File: planner_helpers.py

package info (click to toggle)
pytorch-cuda 2.6.0%2Bdfsg-7
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 161,620 kB
  • sloc: python: 1,278,832; cpp: 900,322; ansic: 82,710; asm: 7,754; java: 3,363; sh: 2,811; javascript: 2,443; makefile: 597; ruby: 195; xml: 84; objc: 68
file content (388 lines) | stat: -rw-r--r-- 12,998 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# mypy: allow-untyped-defs
import io
from typing import Any, Callable, cast, Dict, List

import torch
import torch.distributed as dist
from torch._utils import _get_device_module
from torch.distributed._shard.metadata import ShardMetadata
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.tensor import DTensor
from torch.distributed.tensor._utils import compute_local_shape_and_global_offset

from .metadata import (
    BytesStorageMetadata,
    ChunkStorageMetadata,
    MetadataIndex,
    STATE_DICT_TYPE,
    STORAGE_TYPES,
    TensorProperties,
    TensorStorageMetadata,
)
from .planner import (
    LoadItemType,
    ReadItem,
    SavePlan,
    TensorWriteData,
    WriteItem,
    WriteItemType,
)
from .resharding import (
    _check_shard_metadata_pair_overlap,
    _shards_get_overlap_region_wrt_saved_tensor,
)


__all__: List[str] = ["create_read_items_for_chunk_list"]


def _create_chunk_from_tensor(tensor: torch.Tensor) -> ChunkStorageMetadata:
    return ChunkStorageMetadata(
        offsets=torch.Size([0] * len(tensor.size())), sizes=tensor.size()
    )


def _chunk_for_shard(shard_md: ShardMetadata) -> ChunkStorageMetadata:
    return ChunkStorageMetadata(
        offsets=torch.Size(shard_md.shard_offsets),
        sizes=torch.Size(shard_md.shard_sizes),
    )


def _sharded_tensor_metadata(
    sharded_tensor: ShardedTensor, shard_md: ShardMetadata
) -> TensorWriteData:
    shard_properties = sharded_tensor.metadata().tensor_properties

    properties = TensorProperties(
        dtype=shard_properties.dtype,
        layout=shard_properties.layout,
        requires_grad=shard_properties.requires_grad,
        memory_format=shard_properties.memory_format,
        pin_memory=shard_properties.pin_memory,
    )

    return TensorWriteData(
        chunk=_chunk_for_shard(shard_md),
        properties=properties,
        size=sharded_tensor.metadata().size,
    )


def _create_write_items_for_dtensor(fqn: str, tensor: DTensor) -> WriteItem:
    sizes, offsets = compute_local_shape_and_global_offset(
        tensor.shape, tensor.device_mesh, tensor.placements
    )
    sizes, offsets = torch.Size(sizes), torch.Size(offsets)

    return WriteItem(
        index=MetadataIndex(fqn, offsets),
        type=WriteItemType.SHARD,
        tensor_data=TensorWriteData(
            chunk=ChunkStorageMetadata(
                offsets=offsets,
                sizes=sizes,
            ),
            properties=TensorProperties.create_from_tensor(tensor.to_local()),
            size=tensor.size(),
        ),
    )


def _create_write_item_for_shard(
    fqn: str, sharded_tensor: ShardedTensor, shard_md: ShardMetadata
) -> WriteItem:
    offsets = torch.Size(shard_md.shard_offsets)
    return WriteItem(
        index=MetadataIndex(fqn, offsets),
        type=WriteItemType.SHARD,
        tensor_data=_sharded_tensor_metadata(sharded_tensor, shard_md),
    )


def _create_write_item_for_tensor(fqn: str, tensor: torch.Tensor) -> WriteItem:
    offsets = torch.Size([0] * len(tensor.size()))
    return WriteItem(
        index=MetadataIndex(fqn, offsets),
        type=WriteItemType.TENSOR,
        tensor_data=TensorWriteData(
            chunk=ChunkStorageMetadata(offsets=offsets, sizes=tensor.size()),
            properties=TensorProperties.create_from_tensor(tensor),
            size=tensor.size(),
        ),
    )


def _create_write_item_for_bytesio(fqn: str, bytes: Any):
    return WriteItem(
        index=MetadataIndex(fqn),
        type=WriteItemType.BYTE_IO,
    )


