1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
import logging
import math
from enum import IntEnum
from typing import Dict, List, Optional, Tuple
from torch.distributed._tools.ilp_utils import Graph, is_submodule
from torch.distributed._tools.sac_estimator import SACStats
try:
from pulp import ( # type: ignore[import-untyped,import-not-found]
lpDot,
LpInteger,
LpMaximize,
LpMinimize,
LpProblem,
LpStatus,
lpSum,
LpVariable,
PULP_CBC_CMD,
value,
)
except ImportError as err:
raise ImportError(
"Please install pulp package. See: https://github.com/coin-or/pulp."
) from err
# Create a logger object
logger = logging.getLogger(__name__)
# Set the logging level to INFO
logger.setLevel(logging.INFO)
def sac_milp(
graph: Graph,
memory_budget: float,
world_size: int = 1,
ac_units: Optional[List[str]] = None,
fsdp_units: Optional[List[str]] = None,
) -> Tuple[Dict[str, float], float, int]:
"""
MILP to decide which modules to AC and how much memory to discard.
The objective is to minimize recomputation time.
The constraint is to ensure peak memory is under budget.
Args:
graph: graph representation of the model as a module submodule tree
where each node is a submodule with memory & runtime stats
memory_budget: memory budget in GiB
world_size: number of GPUs. In the case of FSDP, world_size will be
used to compute the amount of parameter and gradient memory on each rank
ac_units: a list of user-specified AC units.
fsdp_units: a list of FSDP units. AC units cannot be supermodules of FSDP units.
Returns:
Dict[str, float]: the optimal SAC solution, mapping from module fqn to
the percentage of activation memory to **discard**
float: the recomputation time of the optimal SAC solution
int: upper bound on the peak memory of the optimal SAC solution.
note that value of -1 means that the ILP solver failed to find a solution.
"""
num_nodes = len(graph.nodes)
M = 10**2 # note: numerical issue may occur if M is too big
MEM_MULTIPLIER = 2**30
# Create a MILP problem
prob = LpProblem("SAC", LpMinimize)
# Create decision variables
# y_i: indicator for if module i is AC'ed
y = LpVariable.matrix("y", list(range(num_nodes)), 0, 1, LpInteger)
# r_i: percentage of discarded activation memory
r = LpVariable.matrix("r", list(range(num_nodes)), 0, 1)
# d_i: discarded activation memory for module i
d = LpVariable.matrix("d", list(range(num_nodes)), 0)
# a_i: total activation memory at module i
a = LpVariable.matrix("a", list(range(num_nodes)), 0)
# m_i: memory at module i, combining parameters, gradients, and activations
m = LpVariable.matrix("m", list(range(num_nodes)), 0)
# rcp_i: percentage of recomputation time
rcp = LpVariable.matrix("rcp", list(range(num_nodes)), 0)
# rct_i: recomputation time for module i (in ms)
rct = LpVariable.matrix("rct", list(range(num_nodes)), 0)
# max_m: peak memory
max_m = LpVariable("max_m", 0)
# Add constraints
# [Constraint] User specified AC units
if ac_units:
ac_units_set = set(ac_units)
for i in range(num_nodes):
if graph.nodes[i]["fqn"] not in ac_units_set:
prob += y[i] == 0
# [Constraint] AC units cannot be supmodules of user specified FSDP units
if fsdp_units:
for i in range(num_nodes):
if any(
is_submodule(fsdp_unit, graph.nodes[i]["fqn"])
for fsdp_unit in fsdp_units
):
prob += y[i] == 0
# [Constraint] No nested AC units
for i in range(num_nodes):
for j in range(i + 1, num_nodes):
if graph.ad_matrix[i][j] == 1:
prob += y[i] + y[j] <= 1
# [Constraint] Do not AC leaf modules
for i in range(num_nodes):
if graph.nodes[i]["is_leaf"]:
prob += y[i] == 0
# [Constraint] Express amount of discarded activation memory
for i in range(num_nodes):
# There are two measures for activation memory: ACM and IA
# 1. IA is the activation memory saved when not using AC
# 2. ACM is the total activation memory, including those
# that are not typically saved when not using AC
# Note: ACM >= IA
if (not graph.nodes[i]["is_leaf"]) and graph.nodes[i][
"sac_memory"
] < graph.nodes[i]["act_fw_per_module"]:
logger.warning("For module {%s}: ", graph.nodes[i]["fqn"])
logger.warning(
"activation memory from memory tracker is {%d},",
graph.nodes[i]["act_fw_per_module"],
)
logger.warning(
"activation memory from SAC estimator is {%d}.",
graph.nodes[i]["sac_memory"],
)
logger.warning("Something is wrong. Please check!")
logger.warning("Overriding the latter with the former.")
