1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
# mypy: allow-untyped-defs
import io
from typing import Any, Callable, cast, Dict, List
import torch
import torch.distributed as dist
from torch._utils import _get_device_module
from torch.distributed._shard.metadata import ShardMetadata
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.tensor import DTensor
from torch.distributed.tensor._utils import compute_local_shape_and_global_offset
from .metadata import (
BytesStorageMetadata,
ChunkStorageMetadata,
MetadataIndex,
STATE_DICT_TYPE,
STORAGE_TYPES,
TensorProperties,
TensorStorageMetadata,
)
from .planner import (
LoadItemType,
ReadItem,
SavePlan,
TensorWriteData,
WriteItem,
WriteItemType,
)
from .resharding import (
_check_shard_metadata_pair_overlap,
_shards_get_overlap_region_wrt_saved_tensor,
)
__all__: List[str] = ["create_read_items_for_chunk_list"]
def _create_chunk_from_tensor(tensor: torch.Tensor) -> ChunkStorageMetadata:
return ChunkStorageMetadata(
offsets=torch.Size([0] * len(tensor.size())), sizes=tensor.size()
)
def _chunk_for_shard(shard_md: ShardMetadata) -> ChunkStorageMetadata:
return ChunkStorageMetadata(
offsets=torch.Size(shard_md.shard_offsets),
sizes=torch.Size(shard_md.shard_sizes),
)
def _sharded_tensor_metadata(
sharded_tensor: ShardedTensor, shard_md: ShardMetadata
) -> TensorWriteData:
shard_properties = sharded_tensor.metadata().tensor_properties
properties = TensorProperties(
dtype=shard_properties.dtype,
layout=shard_properties.layout,
requires_grad=shard_properties.requires_grad,
memory_format=shard_properties.memory_format,
pin_memory=shard_properties.pin_memory,
)
return TensorWriteData(
chunk=_chunk_for_shard(shard_md),
properties=properties,
size=sharded_tensor.metadata().size,
)
def _create_write_items_for_dtensor(fqn: str, tensor: DTensor) -> WriteItem:
sizes, offsets = compute_local_shape_and_global_offset(
tensor.shape, tensor.device_mesh, tensor.placements
)
sizes, offsets = torch.Size(sizes), torch.Size(offsets)
return WriteItem(
index=MetadataIndex(fqn, offsets),
type=WriteItemType.SHARD,
tensor_data=TensorWriteData(
chunk=ChunkStorageMetadata(
offsets=offsets,
sizes=sizes,
),
properties=TensorProperties.create_from_tensor(tensor.to_local()),
size=tensor.size(),
),
)
def _create_write_item_for_shard(
fqn: str, sharded_tensor: ShardedTensor, shard_md: ShardMetadata
) -> WriteItem:
offsets = torch.Size(shard_md.shard_offsets)
return WriteItem(
index=MetadataIndex(fqn, offsets),
type=WriteItemType.SHARD,
tensor_data=_sharded_tensor_metadata(sharded_tensor, shard_md),
)
def _create_write_item_for_tensor(fqn: str, tensor: torch.Tensor) -> WriteItem:
offsets = torch.Size([0] * len(tensor.size()))
return WriteItem(
index=MetadataIndex(fqn, offsets),
type=WriteItemType.TENSOR,
tensor_data=TensorWriteData(
chunk=ChunkStorageMetadata(offsets=offsets, sizes=tensor.size()),
properties=TensorProperties.create_from_tensor(tensor),
size=tensor.size(),
),
)
def _create_write_item_for_bytesio(fqn: str, bytes: Any):
return WriteItem(
index=MetadataIndex(fqn),
type=WriteItemType.BYTE_IO,
)
def _create_read_item_for_byteio(
dest_index, dest_offset, storage_index, storage_offset, length
):
return ReadItem(
type=LoadItemType.BYTE_IO,
dest_index=dest_index,
dest_offsets=torch.Size((dest_offset,)),
storage_index=storage_index,
storage_offsets=torch.Size((storage_offset,)),
lengths=torch.Size((length,)),
)
def _create_read_item_for_tensor(
dest_index, dest_offsets, storage_index, storage_offsets, lengths
):
return ReadItem(
type=LoadItemType.TENSOR,
dest_index=dest_index,
dest_offsets=torch.Size(dest_offsets),
storage_index=storage_index,
storage_offsets=torch.Size(storage_offsets),
lengths=torch.Size(lengths),
)
def create_read_items_for_chunk_list(
fqn: str,
checkpoint_md: TensorStorageMetadata,
local_chunks: List[ChunkStorageMetadata],
) -> List[ReadItem]:
"""
Create a list of ``ReadItem`` based on the checkpoint and local chunks.