def _create_read_item_for_byteio(
    dest_index, dest_offset, storage_index, storage_offset, length
):
    return ReadItem(
        type=LoadItemType.BYTE_IO,
        dest_index=dest_index,
        dest_offsets=torch.Size((dest_offset,)),
        storage_index=storage_index,
        storage_offsets=torch.Size((storage_offset,)),
        lengths=torch.Size((length,)),
    )


def _create_read_item_for_tensor(
    dest_index, dest_offsets, storage_index, storage_offsets, lengths
):
    return ReadItem(
        type=LoadItemType.TENSOR,
        dest_index=dest_index,
        dest_offsets=torch.Size(dest_offsets),
        storage_index=storage_index,
        storage_offsets=torch.Size(storage_offsets),
        lengths=torch.Size(lengths),
    )


def create_read_items_for_chunk_list(
    fqn: str,
    checkpoint_md: TensorStorageMetadata,
    local_chunks: List[ChunkStorageMetadata],
) -> List[ReadItem]:
    """
    Create a list of ``ReadItem`` based on the checkpoint and local chunks.

    This applies the resharding algorithm and computes the reads needed
    to satisfy ``local_chunks`` with a checkpoint described by ``checkpoint_md``.

    Args:
        fqn (str) : The state_dict FQN to pass to ``ReadItem``.
        checkpoint_md (TensorStorageMetadata): metadata for a given tensor
            from a checkpoint.
        local_chunks (List[ChunkStorageMetadata]): Local chunks that needs to be
            loaded.

    Returns:
        A list of ``ReadItem`` that will satisfy all input chunks.
    """
    read_items = []
    # this is a naive quadratic algo that can be optimized later
    for idx, shard in enumerate(local_chunks):
        for storage_idx, storage_md in enumerate(checkpoint_md.chunks):
            if not _check_shard_metadata_pair_overlap(shard, storage_md):
                continue

            storage_offsets = []
            dest_offsets = []
            lengths = []
            for (
                _dim,
                offset_for_saved_tensor,
                offset_for_current_tensor,
                length,
            ) in _shards_get_overlap_region_wrt_saved_tensor(
                saved_shard=storage_md, current_shard=shard
            ):
                storage_offsets.append(offset_for_saved_tensor)
                dest_offsets.append(offset_for_current_tensor)
                lengths.append(length)

            read_items.append(
                _create_read_item_for_tensor(
                    dest_index=MetadataIndex(fqn, shard.offsets, idx),
                    dest_offsets=dest_offsets,
                    storage_index=MetadataIndex(fqn, storage_md.offsets, storage_idx),
                    storage_offsets=storage_offsets,
                    lengths=lengths,
                )
            )
    return read_items


def _create_default_metadata_only_plan(state_dict: STATE_DICT_TYPE) -> SavePlan:
    requests = []
    for fqn, obj in state_dict.items():
        if isinstance(obj, DTensor):
            requests.append(_create_write_items_for_dtensor(fqn, obj))
        elif isinstance(obj, ShardedTensor):
            requests.extend(
                _create_write_item_for_shard(fqn, obj, shard_md)
                for shard_md in obj.metadata().shards_metadata
            )
        elif isinstance(obj, torch.Tensor):
            requests.append(_create_write_item_for_tensor(fqn, obj))
        else:
            requests.append(_create_write_item_for_bytesio(fqn, obj))
    return SavePlan(requests)


def _create_write_items(fqn: str, object: Any) -> List[WriteItem]:
    if hasattr(object, "__create_write_items__"):
        # DTensor implements _Checkpointable
        return object.__create_write_items__(fqn, object)
    elif isinstance(object, ShardedTensor):
        return [
            _create_write_item_for_shard(fqn, object, shard.metadata)
            for shard in object.local_shards()
        ]
    elif isinstance(object, torch.Tensor):
        return [_create_write_item_for_tensor(fqn, object)]
    else:
        return [_create_write_item_for_bytesio(fqn, object)]


def _create_chunk_from_dtensor(tensor: DTensor) -> ChunkStorageMetadata:
    sizes, offsets = compute_local_shape_and_global_offset(
        tensor.shape, tensor.device_mesh, tensor.placements
    )
    sizes, offsets = torch.Size(sizes), torch.Size(offsets)
    return ChunkStorageMetadata(
        offsets=offsets,
        sizes=sizes,
    )