graph.nodes[i]["sac_memory"] = graph.nodes[i]["act_fw_per_module"]
ACM_i = graph.nodes[i]["sac_memory"] / MEM_MULTIPLIER
IA_i = graph.nodes[i]["act_fw_per_module"] / MEM_MULTIPLIER
prob += d[i] == ACM_i * r[i] - (ACM_i - IA_i) * y[i]
# [Constraint] Ensure correctness of r_i
# There are two parts to its correctness
# 1. r_i > 0 only if y_i == 1 (discard only if it is an AC unit)
# 2. r_i needs to be large enough to cover the difference between
# ACM and IA. Otherwise, we are not saving any memory
for i in range(num_nodes):
prob += y[i] >= r[i]
if graph.nodes[i]["is_leaf"]:
continue
ACM_i = graph.nodes[i]["sac_memory"] / MEM_MULTIPLIER
IA_i = graph.nodes[i]["act_fw_per_module"] / MEM_MULTIPLIER
prob += r[i] >= (ACM_i - IA_i) / ACM_i * y[i]
# [Constraint] Express total activation memory in the backward pass
for i in range(num_nodes):
AG_i = graph.nodes[i]["act_grad_per_module"] / MEM_MULTIPLIER
TA_i = graph.nodes[i]["act_total"] / MEM_MULTIPLIER
# related to discarded amount of memory
pos = graph.nodes[i]["pos_fw_post_order"]
coeff = [0] * num_nodes
for p in range(pos):
j = graph.name2node[graph.fw_post_order[p]]["index"]
coeff[j] = 1
prob += a[i] == TA_i + AG_i - lpDot(coeff, d)
# [Constraint] Express the total amount of memory at each module
# Note that unsharded parameters and gradients are not included here
P_1 = graph.nodes[0]["param_per_module"] / MEM_MULTIPLIER
for i in range(num_nodes):
TG_i = graph.nodes[i]["grad_total"] / MEM_MULTIPLIER
prob += m[i] == a[i] + (P_1 + TG_i) / world_size
# [Constraint] Express peak memory
for i in range(num_nodes):
prob += max_m >= m[i]
# [Constraint] Express percentage of recomputation time
for i in range(num_nodes):
for s in range(graph.nodes[i]["n_segments"]):
slope = graph.nodes[i]["slopes"][s]
intercept = graph.nodes[i]["intercepts"][s]
prob += rcp[i] >= slope * r[i] + intercept
# [Constraint] Express recomputation time
# rct_i = (rcp_i * ACT_i) if y_i == 1 else 0
for i in range(num_nodes):
ACT_i = graph.nodes[i]["sac_runtime"]
prob += rct[i] <= M * y[i]
prob += rct[i] <= ACT_i * rcp[i]
prob += rct[i] >= ACT_i * rcp[i] - M * (1 - y[i])
# [Constraint] Peak memory should be below budget
prob += max_m <= memory_budget
# Set Objeictive
prob += lpSum(rct)
# Solve
solver = PULP_CBC_CMD(gapRel=0.05, timeLimit=180, msg=0)
status = prob.solve(solver)
# If solver fails, print status and return empty solution
if status != 1:
logger.error("Solver failed to find a solution: %s", LpStatus[status])
return {}, 0, -1
# Gather and return solution if optimal solution is found
ac_decisions = {}
for i in range(num_nodes):
if round(y[i].varValue) == 1:
ac_decisions[graph.nodes[i]["fqn"]] = round(r[i].varValue, 4)
recomputation_time = round(value(prob.objective), 2)
peak_mem = round(max_m.varValue * MEM_MULTIPLIER)
return ac_decisions, recomputation_time, peak_mem
class SACDecision(IntEnum):
RECOMPUTE = 0
SAVE = 1
def get_optimal_checkpointing_policy_per_module(
sac_stats: SACStats, memory_budget: float
) -> List[int]:
"""
This is adapted from --
https://github.com/facebookresearch/xformers/blob/c6c0ac31f1b08542a0bc27278c6ed10f825f6963/xformers/checkpoint.py#L375
Given the SACStats of a module, including list of operators, their memory, runtimes, and metadata,
decide via MILP an optimal set of operators to checkpoint under a given ``memory_budget``.
Args:
sac_stats: the SACStats object of the module
memory_budget: a float between zero and one
Returns:
List[int]: the decision whether each operator should be saved (1) or recomptued (0).
"""
if not (0 <= memory_budget <= 1):
raise ValueError(
f"`memory_budget` must be a float between 0 and 1. Got {memory_budget}."
)
num_ops = len(sac_stats.func_names)
# Create a MILP problem
prob = LpProblem("SAC-per-module", LpMaximize)
# Create decision variables
# x[i] = 1 means the i-th operator should be saved, otherwise it should be recomputed
x = LpVariable.matrix("x", list(range(num_ops)), 0, 1, LpInteger)
# Add constraints
# [Constraint] random ops should be saved if ``force_store_random`` is True
# otherwise, random ops should either be all recomputed or all saved
if sac_stats.force_store_random:
for i in sac_stats.rand_ops:
prob += x[i] == SACDecision.SAVE.value
else:
for i1, i2 in zip(sac_stats.rand_ops[:-1], sac_stats.rand_ops[1:]):
prob += x[i1] == x[i2]
# [Constraint] view-like ops should always be recomputed
for i in sac_stats.view_like_ops:
prob += x[i] == SACDecision.RECOMPUTE.value
# [Constraint] inplace ops should always be done in conjunction with its parent op
for op, op_parent in sac_stats.inplace_ops:
if op != op_parent:
prob += x[op] == x[op_parent]
else:
prob += x[op] == SACDecision.SAVE.value
# [Constraint] saved memory should be under the ``memory_budget``
max_memory = math.ceil(memory_budget * sum(sac_stats.memory))
prob += lpDot(x, sac_stats.memory) <= max_memory
# [Objective] minimize recomputation time, note the ILP is a maximization problem
# because x[i] == 1 means the op is saved (not recomputed), and thus recomputation
# time is sum(sac_stats.runtimes) - lpDot(x, sac_stats.runtimes)
prob += lpDot(x, sac_stats.runtimes)
# Solve
solver = PULP_CBC_CMD(gapRel=0.05, timeLimit=10, msg=0)
status = prob.solve(solver)
# If solver fails, print status and return empty solution
if status != 1:
logger.error("Solver failed to find a solution: %s", LpStatus[status])
return []
# Gather and return solution if optimal solution is found
return [round(x[i].varValue) for i in range(num_ops)]
|