This applies the resharding algorithm and computes the reads needed
to satisfy ``local_chunks`` with a checkpoint described by ``checkpoint_md``.
Args:
fqn (str) : The state_dict FQN to pass to ``ReadItem``.
checkpoint_md (TensorStorageMetadata): metadata for a given tensor
from a checkpoint.
local_chunks (List[ChunkStorageMetadata]): Local chunks that needs to be
loaded.
Returns:
A list of ``ReadItem`` that will satisfy all input chunks.
"""
read_items = []
# this is a naive quadratic algo that can be optimized later
for idx, shard in enumerate(local_chunks):
for storage_idx, storage_md in enumerate(checkpoint_md.chunks):
if not _check_shard_metadata_pair_overlap(shard, storage_md):
continue
storage_offsets = []
dest_offsets = []
lengths = []
for (
_dim,
offset_for_saved_tensor,
offset_for_current_tensor,
length,
) in _shards_get_overlap_region_wrt_saved_tensor(
saved_shard=storage_md, current_shard=shard
):
storage_offsets.append(offset_for_saved_tensor)
dest_offsets.append(offset_for_current_tensor)
lengths.append(length)
read_items.append(
_create_read_item_for_tensor(
dest_index=MetadataIndex(fqn, shard.offsets, idx),
dest_offsets=dest_offsets,
storage_index=MetadataIndex(fqn, storage_md.offsets, storage_idx),
storage_offsets=storage_offsets,
lengths=lengths,
)
)
return read_items
def _create_default_metadata_only_plan(state_dict: STATE_DICT_TYPE) -> SavePlan:
requests = []
for fqn, obj in state_dict.items():
if isinstance(obj, DTensor):
requests.append(_create_write_items_for_dtensor(fqn, obj))
elif isinstance(obj, ShardedTensor):
requests.extend(
_create_write_item_for_shard(fqn, obj, shard_md)
for shard_md in obj.metadata().shards_metadata
)
elif isinstance(obj, torch.Tensor):
requests.append(_create_write_item_for_tensor(fqn, obj))
else:
requests.append(_create_write_item_for_bytesio(fqn, obj))
return SavePlan(requests)
def _create_write_items(fqn: str, object: Any) -> List[WriteItem]:
if hasattr(object, "__create_write_items__"):
# DTensor implements _Checkpointable
return object.__create_write_items__(fqn, object)
elif isinstance(object, ShardedTensor):
return [
_create_write_item_for_shard(fqn, object, shard.metadata)
for shard in object.local_shards()
]
elif isinstance(object, torch.Tensor):
return [_create_write_item_for_tensor(fqn, object)]
else:
return [_create_write_item_for_bytesio(fqn, object)]
def _create_chunk_from_dtensor(tensor: DTensor) -> ChunkStorageMetadata:
sizes, offsets = compute_local_shape_and_global_offset(
tensor.shape, tensor.device_mesh, tensor.placements
)
sizes, offsets = torch.Size(sizes), torch.Size(offsets)
return ChunkStorageMetadata(
offsets=offsets,
sizes=sizes,
)
def _create_chunk_list(tensor: torch.Tensor) -> List[ChunkStorageMetadata]:
if hasattr(tensor, "__create_chunk_list__"):
# DTensor implements _Checkpointable
local_chunks = tensor.__create_chunk_list__() # type: ignore[attr-defined]
elif isinstance(tensor, ShardedTensor):
local_chunks = [
_chunk_for_shard(shard.metadata) for shard in tensor.local_shards()
]
elif isinstance(tensor, torch.Tensor):
local_chunks = [_create_chunk_from_tensor(tensor)]
else:
raise ValueError(
"Unsupported Type, expecting one of [Tensor, DTensor, ShardedTensor] "
f",but got {type(tensor)}"
)
return local_chunks
