            recomp_runtime += sum(sac_stats.runtimes[i] for i in op_indices)
            func_names = {sac_stats.func_names[i] for i in op_indices}
            append_row(op_indices, func_names, stored=True)

        headers = [
            "Op Id(s)",
            "Op Name(s)",
            "Discarded Mem (%)",
            "Discarded Mem (B)",
            "Recomp time (%)",
            "Recomp time (ms)",
            "MSPS",
            "Always Stored",
            "Always Recomputed",
        ]
        if print_tabular:
            _display_stats_tabular(headers, table_data)
        else:
            max_widths = [0 for _ in range(len(headers))]
            table_data.insert(0, headers)
            for row in table_data:
                for i, elem in enumerate(row):
                    max_widths[i] = max(max_widths[i], len(elem))
            for row in table_data:
                print(
                    "\t".join(
                        [f"{elem:<{max_widths[i]}}" for i, elem in enumerate(row)]
                    )
                )

    def pwlf_sac_tradeoff_curve(
        self,
        n_segments: int = 2,
        save_tradeoff_graphs: bool = False,
    ) -> None:
        """
        Fits a piecewise linear function with the specified sumber of segments to the SAC trade-off curve of
        discarded memory vs recomputation time.

        Args:
            n_segments (int, optional): The number of segments to be used for fitting the piecewise linear function to
                the trade-off curve. Defaults to 2.
            save_tradeoff_graphs (bool, optional): Whether to save the trade-off graphs to file. Defaults to False.

        If save_tradeoff_graphs is True, the trade-off graphs are saved to file using the module FQN as the filename.
        """
        for mod_fqn, sac_stats in self.sac_mod_stats.items():
            self.sac_mod_tradeoff_stats[mod_fqn] = self._get_sac_tradeoff_pwlf_stats(
                sac_stats=sac_stats,
                greedy_order_meta=self.sac_mod_greedy_order_meta[mod_fqn],
                n_segments=n_segments,
                save_tradeoff_graph=save_tradeoff_graphs,
                filename=mod_fqn,
            )

    def display_modulewise_sac_stats(
        self, depth: int = 2, print_tabular: bool = False
    ) -> None:
        """
        Displays the SAC and trade-off statistics for each module.

        Args:
            depth (int, optional): The maximum depth of modules to display. Defaults to 2.
            print_tabular (bool, optional): Whether to print the statistics in a tabular format. Defaults to False.

        Prints:
            For each module with depth less than or equal to the specified depth:
            1. The SAC statistics for the module (using display_sac_stats).
            2. The SAC trade-off statistics for the module (using display_sac_tradeoff_stats).

        If print_tabular is True, the statistics are printed in a tabular format.
        Otherwise, the statistics are printed in a plain text format.
        """
        for mod_fqn, sac_stats in self.sac_mod_stats.items():
            mod_depth = mod_fqn.count(".") + 1
            if mod_depth > depth:
                continue
            print(f"Module: {mod_fqn}")
            self.display_sac_stats(sac_stats, print_tabular)
            print(f"AC Trade-off for Module: {mod_fqn} MSPS = Memory/Runtime")
            self.display_sac_tradeoff_stats(
                self.sac_mod_greedy_order_meta[mod_fqn], sac_stats, print_tabular
            )

    def __call__(self, estimate_mode_type: str) -> Self:
        """
        Sets the estimate mode type.

        Currently supported modes:
            - "operator-level-benchmark": Estimates runtime using operator benchmarking.
            - "operator-level-cost-model": Estimates runtime using roofline cost model.

        Args:
            estimate_mode_type (str): The type of estimate mode to use.

        Returns:
            SACEstimator: The SAC estimator instance.

        Raises:
            NotImplementedError: If the estimate mode type is not supported.
        """
        if estimate_mode_type == "operator-level-benchmark":
            self._estimate_runtime = RuntimeEstimator._benchmark_estimate
        elif estimate_mode_type == "operator-level-cost-model":
            self._estimate_runtime = RuntimeEstimator._roofline_estimate
        else:
            raise NotImplementedError(
                f"estimate_mode_type {estimate_mode_type} not supported"
            )
        return self

    def __enter__(self) -> Self:  # type: ignore[no-untyped-def]
        fake_mode = active_fake_mode()
        assert isinstance(
            fake_mode, FakeTensorMode
        ), "SAC Estimator should be called in FakeTensorMode"
        RuntimeEstimator.fake_mode = fake_mode
        self._mod_tracker.register_user_hooks(
            pre_fw_hook=self._pre_fw_hook,
            post_fw_hook=self._post_fw_hook,
        )
        self._mod_tracker.__enter__()
        self._saved_tensor_hook_ctx.__enter__()
        return super().__enter__()

    def __exit__(self, *args: Any) -> None:  # type: ignore[no-untyped-def]
        self._saved_tensor_hook_ctx.__exit__()
        self._mod_tracker.__exit__(*args)
        super().__exit__(*args)