def _create_chunk_list(tensor: torch.Tensor) -> List[ChunkStorageMetadata]:
    if hasattr(tensor, "__create_chunk_list__"):
        # DTensor implements _Checkpointable
        local_chunks = tensor.__create_chunk_list__()  # type: ignore[attr-defined]
    elif isinstance(tensor, ShardedTensor):
        local_chunks = [
            _chunk_for_shard(shard.metadata) for shard in tensor.local_shards()
        ]
    elif isinstance(tensor, torch.Tensor):
        local_chunks = [_create_chunk_from_tensor(tensor)]
    else:
        raise ValueError(
            "Unsupported Type, expecting one of [Tensor, DTensor, ShardedTensor] "
            f",but got {type(tensor)}"
        )

    return local_chunks


def _create_read_items(fqn: str, md: STORAGE_TYPES, obj: Any) -> List[ReadItem]:
    if not isinstance(md, BytesStorageMetadata):
        try:
            local_chunks = _create_chunk_list(obj)
        except ValueError as ex:
            raise ValueError(
                f"Invalid checkpoint metadata for {fqn}, "
                + f"expected BytesStorageMetadata but found {type(md)}",
            ) from ex

        return create_read_items_for_chunk_list(fqn, md, local_chunks)
    else:
        return [
            _create_read_item_for_byteio(
                dest_index=MetadataIndex(fqn),
                dest_offset=0,
                storage_index=MetadataIndex(fqn),
                storage_offset=0,
                length=0,
            )
        ]


def _init_state_dict(state_dict: Dict[str, Any]) -> Any:
    """
    Initializes meta tensor if the meta tensor is DTensor or torch.Tensor.
    """

    def dtensor_func(value: DTensor):
        device = getattr(value, "device", None)
        if device == torch.device("meta"):
            device_type = dist.distributed_c10d._get_pg_default_device().type
            device = cast(
                torch.device, _get_device_module(device_type).current_device()
            )
            new_local_tensor = torch.empty_like(value.to_local(), device=device)
            # We need to pass shape and stride explicitly, since DTensor might be
            # sharded unevenly.
            dtensor = DTensor.from_local(
                new_local_tensor,
                device_mesh=value.device_mesh,
                placements=value.placements,
                shape=value.size(),
                stride=value.stride(),
            )
            return dtensor
        else:
            return value

    def sharded_tensor_func(value: Any):
        device = getattr(value, "device", None)
        if device == torch.device("meta"):
            raise RuntimeError(
                f"Found unsupported type {type(value)} for meta device loading."
            )
        else:
            return value

    def tensor_func(value: torch.Tensor):
        device = getattr(value, "device", None)
        if device == torch.device("meta"):
            device_type = dist.distributed_c10d._get_pg_default_device().type
            device = cast(
                torch.device, _get_device_module(device_type).current_device()
            )
            tensor = torch.empty_like(value, device=device)
            return tensor
        else:
            return value

    _iterate_state_dict(
        state_dict,
        dtensor_func,
        sharded_tensor_func,
        tensor_func,
    )


def _iterate_state_dict(
    iter_object: Any,
    dtensor_func: Callable,
    sharded_tensor_func: Callable,
    tensor_func: Callable,
):
    """
    Iterate through the state dict, applying the given functions to each tensor type
    and update the state dict in place.

    Args:
        iter_object (Any): the target state_dict.
        sharded_tensor_func (Callable): the function to apply to ShardedTensor
        dtensor_func (Callable): the function to apply to DTensor
        tensor_func (Callable): the function to apply to Tensor

    # TODO: let state_dict_util._iterate_state_dict() to support in place option
    so we don't need to have two versions of _iterate_state_dict.
    """

    if isinstance(iter_object, DTensor):
        return dtensor_func(iter_object)
    elif isinstance(iter_object, ShardedTensor):
        return sharded_tensor_func(iter_object)
    elif isinstance(iter_object, torch.Tensor):
        return tensor_func(iter_object)
    elif (
        isinstance(iter_object, (int, float, str, bytes, io.BytesIO))
        or iter_object is None
    ):
        return iter_object
    elif isinstance(iter_object, dict):
        for key, value in iter_object.items():
            iter_object[key] = _iterate_state_dict(
                value, dtensor_func, sharded_tensor_func, tensor_func
            )
        return iter_object
    elif isinstance(iter_object, (list, tuple)):
        ret = [
            _iterate_state_dict(v, dtensor_func, sharded_tensor_func, tensor_func)
            for v in iter_object
        ]
        if isinstance(iter_object, tuple):
            ret = tuple(ret)  # type: ignore[assignment]
        return ret