def _create_read_items(fqn: str, md: STORAGE_TYPES, obj: Any) -> List[ReadItem]:
if not isinstance(md, BytesStorageMetadata):
try:
local_chunks = _create_chunk_list(obj)
except ValueError as ex:
raise ValueError(
f"Invalid checkpoint metadata for {fqn}, "
+ f"expected BytesStorageMetadata but found {type(md)}",
) from ex
return create_read_items_for_chunk_list(fqn, md, local_chunks)
else:
return [
_create_read_item_for_byteio(
dest_index=MetadataIndex(fqn),
dest_offset=0,
storage_index=MetadataIndex(fqn),
storage_offset=0,
length=0,
)
]
def _init_state_dict(state_dict: Dict[str, Any]) -> Any:
"""
Initializes meta tensor if the meta tensor is DTensor or torch.Tensor.
"""
def dtensor_func(value: DTensor):
device = getattr(value, "device", None)
if device == torch.device("meta"):
device_type = dist.distributed_c10d._get_pg_default_device().type
device = cast(
torch.device, _get_device_module(device_type).current_device()
)
new_local_tensor = torch.empty_like(value.to_local(), device=device)
# We need to pass shape and stride explicitly, since DTensor might be
# sharded unevenly.
dtensor = DTensor.from_local(
new_local_tensor,
device_mesh=value.device_mesh,
placements=value.placements,
shape=value.size(),
stride=value.stride(),
)
return dtensor
else:
return value
def sharded_tensor_func(value: Any):
device = getattr(value, "device", None)
if device == torch.device("meta"):
raise RuntimeError(
f"Found unsupported type {type(value)} for meta device loading."
)
else:
return value
def tensor_func(value: torch.Tensor):
device = getattr(value, "device", None)
if device == torch.device("meta"):
device_type = dist.distributed_c10d._get_pg_default_device().type
device = cast(
torch.device, _get_device_module(device_type).current_device()
)
tensor = torch.empty_like(value, device=device)
return tensor
else:
return value
_iterate_state_dict(
state_dict,
dtensor_func,
sharded_tensor_func,
tensor_func,
)
def _iterate_state_dict(
iter_object: Any,
dtensor_func: Callable,
sharded_tensor_func: Callable,
tensor_func: Callable,
):
"""
Iterate through the state dict, applying the given functions to each tensor type
and update the state dict in place.
Args:
iter_object (Any): the target state_dict.
sharded_tensor_func (Callable): the function to apply to ShardedTensor
dtensor_func (Callable): the function to apply to DTensor
tensor_func (Callable): the function to apply to Tensor
# TODO: let state_dict_util._iterate_state_dict() to support in place option
so we don't need to have two versions of _iterate_state_dict.
"""
if isinstance(iter_object, DTensor):
return dtensor_func(iter_object)
elif isinstance(iter_object, ShardedTensor):
return sharded_tensor_func(iter_object)
elif isinstance(iter_object, torch.Tensor):
return tensor_func(iter_object)
elif (
isinstance(iter_object, (int, float, str, bytes, io.BytesIO))
or iter_object is None
):
return iter_object
elif isinstance(iter_object, dict):
for key, value in iter_object.items():
iter_object[key] = _iterate_state_dict(
value, dtensor_func, sharded_tensor_func, tensor_func
)
return iter_object
elif isinstance(iter_object, (list, tuple)):
ret = [
_iterate_state_dict(v, dtensor_func, sharded_tensor_func, tensor_func)
for v in iter_object
]
if isinstance(iter_object, tuple):
ret = tuple(ret) # type: ignore[assignment]
return ret
|