1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
# mypy: allow-untyped-defs
from typing import Any, Callable, cast, Tuple
import torch
import torch.distributed as dist
__all__ = [
"allreduce_hook",
"fp16_compress_hook",
"bf16_compress_hook",
"fp16_compress_wrapper",
"bf16_compress_wrapper",
]
def _allreduce_fut(
process_group: dist.ProcessGroup, tensor: torch.Tensor
) -> torch.futures.Future[torch.Tensor]:
"""Average the input gradient tensor by allreduce and returns a future."""
group_to_use = process_group if process_group is not None else dist.group.WORLD
# Apply the division first to avoid overflow, especially for FP16.
tensor.div_(group_to_use.size())
return (
dist.all_reduce(tensor, group=group_to_use, async_op=True)
.get_future()
.then(lambda fut: fut.value()[0])
)
def allreduce_hook(
process_group: dist.ProcessGroup, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
"""
Call ``allreduce`` using ``GradBucket`` tensors.
Once gradient tensors are aggregated across all workers, its ``then``
callback takes the mean and returns the result.
If user registers this DDP communication hook,
DDP results is expected to be same as the case where no hook was registered.
Hence, this won't change behavior of DDP and user can use this as a reference
or modify this hook to log useful information or any other purposes while
unaffecting DDP behavior.
Example::
>>> # xdoctest: +SKIP
>>> ddp_model.register_comm_hook(process_group, allreduce_hook)
"""
return _allreduce_fut(process_group, bucket.buffer())
def _compress_hook(
dtype: torch.dtype,
process_group: dist.ProcessGroup,
bucket: dist.GradBucket,
) -> torch.futures.Future[torch.Tensor]:
group_to_use = process_group if process_group is not None else dist.group.WORLD
world_size = group_to_use.size()
buffer = (
cast(Tuple[torch.Tensor, ...], bucket)[0]
if isinstance(bucket, tuple)
else bucket.buffer()
)
compressed_tensor = buffer.to(dtype).div_(world_size)
def decompress(fut):
decompressed_tensor = buffer
# Decompress in place to reduce the peak memory.
# See: https://github.com/pytorch/pytorch/issues/45968
value = fut if isinstance(fut, torch.Tensor) else fut.value()[0]
decompressed_tensor.copy_(value)
return decompressed_tensor
if torch.compiler.is_compiling():
grad = dist._functional_collectives.all_reduce(
compressed_tensor, "sum", group_to_use
)
return decompress(grad)
else:
fut = dist.all_reduce(
compressed_tensor, group=group_to_use, async_op=True
).get_future()
return fut.then(decompress)
def fp16_compress_hook(
process_group: dist.ProcessGroup,
bucket: dist.GradBucket,
) -> torch.futures.Future[torch.Tensor]:
"""
Compress by casting ``GradBucket`` to ``torch.float16`` divided by process group size.
This DDP communication hook implements a simple gradient compression
approach that casts ``GradBucket`` tensor to half-precision floating-point format (``torch.float16``)
and then divides it by the process group size.
It allreduces those ``float16`` gradient tensors. Once compressed gradient
tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``).
Example::
>>> # xdoctest: +SKIP
>>> ddp_model.register_comm_hook(process_group, fp16_compress_hook)
"""
return _compress_hook(torch.float16, process_group, bucket)
def bf16_compress_hook(
process_group: dist.ProcessGroup,
bucket: dist.GradBucket,
) -> torch.futures.Future[torch.Tensor]:
"""
Warning: This API is experimental, and it requires NCCL version later than 2.9.6.
This DDP communication hook implements a simple gradient compression
approach that casts ``GradBucket`` tensor to half-precision
`Brain floating point format <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format>`_ (``torch.bfloat16``)
and then divides it by the process group size.
It allreduces those ``bfloat16`` gradient tensors. Once compressed gradient
tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``).
Example::
>>> # xdoctest: +SKIP
>>> ddp_model.register_comm_hook(process_group, bf16_compress_hook)
"""
return _compress_hook(torch.bfloat16, process_group, bucket)
def fp16_compress_wrapper(
hook: Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
"""
Cast input tensor to ``torch.float16``, cast result of hook back to input dtype.
This wrapper casts the input gradient tensor of a given DDP communication hook to half-precision
floating point format (``torch.float16``), and casts the resulting tensor of the given hook back to
the input data type, such as ``float32``.
Therefore, ``fp16_compress_hook`` is equivalent to ``fp16_compress_wrapper(allreduce_hook)``.
Example::
>>> # xdoctest: +SKIP
>>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1, start_powerSGD_iter=10)
>>> ddp_model.register_comm_hook(state, fp16_compress_wrapper(powerSGD_hook))
"""
def fp16_compress_wrapper_hook(
hook_state, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
# Cast bucket tensor to FP16.
bucket.set_buffer(bucket.buffer().to(torch.float16))
fut = hook(hook_state, bucket)
def decompress(fut):
decompressed_tensor = bucket.buffer()
# Decompress in place to reduce the peak memory.
# See: https://github.com/pytorch/pytorch/issues/45968
decompressed_tensor.copy_(fut.value())
return decompressed_tensor
# Decompress after hook has run.
return fut.then(decompress)
return fp16_compress_wrapper_hook
def bf16_compress_wrapper(
hook: Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]
) -> Callable[[Any, dist.GradBucket], torch.futures.Future[torch.Tensor]]:
"""
Warning: This API is experimental, and it requires NCCL version later than 2.9.6.
This wrapper casts the input gradient tensor of a given DDP communication hook to half-precision
`Brain floating point format <https://en.wikipedia.org/wiki/Bfloat16_floating-point_format> `_ (``torch.bfloat16``),
and casts the resulting tensor of the given hook back to the input data type, such as ``float32``.
Therefore, ``bf16_compress_hook`` is equivalent to ``bf16_compress_wrapper(allreduce_hook)``.
Example::
>>> # xdoctest: +SKIP
>>> state = PowerSGDState(process_group=process_group, matrix_approximation_rank=1, start_powerSGD_iter=10)
>>> ddp_model.register_comm_hook(state, bf16_compress_wrapper(powerSGD_hook))
"""
def bf16_compress_wrapper_hook(
hook_state, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
# Cast bucket tensor to BF16.
bucket.set_buffer(bucket.buffer().to(torch.bfloat16))
fut = hook(hook_state, bucket)
def decompress(fut):
decompressed_tensor = bucket.buffer()
# Decompress in place to reduce the peak memory.
# See: https://github.com/pytorch/pytorch/issues/45968
decompressed_tensor.copy_(fut.value())
return decompressed_tensor
# Decompress after hook has run.
return fut.then(decompress)
return bf16_compress_wrapper_hook
|